Skip to main content

Chimeric DNA–RNA Guide RNA Designs

  • Protocol
  • First Online:
CRISPR Guide RNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2162))

Abstract

CRISPR-associated nuclease (Cas) has been widely applied to modify the genomes of various cell types. As RNA-guided endonucleases, Cas enzymes can target different genomic sequences simply by changing the guide sequence of the CRISPR RNA (crRNA) or single guide RNA (sgRNA). Recent studies have demonstrated that DNA-RNA chimeric crRNA or sgRNA can efficiently guide the Cas9 protein for genome editing with reduced off-target effects. This chapter aims to describe a procedure for using chimeric RNA to modify the genomes of mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  2. Jinek M, East A, Cheng A et al (2013) RNA-programmed genome editing in human cells. elife 2:e00471

    Article  Google Scholar 

  3. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  4. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  5. Cox DB, Platt RJ, Zhang F (2015) Therapeutic genome editing: prospects and challenges. Nat Methods 21:121–131

    CAS  Google Scholar 

  6. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  Google Scholar 

  7. Yin H, Kauffman KJ, Anderson DG (2017) Delivery technologies for genome editing. Nat Rev Drug Discov 16:387–399

    Article  CAS  Google Scholar 

  8. Slaymaker IM, Gao LY, Zetsche B et al (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88

    Article  CAS  Google Scholar 

  9. Kleinstiver BP, Pattanayak V, Prew MS et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  Google Scholar 

  10. Chen JS, Dagdas YS, Kleinstiver BP et al (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410

    Article  CAS  Google Scholar 

  11. Yin H, Song CQ, Suresh S et al (2018) Partial DNA-guided Cas9 enables genome editing with reduced off-target activity. Nat Chem Biol 14:311–316

    Article  CAS  Google Scholar 

  12. Hendel A, Bak RO, Clark JT et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989

    Article  CAS  Google Scholar 

  13. Yin H, Song CQ, Suresh S et al (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35:1179–1187

    Article  CAS  Google Scholar 

  14. Koo T, Lee J, Kim JS (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 38:475–481

    Article  CAS  Google Scholar 

  15. Kim S, Koo T, Jee HG et al (2018) CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28:367–373

    Article  CAS  Google Scholar 

  16. Wienert B, Shin J, Zelin E et al (2018) In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLoS Biol 16:e2005840

    Article  Google Scholar 

  17. Mu W, Tang N, Cheng C et al (2019) In vitro transcribed sgRNA causes cell death by inducing interferon release. Protein Cell 10(6):461–465

    Article  CAS  Google Scholar 

  18. Jakimo N, Chatterjee P, Jacobson JM (2017) Chimeric CRISPR guides enhance Cas9 target specificity. bioRxiv:147686

    Google Scholar 

  19. Rueda FO, Bista M, Newton MD et al (2017) Mapping the sugar dependency for rational generation of a DNA-RNA hybrid-guided Cas9 endonuclease. Nat Commun 8:1610

    Article  Google Scholar 

  20. Schofield A, O’Reilly D, Malek-Adamian E et al (2018) Extensive CRISPR RNA modification reveals chemical compatibility and structure-activity relationships for Cas9 biochemical activity. Nucleic Acids Res 47:546–558

    PubMed Central  Google Scholar 

  21. Jiang F, Zhou K, Ma L et al (2015) A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348:1477–1481

    Article  CAS  Google Scholar 

  22. Nishimasu H, Ran FA, Hsu PD et al (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–949

    Article  CAS  Google Scholar 

  23. Ryan DE, Taussig D, Steinfeld I et al (2018) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46:792–803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Zhang or Hao Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lu, S., Zhang, Y., Yin, H. (2021). Chimeric DNA–RNA Guide RNA Designs. In: Fulga, T.A., Knapp, D.J.H.F., Ferry, Q.R.V. (eds) CRISPR Guide RNA Design. Methods in Molecular Biology, vol 2162. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0687-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0687-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0686-5

  • Online ISBN: 978-1-0716-0687-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics