Skip to main content

PCSK9 Inhibition and Atherosclerosis: Current Therapeutic Option and Prospection

  • Protocol
  • First Online:
Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2204))

Abstract

Low-density lipoprotein cholesterol (LDL-C) is a pivotal factor in atherosclerotic cardiovascular disease (ASCVD), the leading cause of worldwide mortality. The limitations of statin therapy require alternative treatment strategies to achieve target LDL-C level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in LDLR recycling, consequently regulating plasma cholesterol levels. Monoclonal antibodies targeting PCSK9 increased expression of LDLRs at the cell surface and therefore decreased circulating LDL-C. PCSK9 inhibitors have shown great efficacy in reducing plasma LDL-C levels, which needs to inject once or twice monthly. Though SPIRE sponsors concern the immunogenicity and terminate trials early, FOURIER and ODYSSER OUTCOME trials improved the efficacy of PCSK9 inhibitors in LDL-C reduction. Inclisiran actually is a small interfering RNA (siRNA) developed to inhibit PCSK9 messenger RNA, leading to reduced concentrations of the PCSK9 protein and thereby lower concentrations of LDL-C. Inclisiran is a latest alternative treatment to cholesterol-lowering therapeutics. Twice injections of inclisiran durably reduced LDL-C levels over 1 year. siRNA therapeutics provided a simple, novel, and less frequent approach to LDL-C reduction in phase I and II trials, which may be used either as in combination with statin therapeutics or a stand-alone therapy in the future.

Pratik Pandey and Cuimei Zhao contribute equally to this chapter as co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ference BA, Yoo W, Alesh I, Mahajan N, Mirowska KK, Mewada A, Kahn J, Afonso L, Williams KA Sr, Flack JM (2012) Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J Am Coll Cardiol 60:2631–2639

    Article  CAS  Google Scholar 

  2. Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E, Sabatine MS (2016) Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316:1289–1297

    Article  CAS  Google Scholar 

  3. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R, Cholesterol Treatment Trialists’ (CTT) Collaborators (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet 366:1267–1278

    Article  CAS  Google Scholar 

  4. Seidah NG, Prat A (2012) The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11:367–383

    Article  CAS  Google Scholar 

  5. Nozue T, Yamamoto S, Tohyama S, Fukui K, Umezawa S, Onishi Y, Kunishima T, Sato A, Nozato T, Miyake S, Takeyama Y, Morino Y, Yamauchi T, Muramatsu T, Hibi K, Terashima M, Michishita I, TRUTH Investigators (2012) Comparison of arterial remodeling and changes in plaque composition between patients with progression versus regression of coronary atherosclerosis during statin therapy (from the TRUTH study). Am J Cardiol 109:1247–1253

    Article  Google Scholar 

  6. Norata GD, Tibolla G, Catapano AL (2014) Targeting PCSK9 for hypercholesterolemia. Annu Rev Pharmacol Toxicol 54:273–293

    Article  CAS  Google Scholar 

  7. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derre A, Villeger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C (2003) Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 34:154–156

    Article  CAS  Google Scholar 

  8. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, Fernando C, Kauffman RS, Kallend D, Vaishnaw A, Simon A (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. NEJM 376(1):41–51

    Article  CAS  Google Scholar 

  9. Varret M, Rabès JP, Saint-Jore B, Cenarro A, Marinoni JC, Civeira F, Devillers M, Krempf M, Coulon M, Thiart R (1999) A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet 64(5):1378–1387

    Article  CAS  Google Scholar 

  10. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A 100:928–933

    Article  CAS  Google Scholar 

  11. Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, Skolnick MH, Hopkins PN, Hunt SC, Shattuck DM (2004) A mutation in PCSK9 causing autosomaldominant hypercholesterolemia in a Utah pedigree. Hum Genet 114:349–353

    Article  CAS  Google Scholar 

  12. Leren TP (2004) Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia. Clin Genet 65:419–422

    Article  CAS  Google Scholar 

  13. Naoumova RP, Tosi I, Patel D, Neuwirth C, Horswell SD, Marais AD, van Heyningen C, Soutar AK (2005) Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler Thromb Vasc Biol 25:2654–2660

    Article  CAS  Google Scholar 

  14. Humphries SE, Whittall RA, Hubbart CS, Maplebeck S, Cooper JA, Soutar AK, Naoumova R, Thompson GR, Seed M, Durrington PN (2006) Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J Med Genet 43:943–949

    Article  CAS  Google Scholar 

  15. Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME (2003) The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nat Struct Biol 10:520–526

    Article  CAS  Google Scholar 

  16. Cunningham D, Danley DE, Geoghegan KF (2007) Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 14(5):413–419

    Article  CAS  Google Scholar 

  17. Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D (2004) NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem 279:48865–48875

    Article  CAS  Google Scholar 

  18. Horton JD, Cohen JC, Hobbs HH (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32:71–77

    Article  CAS  Google Scholar 

  19. Lagace TA, Curtis DE, Garuti R, McNutt MC, Park SW, Prather HB, Anderson NN, Ho YK, Hammer RE, Horton JD (2006) Secreted PCSK9 decreases LDL receptors in hepatocytes and livers of parabiotic mice. J Clin Investig 116:2995–3005

    Article  CAS  Google Scholar 

  20. Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG (2006) The proprotein convertase (PC) PCSK9 is inactivated by Furin and/or PC5/6A functional consequences of natural mutations and post-translational modifications. J Biol Chem 281:30561–30572

    Article  CAS  Google Scholar 

  21. Maxwell KN, Breslow JL (2004) Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc Natl Acad Sci U S A 101:7100–7105

    Article  CAS  Google Scholar 

  22. Russell DW, Brown MS, Goldstein JL (1989) Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem 264:21682–21688

    CAS  PubMed  Google Scholar 

  23. Hovingh GK, Davidson MH, Kastelein JJP, O’Connor AM (2013) Diagnosis and treatment of familial hypercholesterolaemia. Eur Heart J 2013(34):962–971

    Article  Google Scholar 

  24. Karalis DG, Subramanya RD, Hessen SE, Liu L, Victor MF (2011) Achieving optimal lipid goals in patients with coronary artery disease. Am J Cardiol 107:886–890

    Article  Google Scholar 

  25. Young JM, Florkowski CM, Molyneux SL et al (2007) Effect of coenzyme Q10 supplementation on simvastatin-induced myalgia. Am J Cardiol 100:1400–1403

    Article  CAS  Google Scholar 

  26. Norata GD, Tibolla G, Catapano AL (2014) PCSK9 inhibition for the treatment of hypercholesterolemia: promises and emerging challenges. Vascul Pharmacol 62:103–111

    Article  CAS  Google Scholar 

  27. Sible AM, Nawarskas JJ, Anderson JR (2016) PCSK9 inhibitors: an innovative approach to treating hyperlipidemia. Cardiol Rev 24:141–152

    Article  Google Scholar 

  28. Sabatine MS, Giugliano R, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, Sever PS, Pedersen TR, FOURIER Steering Committee and Investigators (2017) Evolocumab and clinical outcomes in patients with cardiovascular disease. NEJM 376(18):1713–1722

    Article  CAS  Google Scholar 

  29. Cicero AFG, Colletti A, Borghi C (2015) Profile of evolocumab and its potential in the treatment of hyperlipidemia. Drug Des Devel Ther 9:3073–3082

    Article  CAS  Google Scholar 

  30. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, Jukema JW, Lecorps G, Mahaffey KW, Moryusef A, Pordy R, Quintero K, Roe MT, Sasiela WJ, Tamby JF, Tricoci P, White HD, Zeiher AM, ODYSSEY OUTCOMES Committees and Investigators (2018) Alirocumab and cardiovascular outcomes after acute coronary syndrome. NEJM 379(22):2097–2107

    Article  CAS  Google Scholar 

  31. Lunven C, Paehler T, Poitiers F et al (2014) A randomized study of the relative pharmacokinetics, pharmacodynamics, and safety of alirocumab, a fully human monoclonal antibody to PCSK9, after single subcutaneous administration at three different injection sites in healthy subjects. Cardiovasc Ther 32(6):297–301

    Article  CAS  Google Scholar 

  32. Ridker PM, Revkin J, Amarenco P, Brunell R, Curto M, Civeira F, Flather M, Glynn RJ, Gregoire J, Jukema JW, Karpov Y, Kastelein JJP, Koenig W, Lorenzatti A, Manga P, Masiukiewicz U, Miller M, Mosterd A, Murin J, Nicolau JC, Nissen S, Ponikowski P, Santos RD, Schwartz PF, Soran H, White H, Wright RS, Vrablik M, Yunis C, Shear CL, Tardif JC, SPIRE Cardiovascular Outcome Investigators (2017) Cardiovascular efficacy and safety of bococizumab in high-risk patients. NEJM 376(16):1527–1539

    Article  CAS  Google Scholar 

  33. Ridker PM, Tardif J-C, Amarenco P et al (2017) Lipid-reduction variability and antidrug-antibody formation with bococizumab. NEJM 376(16):1517–1526

    Article  CAS  Google Scholar 

  34. Watts GF, Chan D, Dent R et al (2017) Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation 135:338–351

    Article  CAS  Google Scholar 

  35. Carthew RW, Sontheimer E (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  CAS  Google Scholar 

  36. Ray KK, Stoekenbroek R, Kallend D, Nishikido T, Leiter LA, Landmesser U, Wright RS, Wijngaard PLJ, Kastelein JJP (2019) Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol 4(11):1067–1075

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the help in the paper given by Mengwei LV and Yangyang Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ban Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pandey, P., Zhao, C., Liu, B. (2020). PCSK9 Inhibition and Atherosclerosis: Current Therapeutic Option and Prospection. In: Huang, T. (eds) Precision Medicine. Methods in Molecular Biology, vol 2204. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0904-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0904-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0903-3

  • Online ISBN: 978-1-0716-0904-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics