Skip to main content

Ultramicroscopy of Nerve Fibers and Neurons: Fine-Tuning the Light Sheets

  • Protocol
  • First Online:
Neurohistology and Imaging Techniques

Part of the book series: Neuromethods ((NM,volume 153))

Abstract

Light sheet generation approaches employed in the ultramicroscopy imaging technique are presented, and three different designs are discussed. These include slit-based as well as more advanced slit-free setups, including those based on aspheric optics, that is, inherently aberration-free. The performance of the light sheets thus generated is briefly described theoretically, and experimentally compared. Images of a chemically cleared fruit fly (Drosophila melanogaster), nerve fibers in an entire mouse embryo, and individual neurons in intact mouse hippocampi are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Meth 7(6):603–614. https://doi.org/10.1038/nmeth.1483

    Article  CAS  Google Scholar 

  2. Santi PA, Johnson SB, Hillenbrand M, GrandPre PZ, Glass TJ, Leger JR (2009) Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. Biotechniques 46(4):287–294. https://doi.org/10.2144/000113087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Meth 2(12):932–940. https://doi.org/10.1038/nmeth818

    Article  CAS  Google Scholar 

  4. Saini A (2012) New lens offers scientist a brighter outlook. Science 335(6076):1562–1563. https://doi.org/10.1126/science.335.6076.1562

    Article  CAS  PubMed  Google Scholar 

  5. Siedentopf H, Zsigmondy R (1903) Ueber Sichtbarmachung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. (Drude’s) Annalen der Physik (4th ser) 10(1):1–39. https://doi.org/10.1002/andp.19023150102

    Article  CAS  Google Scholar 

  6. Zsigmondy R (1909/1914) Colloids and the ultramicroscope: a manual of colloid chemistry and ultramicroscopy John Wiley, New York. ISBN: 978-0548767832 (1st ed in two printings, translated by Alexander J). https://openlibrary.org/works/OL1473918W/Colloids_and_the_ultramicroscope

  7. Keller PJ, Dodt H-U (2012) Light sheet microscopy of living or cleared specimens. Curr Opin Neurobiol 22(1):1–6. https://doi.org/10.1016/j.conb.2011.08.003

    Article  CAS  Google Scholar 

  8. Needhan GH (1958) The practical use of the microscope. Charles C. Thomas, Springfield, IL. https://lccn.loc.gov/57010440

  9. Siedentopf H (1908) Die Sichtbarmachung von Kanten im mikroskopischen Bilde. Zeitschrift für wissenschaftliche Mikroskopie und mikroskopische Technik 25(4):424–431. https://doi.org/10.1007/BF01503978 (note by Steubing 1910). https://biodiversitylibrary.org/page/3756612

  10. Jentzsch F (1910) Über Dunkelfeldbeleuchtung; Der Ultrakondensor. Physikalische Zeitschrift 11(21/22):993-1001;1001–1002 (Proceedings of “82. Versammlung deutscher Naturforscher und Ärtzte”. Königsberg, 18–24 Sept 1910)

    Google Scholar 

  11. Chamot ÉM (1915/1921) Elementary chemical microscopy (1st/2nd ed). John Wiley, New York, p. 71/122. Reprinted (2013) by Forgotten Books. ISBN: 9781330679081. https://www.forgottenbooks.com/en/books/ElementaryChemicalMicroscopy_10091269

  12. McLachlan D (1964) Extreme focal depth in microscopy. Appl Opt 3(9):1009–1013. https://doi.org/10.1364/AO.3.001009

    Article  Google Scholar 

  13. Decré M, Buchlin JM (1994) An extra-thin light sheet technique used to investigate meniscus shapes by laser-induced fluorescence. Exp Fluids 16(5):339–341. https://doi.org/10.1007/BF00195434

    Article  Google Scholar 

  14. Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170(3):229–236. https://doi.org/10.1111/j.1365-2818.1993.tb03346.x

    Article  CAS  Google Scholar 

  15. Spalteholz W (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten. S. Hierzel, Leipzig. http://digital.zbmed.de/zbmed/content/titleinfo/555354

  16. Fuchs E, Jaffe J, Long R, Azam F (2002) Thin laser light sheet microscope for microbial oceanography. Opt Exp 10(2):145–154. https://doi.org/10.1364/OE.10.000145

    Article  Google Scholar 

  17. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 13(5686):1007–1009. https://doi.org/10.1126/science.1100035

    Article  CAS  Google Scholar 

  18. Becker K, Jährling N, Saghafi S, Weiler R, Dodt H-U (2012) Chemical clearing and dehydration of GFP expressing mouse brains. PLoS One 7(3):1–6. https://doi.org/10.1371/journal.pone.0033916

    Article  CAS  Google Scholar 

  19. Dodt H-U, Leischner U, Schierloh A, Jährling N, Mauch C-P, Deininger K, Deussing J-M, Eder M, Zieglgänsberger W, Becker K (2007) Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat Methods 4(4):331–336. https://doi.org/10.1038/nmeth1036

    Article  CAS  Google Scholar 

  20. Saghafi S, Becker K, Jährling N, Richter M, Kramer ER, Dodt H-U (2010) Image enhancement in ultramicroscopy by improved laser light sheets. J Biophotonics 3(10–11):686–695. https://doi.org/10.1002/jbio.201000047

    Article  PubMed  Google Scholar 

  21. Siegman AE (1986) Lasers. Oxford University Press, Mill Valley, CA. ISBN: 0198557132

    Google Scholar 

  22. Wen JJ, Breazeale MA (1988) A diffraction beam field expressed as the superposition of Gaussian beams. J Acoust Soc Am 83(5):1752–1756. https://doi.org/10.1121/1.396508

    Article  Google Scholar 

  23. Zhao D, Zhang W, Wang S, Liu H, Zhu Q, Wei X (2003) Propagation of one dimensional off-axial Hermite-cosine-Gaussian beams through an aperture paraxial ABCD optical system. Optik 114(49–51). https://doi.org/10.1364/JOSAA.26.002480

  24. Ding D, Zhang Y (2004) Notes on the Gaussian beam expansion. J Acoust Soc Am 116(3):14011405. https://doi.org/10.1121/1.1781619

    Article  Google Scholar 

  25. Longhurst RS (1968) Geometrical and physical optics, 2nd edn. Longmans, London

    Google Scholar 

  26. Saghafi S, Becker K, Hahn C, Dodt H-U (2014) 3D-ultramicroscopy utilizing aspheric optics. J Biophotonics 7(1–2):117–125. https://doi.org/10.1002/jbio.20130004

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saiedeh Saghafi .

Editor information

Editors and Affiliations

Appendix

Appendix

The complex light intensity in the X direction (i.e., perpendicularly to the slit) of an axially symmetrical Gaussian beam propagating in vacuum along the z-axis is described by Eq. 1 [20]:

$$ E\left(x,z\right)={E}_0\frac{w_0}{w(z)}\exp \left(-\frac{x^2}{w^2(z)}\right)\exp \left[- ik z- ik\frac{x^2}{2R(z)}+ i\phi (z)\right] $$
(1)

where

E0 is the amplitude of the illuminating light

w0 is the radius of beam waist at the focus (z = 0)

w(z) is the radius of the beam at distance z from the focus

i is the complex unit, \( \sqrt{-1} \)

k is the wave number (2π/λ, where λ is the wavelength of the illuminating light)

R(z) is the radius of curvature of the beam at distance z

φ (z) is the longitudinal phase delay at distance z

$$ R(z)=z\left[1+{\left(\frac{z}{z_R}\right)}^2\right] $$
(2)
$$ w(z)={w}_0\sqrt{\left[1+{\left(\frac{z}{z_R}\right)}^2\right]} $$
(3)
$$ \phi (z)=\arctan \left(\frac{z}{z_R}\right) $$
(4)

where zR is the Rayleigh range (Fig. 9),

$$ {z}_R=\frac{\pi {w}_0^2}{\lambda }. $$
(5)
Fig. 9
figure 9

Detail of a light beam at focus. Rayleigh range (zR) describes the beam expansion along the direction of propagation (Z), and is defined as the distance from the waist (diameter 2w0) to the point where the cross section of the beam is approximately doubled. For a Gaussian beam, this occurs at a beam diameter of \( \sqrt{2}{w}_0 \). Adapted from Ref. [20] by permission of © Wiley Interscience

At the beam waist (z = 0), w(z) = w0, R(z) = R0, φ(z) = φ0 and Eq. 1 becomes simplified as follows:

$$ E(x)={E}_0\exp \left(-\frac{x^2}{w_0^2}\right)\exp \left(- ik\frac{x^2}{2{R}_0}+i{\phi}_0\right) $$
(6)

E(x) is the complex amplitude of light while its (measurable) intensity is

$$ I(x)=\kern0.5em {\left|\mathrm{E}\left(\mathrm{x}\right)\right|}^2={E}_0^2\exp \left(-\frac{2{x}^2}{w_0^2}\right) $$
(7)

This is a well-known Gaussian distribution. As the beam is axially symmetrical the same type of dependence is obtained for the Y direction, that is, the intensity can be generalized as follows:

$$ I\left(x,y\right)=\kern0.5em {\left.\mid E\Big(x,y\Big)\right|}^2={E}_0^2\exp \frac{-2\left({x}^2+{y}^2\right)}{w_0^2} $$
(8)

However, in a slit-based system the Y direction (parallel to the slit) is of little relevance as the beam is truncated by the slit mainly in one direction only (X in our notation), and later also “flattened” (in the same direction) by the cylindrical lens.

The effect on the Gaussian beam of the slit (width = 2a in the X direction) is described by the Heavyside step function Ap(x) which equals 1 for −a ≤ x ≤ a, and 0 elsewhere. A generalized Huygens–Fresnel diffraction integral then describes the truncated (modified Gaussian) beam [20,21,22,23,24,25]:

$$ E(x)={E}_0\underset{-a}{\overset{a}{\int }}{A}_p\left({x}_0\right)E\left({x}_0\right)\exp \left[-\frac{ik}{2B}\left({Ax}_0^2-2{xx}_0^2+{Dx}^2\right)\right]{dx}_0 $$
(9)

where AB and D are elements of the optical transfer matrix. Equation 9 is not dependent on C, the third element of the transfer matrix. In the Y direction, the beam is practically untruncated (assuming a relatively narrow slit), so the Heavyside step function is not applied.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saghafi, S., Becker, K., Jährling, N., Hahn, C., Dodt, HU. (2020). Ultramicroscopy of Nerve Fibers and Neurons: Fine-Tuning the Light Sheets. In: Pelc, R., Walz, W., Doucette, J.R. (eds) Neurohistology and Imaging Techniques. Neuromethods, vol 153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0428-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0428-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0426-7

  • Online ISBN: 978-1-0716-0428-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics