Skip to main content

Measuring the Effects of Circadian Rhythm-Related Manipulations on Depression-Like Behavior in Rodents: Forced Swim and Tail Suspension Tests

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2130))

Abstract

The forced swim and tail suspension tests are commonly used to determine the effects of circadian-related pharmacological, genetic, and environmental manipulations on depression-like behavior in rodents. Both tests involve scoring immobility of rodents in an inescapable condition. Here we describe how to set up and carry out these tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hickie IB, Naismith SL, Robillard R, Scott EM, Hermens DF (2013) Manipulating the sleep-wake cycle and circadian rhythms to improve clinical management of major depression. BMC Med 11:79

    Article  Google Scholar 

  2. Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E et al (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet 123B(1):23–26

    Article  Google Scholar 

  3. McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE et al (2009) Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 9:70

    Article  Google Scholar 

  4. Soria V, Martinez-Amoros E, Escaramis G, Valero J, Perez-Egea R, Garcia C et al (2010) Differential association of circadian genes with mood disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology 35(6):1279–1289

    Article  CAS  Google Scholar 

  5. Utge SJ, Soronen P, Loukola A, Kronholm E, Ollila HM, Pirkola S et al (2010) Systematic analysis of circadian genes in a population-based sample reveals association of TIMELESS with depression and sleep disturbance. PLoS One 5(2):e9259

    Article  Google Scholar 

  6. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27(8):1453–1462

    Article  Google Scholar 

  7. Inder ML, Crowe MT, Porter R (2016) Effect of transmeridian travel and jetlag on mood disorders: evidence and implications. Aust N Z J Psychiatry 50(3):220–227

    Article  Google Scholar 

  8. Terman M, Terman JS (2005) Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr 10(8):647–663; quiz 672

    Article  Google Scholar 

  9. Carney RM, Shelton RC (2011) Agomelatine for the treatment of major depressive disorder. Expert Opin Pharmacother 12(15):2411–2419

    Article  CAS  Google Scholar 

  10. Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391

    Article  CAS  Google Scholar 

  11. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  Google Scholar 

  12. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD (2012) The mouse forced swim test. J Vis Exp 59:e3638

    Google Scholar 

  13. Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266(5604):730–732

    Article  CAS  Google Scholar 

  14. Bourin M, Mocaer E, Porsolt R (2004) Antidepressant-like activity of S 20098 (agomelatine) in the forced swimming test in rodents: involvement of melatonin and serotonin receptors. J Psychiatry Neurosci 29(2):126–133

    PubMed  PubMed Central  Google Scholar 

  15. Lopez-Rodriguez F, Kim J, Poland RE (2004) Total sleep deprivation decreases immobility in the forced-swim test. Neuropsychopharmacology 29(6):1105–1111

    Article  CAS  Google Scholar 

  16. Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 177(3):245–255

    Article  CAS  Google Scholar 

  17. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4-5):571–625

    Article  CAS  Google Scholar 

  18. Teste JF, Martin I, Rinjard P (1990) Electrotherapy in mice: dopaminergic and noradrenergic effects in the tail suspension test. Fundam Clin Pharmacol 4(1):39–47

    Article  CAS  Google Scholar 

  19. Arey R, McClung CA (2012) An inhibitor of casein kinase 1 epsilon/delta partially normalizes the manic-like behaviors of the ClockDelta19 mouse. Behav Pharmacol 23(4):392–396

    Article  CAS  Google Scholar 

  20. Poleszak E, Wlaz P, Kedzierska E, Nieoczym D, Wyska E, Szymura-Oleksiak J et al (2006) Immobility stress induces depression-like behavior in the forced swim test in mice: effect of magnesium and imipramine. Pharmacol Rep 58(5):746–752

    CAS  PubMed  Google Scholar 

  21. Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, Havemann-Reinecke U (2005) Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162(1):127–134

    Article  Google Scholar 

  22. Gong Y, Chai Y, Ding JH, Sun XL, Hu G (2011) Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci Lett 488(1):76–80

    Article  CAS  Google Scholar 

  23. Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13(10):1161–1169

    Article  CAS  Google Scholar 

  24. Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology 95(3):298–302

    Article  CAS  Google Scholar 

  25. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809

    Article  CAS  Google Scholar 

  26. Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73(1-2):43–46

    Article  CAS  Google Scholar 

  27. Detke MJ, Rickels M, Lucki I (1995) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 121(1):66–72

    Article  CAS  Google Scholar 

  28. West AP (1990) Neurobehavioral studies of forced swimming: the role of learning and memory in the forced swim test. Prog Neuro-Psychopharmacol Biol Psychiatry 14(6):863–877

    Article  CAS  Google Scholar 

  29. Mayorga AJ, Lucki I (2001) Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology 155(1):110–112

    Article  CAS  Google Scholar 

  30. Urani A, Roman FJ, Phan VL, Su TP, Maurice T (2001) The antidepressant-like effect induced by sigma(1)-receptor agonists and neuroactive steroids in mice submitted to the forced swimming test. J Pharmacol Exp Ther 298(3):1269–1279

    CAS  PubMed  Google Scholar 

  31. Sallinen J, Haapalinna A, MacDonald E, Viitamaa T, Lahdesmaki J, Rybnikova E et al (1999) Genetic alteration of the alpha2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry 4(5):443–452

    Article  CAS  Google Scholar 

  32. Shin S, Kwon O, Kang JI, Kwon S, Oh S, Choi J et al (2015) mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nat Neurosci 18(7):1017–1024

    Article  CAS  Google Scholar 

  33. Zacharko RM, MacNeil G, Mendella PD, Hebb AL (1999) Proactive influence of a surgical stressor on locomotor activity, exploration and anxiety-related behaviour following acute footshock in the mouse. Brain Res Bull 48(3):283–290

    Article  CAS  Google Scholar 

  34. Gonzalez MM, Aston-Jones G (2008) Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci U S A 105(12):4898–4903

    Article  CAS  Google Scholar 

  35. Dubocovich ML, Mogilnicka E, Areso PM (1990) Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test. Eur J Pharmacol 182(2):313–325

    Article  CAS  Google Scholar 

  36. Yates G, Panksepp J, Ikemoto S, Nelson E, Conner R (1991) Social isolation effects on the "behavioral despair" forced swimming test: effect of age and duration of testing. Physiol Behav 49(2):347–353

    Article  CAS  Google Scholar 

  37. Nomura S, Shimizu J, Kinjo M, Kametani H, Nakazawa T (1982) A new behavioral test for antidepressant drugs. Eur J Pharmacol 83(3-4):171–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Studies from our group were supported by grants from NIMH (MH082876, MH106460) and NIDA (DA037636, DA023988, DA039865), as well as The Brain and Behavior Foundation (NARSAD), International Mental Health Research Organization (IMHRO), and the McKnight Foundation for Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colleen A. McClung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vadnie, C.A., DePoy, L.M., McClung, C.A. (2021). Measuring the Effects of Circadian Rhythm-Related Manipulations on Depression-Like Behavior in Rodents: Forced Swim and Tail Suspension Tests. In: Brown, S.A. (eds) Circadian Clocks. Methods in Molecular Biology, vol 2130. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0381-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0381-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0380-2

  • Online ISBN: 978-1-0716-0381-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics