Skip to main content

Anesthetic Management for Squamous Cell Carcinoma of the Esophagus

  • Protocol
  • First Online:
Esophageal Squamous Cell Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2129))

  • 1114 Accesses

Abstract

While surgery plays a major role in the treatment and potential cure of esophageal cancers, esophagectomy remains a high-risk operation with significant perioperative morbidity and mortality compared to other oncosurgical procedures. Perioperative management for esophagectomy is complex, and close attention to detail in various areas of anesthetic and perioperative management is crucial to improve postoperative outcomes. Patients undergoing esophagectomy should be offered an evidence-based risk assessment for their postoperative outcomes to allow active participation and informed, shared-decision making. Novel perioperative risk scores have been developed to predict both short-term and long-term outcomes in patients with esophageal cancer, although independent validation of such scoring systems is still required. Apart from accurate preoperative risk assessment, further efforts to improve morbidity and mortality from esophagectomy is achieved through comprehensive Enhanced Recovery after Surgery (ERAS) protocols, which comprise an individualized bundle of care throughout the perioperative journey for each patient and should be implemented as a standard practice. Furthermore, anesthetic practice and perioperative anesthetic drug usage can potentially affect cancer progression and recurrence. This chapter reviews current evidence for various factors that contribute to the improvement of perioperative outcomes, including prehabilitation, preoperative optimization of anemia, thoracic epidural analgesia, intraoperative protective ventilatory strategies, goal-directed fluid therapy, as well as special attention to other perioperative issues that potentially reduce anastomotic and cardiopulmonary complications. In summary, it is difficult to show a measurable benefit from any one single intervention, and a multidisciplinary approach that encompasses multiple aspects of perioperative care is necessary to improve outcomes after esophagectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jun IJ, Jo JY, Kim JI (2017) Impact of anaesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: a retrospective observational study. Sci Rep 7(1):14020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carney A, Dickinson M (2015) Anaesthesia for esophagectomy. Anaesthesiol Clin 33(1):143

    Article  Google Scholar 

  3. Hirahara N, Tajima Y, Fujii Y (2018) A novel prognostic scoring system using inflammatory response biomarkers for esophageal squamous cell carcinoma. World J Surg 42:172–184

    Article  PubMed  Google Scholar 

  4. Su XD, Zhang DK, Zhang X (2014) Prognostic factors in patients with recurrence after complete resection of esophageal squamous cell carcinoma. J Thorac Dis 6(7):949–957

    PubMed  PubMed Central  Google Scholar 

  5. Durkin C, Schisler T, Lohser J (2017) Current trends in anaesthesia for esophagectomy. Curr Opin Anaesthesiol 30(1):30–35

    PubMed  Google Scholar 

  6. Bartels K, Fiegel M, Stevens Q, Ahlgren B, Qeitzel N (2015) Approaches to perioperative care for esophagectomy. J Cardiothorac Vasc Anesth 29(2):472–480

    Article  PubMed  Google Scholar 

  7. Kim R (2017) Anaesthetic technique and cancer recurrence in oncologic surgery: unraveling the puzzle. Cancer Metastasis Rev 36:159–177

    Article  CAS  PubMed  Google Scholar 

  8. Snyder GL, Greenberg S (2010) Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth 105(2):106–115

    Article  CAS  PubMed  Google Scholar 

  9. Cassinello F, Prieto I, del Olmo M (2015) Cancer surgery: how may anesthesia influence outcome? J Clin Anesth 27(3):262–272

    Article  PubMed  Google Scholar 

  10. Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  PubMed  Google Scholar 

  11. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  CAS  PubMed  Google Scholar 

  12. Brittenden J, Heys SD, Ross J, Eremin O (1996) Natural killer cells and cancer. Cancer 77:1226–1243

    Article  CAS  PubMed  Google Scholar 

  13. Tai LH, de Souza CT, Belanger S (2012) Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res 73(1):97–107

    Article  CAS  PubMed  Google Scholar 

  14. Kurosawa S, Kato M (2008) Anaesthetics, immune cells, and immune responses. J Anesth 22:263–277

    Article  PubMed  Google Scholar 

  15. Reiche EM, Nunes SO, Morimoto HK (2004) Stress, depression, the immune system, and cancer. Lancet Oncol 5:617–625

    Article  CAS  PubMed  Google Scholar 

  16. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  17. Aloia TA, Zimmitti G, Conrad C, Gottumukalla V, Kopetz S, Vauthey JN (2014) Return to intended oncologic treatment (RIOT): a novel metric for evaluating the quality of oncosurgical therapy for malignancy. J Surg Oncol 110(2):107–114

    Article  PubMed  PubMed Central  Google Scholar 

  18. Merkow RP, Bilimoria KY, Tomlinson JS (2014) Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann Surg 260(2):372–377

    Article  PubMed  Google Scholar 

  19. Slankamenac K, Slankamenac M, Schlegel A (2017) Impact of postoperative complications on readmission and long-term survival in patients following surgery for colorectal cancer. Int J Color Dis 32(6):805–811

    Article  Google Scholar 

  20. Bartels H, Stein HJ, Siewert JR (2000) Risk analysis in Esophageal surgery. Recent Results Cancer Res 155:89–96

    Article  CAS  PubMed  Google Scholar 

  21. Reeh M, Metze J, Uzunoglu FG (2016) The PER (preoperative esophagectomy risk) score: a simple risk score to predict short-term and long-term outcome in patients with surgically treated esophageal cancer. Medicine (Baltimore) 95(7):e2724

    Article  PubMed Central  Google Scholar 

  22. Shander A, Knight K, Thurer R, Adamson J, Spence R (2004) Prevalence and outcomes of anemia in surgery: a systematic review of the literature. Am J Med 116:58S–69S

    Article  PubMed  Google Scholar 

  23. Cappell MS, Goldberg ES (1992) The relationship between the clinical presentation and spread of colon cancer in 315 consecutive patients. A significant trend of earlier cancer detection from 1982 through 1988 at a university hospital. J Clin Gastroenterol 14:227–235

    Article  CAS  PubMed  Google Scholar 

  24. Munting KE, Klein AA (2019) Optimisation of pre-operative anaemia in patients before elective major surgery—why, who, when and how? Anaesthesia 74(Suppl 1):49–57

    Article  CAS  PubMed  Google Scholar 

  25. Muñoz M, Acheson AG, Auerbach M (2017) International consensus statement on the peri-operative management of anaemia and iron deficiency. Anaesthesia 72:233–247

    Article  CAS  PubMed  Google Scholar 

  26. Leichtle SW, Mouawad NJ, Lampman R, Singal B, Cleary RK (2011) Does preoperative anemia adversely affect colon and rectal surgery outcomes? J Am Coll Surg 212:187–194

    Article  PubMed  Google Scholar 

  27. Fields RC, Meyers BF (2006) The effects of perioperative blood transfusion on morbidity and mortality after esophagectomy. Thorac Surg Clin 16(1):75–86

    Article  PubMed  Google Scholar 

  28. Boshier PR, Ziff C, Adam ME (2018) Effect of perioperative blood transfusion on the long-term survival of patients undergoing esophagectomy for esophageal cancer: a systematic review and meta-analysis. Dis Esophagus 31(4)

    Google Scholar 

  29. Schneider C, Boddy AP, Fukuta J, Groom WD, Streets CG (2014) Predicting blood transfusion in patients undergoing minimally invasive oesophagectomy. Int J Surg 12(12):1342–1347

    Article  PubMed  Google Scholar 

  30. Reeh M, Ghadban T, Dedow J (2017) Allogenic blood transfusion is associated with poor perioperative and long-term outcome in esophageal cancer. World J Surg 41(1):208–215

    Article  PubMed  Google Scholar 

  31. Gottschalk A, Sharma S, Ford J, Durieux ME, Tiouririne M (2010) The role of the perioperative period in recurrence after cancer surgery. Anaesth Analg 110(6):1636–1643

    Article  Google Scholar 

  32. Liu J, Chen S, Chen Y (2018) Perioperative blood transfusion has no effect on overall survival after esophageal resection for esophageal squamous cell carcinoma: a retrospective cohort study. Int J Surg 55:24–30

    Article  PubMed  Google Scholar 

  33. Ling FC, Hoelscher AH, Vallbohmer D (2009) Leukocyte depletion in allogeneic blood transfusion does not change the negative influence on survival following transthoracic resection for esophageal cancer. J Gastrointest Surg 13(4):581–586

    Article  PubMed  Google Scholar 

  34. Towe CW, Gulack BC, Kim S (2018) Restrictive transfusion practices after esophagectomy are associated with improved outcome: a review of the society of thoracic surgeons general thoracic database. Ann Surg 267(5):886–891

    Article  PubMed  Google Scholar 

  35. Keeler BD, Dickson EA, Simpson JA (2019) The impact of preoperative intravenous iron on quality of life after colorectal cancer surgery: outcomes from the intravenous iron in colorectal cancer-associated anaemia (IVICA) trial. Anaesthesia 74:696–699

    Article  CAS  Google Scholar 

  36. Doganay E, Moorthy K (2019) Prehabilitation for esophagectomy. J Thorac Dis 11(5):S632–S638

    Article  PubMed  PubMed Central  Google Scholar 

  37. Steenhagen E (2019) Preoperative nutritional optimisation of esophageal cancer patients. J Thorac Dis 11(5):S645–S653

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hughes MJ, Hackney RJ, Lamb PJ, Wigmore SJ, Christopher Deans DA, Skipworth RJE (2019) Prehabilitation before major abdominal surgery: a systematic review and meta-analysis. World J Surg 43(7):1661–1668

    Article  PubMed  Google Scholar 

  39. Barberan-Garcia A, Ubre M, Roca J (2018) Personalised prehabilitation in high-risk patients undergoing elective major abdominal surgery - a randomised controlled trial. Ann Surg 267(1):50–56

    Article  PubMed  Google Scholar 

  40. Carli F, Gillis C, Scheede-Bergdahl C (2017) Promoting a culture of prehabilitation for the surgical cancer patient. Acta Oncol 56(2):128–133

    Article  PubMed  Google Scholar 

  41. Valkenet K, van de Port IG, Dronkers JJ (2011) The effects of preoperative exercise therapy on postoperative outcome: a systematic review. Clin Rehabil 25(2):99–111

    Article  PubMed  Google Scholar 

  42. Wyner-Blyth V, Moorthy K (2017) Prehabilitation: preparing patients for surgery. BMJ 358:j3702

    Article  Google Scholar 

  43. Huang DD, Ji YB, Zhou DL (2017) Effect of surgery-induced acute muscle wasting on postoperative outcomes and quality of life. J Surg Res 218:58–96

    Article  PubMed  Google Scholar 

  44. Vermillion SA, James A, Dorrell RD (2018) Preoperative exercise therapy for gastrointestinal cancer patients: a systematic review. Syst Rev 7(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  45. Moran J, Guinan E, McCormick (2016) The ability of prehabilitation to influence postoperative outcome after intra-abdominal operation: a systematic review and meta-analysis. Surgery 160:1189–1201

    Article  PubMed  Google Scholar 

  46. West MA, Loughney L, Lythgoe D (2015) Effect of prehabilitation on objectively measured physical fitness after neoadjuvant treatment in preoperative rectal cancer patients: a blinded interventional pilot study. Br J Anaesth 114(2):244–251

    Article  CAS  PubMed  Google Scholar 

  47. Arends J, Bachmann P, Baracos V (2017) ESPEN guidelines on nutrition in cancer patients. Clin Nutr 36(1):11–48

    Article  PubMed  Google Scholar 

  48. Minnella EM, Awasthi R, Loiselle SE (2018) Effect of exercise and nutrition prehabilitation on functional capacity in esophagogastric cancer surgery. JAMA Surg 153(12):1081–2089

    Article  PubMed  PubMed Central  Google Scholar 

  49. Santa Mina D, Clarke H, Ritvo P, Leung YW, Matthew AG, Katz J (2014) Effect of total-body prehabilitation on postoperative outcomes: a systematic review and meta-analysis. Physiotherapy 100(3):196–207

    Article  CAS  PubMed  Google Scholar 

  50. Dewberry LC, Wingrove LJ, Marsh MD, Glode AE (2019) Pilot prehabilitation program for patients with esophageal cancer during neoadjuvant therapy and surgery. J Surg Res 235:66–72

    Article  PubMed  Google Scholar 

  51. Cruz-Jentoft AJ, Bahat G, Bauer J (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  52. Fearon K, Strasser F, Anker SD (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495

    Article  PubMed  Google Scholar 

  53. Elliott JA, Doyle SL, Murphy CF (2017) Sarcopenia: prevalence, and impact on operative and oncologic outcomes in the multimodal management of locally advanced esophageal cancer. Ann Surg 266:822–830

    Article  PubMed  Google Scholar 

  54. Jack S, West MA, Raw D (2014) The effect of neoadjuvant chemotherapy on physical fitness and survival in patients undergoing oesophagogastric cancer surgery. Eur J Surg Oncol 40(10):1313–1320

    Article  CAS  PubMed  Google Scholar 

  55. Makiura D, Ono R, Inoue J, Kashiwa M (2016) Preoperative sarcopenia is a predictor of postoperative pulmonary complications in esophageal cancer following esophagectomy: a retrospective cohort study. J Geriatr Oncol 7(6):430–436

    Article  PubMed  Google Scholar 

  56. Awad S, Tan BH, Cui H (2012) Marked changes in body composition following neoadjuvant chemotherapy for oesophagogastric cancer. Clin Nutr 31(1):74–77

    Article  PubMed  Google Scholar 

  57. Paireder M, Asari R, Kristo I (2017) Impact of sarcopenia on outcome in patients with esophageal resection following neoadjuvant chemotherapy for esophageal cancer. Eur J Surg Oncol 43(2):478–484

    Article  CAS  PubMed  Google Scholar 

  58. Templeton R, Greenhalgh D (2019) Preoperative rehabilitation for thoracic surgery. Curr Opin Anaesthesiol 32(1):23–28

    Article  PubMed  Google Scholar 

  59. Li Y, Dong H, Tan S (2019) Effects of thoracic epidural anaesthesia/analgesia on the stress response, pain relief, hospital stay and treatment costs of patients with esophageal carcinoma undergoing thoracic surgery: a single-center, randomized controlled trial. Medicine (Baltimore) 98(7):e14362

    Article  CAS  Google Scholar 

  60. Feltracco P, Bortolato A, Barbieri S (2018) Perioperative benefit and outcome of thoracic epidural in esophageal surgery: a clinical review. Dis Esophagus 1(31):5

    Google Scholar 

  61. Ng JM (2011) Update on anesthetic management for esophagectomy. Curr Opin Anaesthesiol 24(1):37–43

    Article  PubMed  Google Scholar 

  62. Li W, Li Y, Huang Q (2016) Short and long-term outcomes of epidural or intravenous analgesia after esophagectomy: a propensity-matched cohort study. PLoS One 11(4):e0154380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Findlay JM, Gillies RS, Millo J (2014) Enhanced recovery for esophagectomy: a systematic review and evidence-based guidelines. Ann Surg 259(3):413–431

    Article  PubMed  Google Scholar 

  64. Liu F, Wang W, Wang C (2018) Enhanced recovery after surgery (ERAS) programs for esophagectomy protocol for a systematic review and meta-analysis. Medicine (Baltimore) 97(8):e0016

    Article  Google Scholar 

  65. Low DE, Allum W, De Manzoni G (2019) Guidelines for perioperative care in esophagectomy: enhanced recovery after surgery (ERAS®) society recommendations. World J Surg 43(2):299–330

    Article  PubMed  Google Scholar 

  66. Steinthorsdottir KJ, Wildgaard L, Hansen HJ (2014) Regional analgesia for video-assisted thoracic surgery: a systematic review. Eur J Cardiothorac Surg 45(6):959–966

    Article  PubMed  Google Scholar 

  67. Jaeger JM, Collins SR, Blank RS (2012) Anesthetic management for esophageal resection. Anesthesiol Clin 30(4):731–747

    Article  PubMed  Google Scholar 

  68. Manion SC, Brennan TJ (2011) Thoracic epidural analgesia and acute pain management. Anesthesiology 115(1):181–188

    Article  PubMed  Google Scholar 

  69. Pöpping DM, Elia N, Marret E (2008) Protective effects of epidural analgesia on pulmonary complications after abdominal and thoracic surgery: a meta-analysis. Arch Surg 143(10):990–999

    Article  PubMed  Google Scholar 

  70. Flisberg P, Tornebrandt K, Walther B (2001) Pain relief after esophagectomy: thoracic epidural analgesia is better than parental opioids. J Cardiothorac Vasc Anesth 15(3):282–287

    Article  CAS  PubMed  Google Scholar 

  71. Tsui SL, Law S, Fok M (1997) Postoperative analgesia reduces mortality and morbidity after esophagectomy. Am J Surg 173(6):472–478

    Article  CAS  PubMed  Google Scholar 

  72. Brodner G, Pogatzki E, Van Aken H et al (1998) A multimodal approach to control postoperative pathophysiology and rehabilitation in patients undergoing abdominothoracic esophagectomy. Anesth Analg 86(2):228–234

    CAS  PubMed  Google Scholar 

  73. Smedstad KG, Beattie WS, Blair WS, Buckley DN (1992) Postoperative pain relief and hospital stay after total esophagectomy. Clin J Pain 8(2):149–153

    Article  CAS  PubMed  Google Scholar 

  74. Michelet P, D’Journo XB, Roch A (2005) Perioperative risk factors for anastomotic leakage after esophagectomy: influence of thoracic epidural analgesia. Chest 128(5):3461–3466

    Article  PubMed  Google Scholar 

  75. Al-Rawi OY, Pennefather SH, Page RD (2008) The effect of thoracic epidural bupivacaine and an intravenous adrenaline infusion on gastric tube blood flow during esophagectomy. Anesth Analg 106(3):884–887

    Article  CAS  PubMed  Google Scholar 

  76. Zura M, Kozmar A, Sakic K (2012) Effect of spinal and general anesthesia on serum concentration of pro-inflammatory and anti-inflammatory cytokines. Immunobiology 217(6):622–627

    Article  CAS  PubMed  Google Scholar 

  77. Beilin B, Shavit Y, Trabekin E (2003) The effects of postoperative pain management on immune response to surgery. Anesth Analg 97(3):822–827

    Article  PubMed  Google Scholar 

  78. Beilin B, Bessler H, Mayburd E (2003) Effects of preemptive analgesia on pain and cytokine production in the postoperative period. Anesthesiology 98(1):151–155

    Article  CAS  PubMed  Google Scholar 

  79. Yokoyama M, Itano Y, Katayama H (2005) The effects of continuous epidural anesthesia and analgesia on stress response and immune function in patients undergoing radical esophagectomy. Anaesth Analg 101(5):1532–1527

    Article  Google Scholar 

  80. Fares KM, Mohamed SA, Hamza HM (2014) Effect of thoracic epidural analgesia on pro-inflammatory cytokines in patients subjected to protective lung ventilation during Ivor Lewis esophagectomy. Pain Physician 17(5):305–315

    PubMed  Google Scholar 

  81. Rudin A, Flisberg P, Johansson J (2005) Thoracic epidural analgesia or intravenous morphine analgesia after thoracoabdominal esophagectomy: a prospective follow-up of 201 patients. J Cardiothorac Vasc Anesth 19(3):350–357

    Article  CAS  PubMed  Google Scholar 

  82. Werawatganon T, Charuluxanun S (2005) Patient controlled intravenous opioid analgesia versus continuous epidural analgesia for pain after intra-abdominal surgery. Cochrane Database Syst Rev 1:CD004088

    Google Scholar 

  83. Guay J, Kopp S (2016) Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery. Cochrane Database Syst Rev 5(1):CD005059

    Google Scholar 

  84. Kahn L, Baxter FJ, Dauphin A (1999) A comparison of thoracic and lumbar epidural techniques for post-thoracoabdominal esophagectomy analgesia. Can J Anaesth 46(5):415–422

    Article  CAS  PubMed  Google Scholar 

  85. Davies RG, Myles PS, Graham JM (2006) A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy--a systematic review and meta-analysis of randomized trials. Br J Anaesth 96(4):418–426

    Article  CAS  PubMed  Google Scholar 

  86. Ding X, Jin S, Niu X (2014) A comparison of the analgesia efficacy and side effects of paravertebral compared with epidural blockade for thoracotomy: an updated meta-analysis. PLoS One 9(5):e96233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yeung JH, Gates S, Naidu BV (2016) Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Cochrane Database Syst Rev 2:CD009121

    PubMed  Google Scholar 

  88. Kehlet H, Wilkinson RC, Fischer HB (2007) PROSPECT: evidence-based, procedure-specific postoperative pain management. Best Pract Res Clin Anaesthesiol 21(1):149–159

    Article  PubMed  Google Scholar 

  89. Shanthanna H, Moisuik P, O'Hare T (2018) Survey of postoperative regional analgesia for Thoracoscopic surgeries in Canada. J Cardiothorac Vasc Anesth 32(4):1750–1755

    Article  PubMed  Google Scholar 

  90. Cummings KC 3rd, Xu F, Cummings LC, Cooper GS (2012) A comparison of epidural analgesia and traditional pain management effects on cancer recurrence after colectomy: a population based study. Anesthesiology 116(4):797–806

    Article  CAS  PubMed  Google Scholar 

  91. Weng M, Chen W, Hou W, Li L, Ding M, Miao C (2016) The effect of neuraxial anesthesia on cancer recurrence and survival after cancer surgery: an updated meta-analysis. Oncotarget 7(12):15262–15273

    Article  PubMed  PubMed Central  Google Scholar 

  92. Pöpping DM, Elia N, Van Aken HK, Marret E, Schug SA, Kranke P (2014) Impact of epidural analgesia on mortality and morbidity after surgery: systematic review and meta-analysis of randomized controlled trials. Ann Surg 259(6):1056–1067

    Article  PubMed  Google Scholar 

  93. Cummings KC III, Kou TD, Chak A (2019) Surgical approach and the impact of epidural analgesia on survival after esophagectomy for cancer: a population based retrospective cohort study. PLoS One 14(1):e0211125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Law S, Wong KH, Kwok KF (2004) Predictive factors for postoperative pulmonary complications and mortality after esophagectomy for cancer. Ann Surg 240(5):791–800

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ferguson MK, Durkin AE (2002) Preoperative prediction of the risk of pulmonary complications after esophagectomy for cancer. J Thorac Cardiovasc Surg 123(4):661–669

    Article  PubMed  Google Scholar 

  96. Brower RG, Matthay MA, Morris A (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342(18):1301–1308

    Article  PubMed  Google Scholar 

  97. Marret E, Cinotti R, Berard L (2018) Protective ventilation during anaesthesia reduces major postoperative complications after lung cancer surgery: a double-blind randomised controlled trial. Eur J Anaesthesiol 35:727–735

    Article  PubMed  Google Scholar 

  98. Verhage RJ, Boone J, Rijkers GT (2014) Reduced local immune response with continuous positive airway pressure during one-lung ventilation for oesophagectomy. Br J Anaesth 112(5):920–928

    Article  CAS  PubMed  Google Scholar 

  99. Gajic O, Dara SI, Mendez JL (2004) Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 32(9):1817–1824

    Article  PubMed  Google Scholar 

  100. Determann RM, Royakkers A, Wolthuis EK (2010) Ventilation with lower tidal volumes as compared with convential tidal volumes for patients without acute lung injury: a preventive randomised controlled trial. Crit Care 14(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  101. Michelet P, D’Journo XB, Roch A, Doddoli C (2006) Protective ventilation influences systemic inflammation after esophagectomy: a randomised controlled study. Anaesthesiology 105(5):911–919

    Article  Google Scholar 

  102. Wrigge H, Uhlig U, Zinserling J (2004) The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg 98(3):775–781

    Article  PubMed  Google Scholar 

  103. Schiling T, Kozian A, Huth C (2005) The pulmonary immune effects of mechanical ventilation in patients undergoing thoracic surgery. Anesth Analg 101(4):957–965

    Article  Google Scholar 

  104. Yang M, Ahn HJ, Kim K (2011) Does a protective ventilation strategy reduce the risk of pulmonary complications after lung cancer surgery? A randomised controlled trial. Chest 139(3):530–537

    Article  PubMed  Google Scholar 

  105. Tugrul M, Camci E, Karadeniz H, Senturk M, Pembeci K, Akpir K (1997) Comparison of volume controlled with pressure controlled ventilation during one lung anaesthesia. Br J Anaesth 79(3):306–310

    Article  CAS  PubMed  Google Scholar 

  106. Senturk NM, Dilek A, Camci E, Senturk E (2005) Effects of positive end-expiratory pressure on ventilatory and oxygenation parameters during pressure-controlled one-lung ventilation. J Cardiothorac Vasc Anesth 19(1):71–75

    Article  PubMed  Google Scholar 

  107. Nichols D, Haranath S (2007) Pressure control ventilation. Crit Care Clin 23(2):183–199

    Article  PubMed  Google Scholar 

  108. Choi H, Cho JH, Kim HK (2019) Prevalence and clinical course of postoperative acute lung injury after esophagectomy for esophageal cancer. J Thorac Dis 11(1):200–205

    Article  PubMed  PubMed Central  Google Scholar 

  109. Weijs TJ, Ruurda JP, Luyer MDP (2013) Strategies to reduce pulmonary complications after esophagectomy. World J Gastroenterol 19(39):6509–6514

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hu XY, Du B (2019) Lung-protective ventilation during one-lung ventilation: known knowns, and known unknowns. J Thorac Dis 11(3):S237–S240

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hemmes SN, Gama de Abreu M, Pelosi P (2014) High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomised controlled trial. Lancet 384(9942):495–503

    Article  PubMed  Google Scholar 

  112. Serpa NA, Hemmes SN, Barbas CS (2015) Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology 123(1):66–78

    Article  Google Scholar 

  113. Blank RS, Colquhoun DA, Duriex ME (2016) Management of one-lung ventilation: impact of tidal volume on complications after thoracic surgery. Anesthesiology 124(6):1286–1295

    Article  PubMed  Google Scholar 

  114. Schraag S, Pradelli L, Alsaleh AJO (2018) Propofol vs. inhalational agents to maintain general anaesthesia in ambulatory and in-patient surgery: a systematic review and meta-analysis. BMC Anesthesiol 18(1):162

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kingston S, Mao L, Yang L, Arora A, Fibuch EE, Wang JQ (2006) Propofol inhibits phosphorylation of N-methyl-D-aspartate NR1 subunits in neurons. Anaesthesiology 104(4):763–769

    Article  CAS  Google Scholar 

  116. Qiu Q, Choi SW, Wong SS, Irwin MG, Cheung CW (2016) Effects of intraoperative maintenance of general anaesthesia with Propofol on postoperative pain outcomes – a systematic review and meta-analysis. Anaesthesia 71(10):1222–1233

    Article  CAS  PubMed  Google Scholar 

  117. Song JG, Shin JW, Lee EH, Choi DK (2012) Incidence of post-thoracotomy pain: a comparison between total intravenous anaesthesia and inhalation anaesthesia. Eur J Cardiothorac Surg 41(5):1078–1082

    Article  PubMed  Google Scholar 

  118. Yap A, Lopez-Olivo MA, Duboiwitz J, Hiller J, Ruedel B (2019) Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia. Can J Anaesth 66(5):546–561

    Article  PubMed  Google Scholar 

  119. Dierssen-Sotos T, Gómez-Acebo I, de Pedro M (2016) Use of non-steroidal anti-inflammatory drugs and risk of breast cancer: the Spanish multi-case-control (MCC) study. BMC Cancer 16(1):660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vidal AC, Howard LE, Moreira DM (2015) Aspirin, NSAIDs, and risk of prostate cancer: results from the REDUCE study. Clin Cancer Res 21(4):756–762

    Article  CAS  PubMed  Google Scholar 

  121. Friis S, Riis AH, Erichsen R, Baron JA (2015) Low-dose aspirin or nonsteroidal anti-inflammatory drug use and colorectal cancer risk. Ann Intern Med 163(5):347–355

    Article  PubMed  Google Scholar 

  122. Shi J, Leng W, Zhao L, Xu C (2017) Nonsteroidal anti-inflammatory drugs using and risk of head and neck cancer: a dose–response meta-analysis of prospective cohort studies. Oncotarget 8(58):99066–99074

    PubMed  PubMed Central  Google Scholar 

  123. Thun MJ, Henley SJ, Patrono C (2002) Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94(4):252–266

    Article  CAS  PubMed  Google Scholar 

  124. Zamarron BF, Chen W (2011) Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 7(5):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wong RSY (2019) Role of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) in Cancer Prevention and Cancer Promotion. Adv Pharmacol Sci 2019:3418975

    PubMed  PubMed Central  Google Scholar 

  127. Rushfeldt CF, Agledahl UC, Sveinbjornsson B (2016) Effect of perioperative dexamethasone and different NSAIDs on anastomotic leak risk: a propensity score analysis. World J Surg 40(11):2782–2789

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fjederholt KT, Okholm C, Svendsen LB (2018) Ketorolac and other NSAIDs increase the risk of anastomotic leakage after surgery for GEJ cancers: a cohort study of 557 patients. J Gastrointest Surg 22(4):587–594

    Article  PubMed  Google Scholar 

  129. McDermott FD, Heeney A, Kelly ME, Steele RJ, Carlson GL, Winter DC (2015) Systematic review of preoperative, intraoperative and postoperative risk factors for colorectal anastomic leaks. Br J Surg 102(5):462–479

    Article  CAS  PubMed  Google Scholar 

  130. Paulasir S, Kaoutzanis C, Welch KB (2015) Nonsteroidal anti-inflammatory drugs: do they increase the risk of anastomotic leaks following colorectal operations? Dis Colon Rectum 58(9):870–877

    Article  PubMed  Google Scholar 

  131. Rutegard M, Westermark S, Kverneng Hultberg D (2016) Nonsteroidal anti-inflammatory drug use and risk of anastomotic leakage after anterior resection: a protocol-based study. Dig Surg 33(2):129–135

    Article  CAS  PubMed  Google Scholar 

  132. Hakkarainen TW, Steele SR, Bastaworous A (2015) Nonsteroidal anti-inflammatory drugs and the risk for anastomotic failure: a report from Washington State’s surgical care and outcomes assessment program (SCOAP). JAMA Surg 150(3):223–228

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hassan I (2014) NSAID use and colorectal anastomotic leaks. Caution and further investigation. J Gastrointest Surg 18(8):1405–1406

    Article  PubMed  Google Scholar 

  134. Bhangu A, Singh P, Fitzgeral JE (2014) Postoperative nonsteroidal anti-inflammatory drugs and risk of anastomotic leak: meta-analysis of clinical and experimental studies. World J Surg 38(9):2247–2257

    Article  PubMed  Google Scholar 

  135. Hao WM, Shen YX, Feng MX (2018) Aspirin acts in esophageal cancer: a brief review. J Thorac Dis 10(4):2490–2497

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sun L, Yu S (2011) Meta-analysis: non-steroidal anti-inflammatory drug use and the risk of esophageal squamous cell carcinoma. Dis Esophagus 24(8):544–549

    Article  PubMed  Google Scholar 

  137. Husain SS, Szabo IL, Tamawski AS (2002) NSAID inhibition of GI cancer growth: clinical implications and molecular mechanisms of action. Am J Gastroenterol 97(3):542–553

    Article  CAS  PubMed  Google Scholar 

  138. Li M, Lotan R, Levin B, Tahara E, Lippman SM, Xu SC (2000) Aspirin induction of apoptosis in esophageal cancer: a potential for chemoprevention. Cancer Epidemiol Biomark Prev 9(6):545–549

    CAS  Google Scholar 

  139. Krishnan K, Ruffin MT, Brenner DE (1997) Colon cancer chemoprevention: clinical development of aspirin as a chemopreventive agent. J Cell Biochem 28-29:148–158

    Article  CAS  Google Scholar 

  140. Gupta RA, DuBois RN (1998) Aspirin, NSAIDs, and colon cancer prevention: mechanisms? Gastoenterology 114(5):1095–1098

    Article  CAS  Google Scholar 

  141. Alshafie GA, Abou-Issa HM, Seibert K, Harris RE (2000) Chemotherapeutic evaluation of celecoxib, a cyclooxygenase-2 inhibitor, in a rat mammary tumour model. Oncol Rep 7:1377–1381

    CAS  PubMed  Google Scholar 

  142. Yao M, Zhou W, Sangha S, Albert A (2005) Effects of nonselective cyclooxygenase inhibition with low-dose ibuprofen on tumor growth, angiogenesis, metastasis, and survival in a mouse model of colorectal cancer. Clin Cancer Res 11(4):1618–1628

    Article  CAS  PubMed  Google Scholar 

  143. Liu X, Li P, Zhang ST, You H, Jia JD, Yu ZL (2008) COX-2 mRNA expression in esophageal squamous cell carcinoma (ESCC) and effect by NSAID. Dis Esophagus 21(1):9–14

    Article  CAS  PubMed  Google Scholar 

  144. Liu JF, Jamieson GG, Drew PA, Zhu GJ (2005) Aspirin induces apoptosis in esophageal cancer cells by inhibiting the pathway of NF-kappaB downstream regulation of cyclooxygenase-2. ANZ J Surg 75(11):1011–1016

    Article  PubMed  Google Scholar 

  145. Kase S, Osaki M, Honjo S (2004) A selective cyclooxygenase-2 inhibitor, NS 398, inhibits cell growth and induces cell cycle arrest in the G2/M phase in human esophageal squamous cell carcinoma cells. Cancer Res 23(2):301–307

    CAS  Google Scholar 

  146. Masferrer J (2001) Approach to angiogenesis inhibition based on cyclooxygenase-2. Cancer J 7:144–150

    Google Scholar 

  147. Bolieva LZ, Dzhioev FK, Kakabadze SA (2007) Effects of acetylsalicyclic acid and celecoxib on the N-nitrosodiethylamine induced carcinogenesis in rat liver and esophagus. Bull Exp Biol Med 143:87–90

    Article  CAS  PubMed  Google Scholar 

  148. Deasy BM, O’Sullivan-Coyne G, O’Donovan TR (2007) Cyclooxygenase-2 inhibitors demonstrate anti-proliferative effects in esophageal cancer cells by prostaglandin E-2 independent mechanisms. Cancer Lett 256:246–258

    Article  CAS  PubMed  Google Scholar 

  149. Ji Y, Chen SY, Xiao X (2012) B-blockers: a novel class of antitumor agents. Onco Targets Ther 5:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cole SW (2012) Sood AK (2012) molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18(5):1201–1206

    Article  CAS  PubMed  Google Scholar 

  151. Lutgendorf SK, Cole S, Costanzo E (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9(12):4514–4521

    CAS  PubMed  Google Scholar 

  152. Palm D, Lang K, Niggemann B (2006) The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 118(11):2744–2749

    Article  CAS  PubMed  Google Scholar 

  153. Benish M, Bartal I, Goldfarb Y (2008) Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol 15(7):2042–2052

    Article  PubMed  Google Scholar 

  154. Akbar S, Alsharidah MS (2014) Are beta blockers new potential anticancer agents? Asian Pac J Cancer Prev 15(22):9567–9574

    Article  PubMed  Google Scholar 

  155. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X (2011) Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol 29(19):2645–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grytli HH, Fagerland MW, Fosså SD (2014) Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 65(3):635–641

    Article  CAS  PubMed  Google Scholar 

  157. Diaz ES, Karlan BY, Li AJ (2012) Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol 127(3):375–378

    Article  CAS  PubMed  Google Scholar 

  158. Johannesdottir SA, Schmidt M, Phillips G (2013) Use of β-blockers and mortality following ovarian cancer diagnosis: a population-based cohort study. BMC Cancer 13:85

    Article  PubMed  PubMed Central  Google Scholar 

  159. McCourt C, Coleman HG, Murray LJ (2014) Beta-blocker usage after malignant melanoma diagnosis and survival: a population-based nested case-control study. Br J Dermatol 170(4):930–938

    Article  CAS  PubMed  Google Scholar 

  160. Shah SM, Carey IM, Owen CG (2011) Does β-adrenoceptor blocker therapy improve cancer survival? Findings from a population-based retrospective cohort study. Br J Clin Pharmacol 72(1):157–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Coleman CI, Baker WL, Kluger J (2008) Antihypertensive medication and their impact on cancer incidence: a mixed treatment comparison meta-analysis of randomized controlled trials. J Hypertens 26(4):622–629

    Article  CAS  PubMed  Google Scholar 

  162. Fleisher LA, Fleischmann KE, Auerbach AD (2014) 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation 130(24):2215–2245

    Article  PubMed  Google Scholar 

  163. Chang PY, Huang WY, Lin CL (2015) Propanolol reduces cancer risk: a population-based cohort study. Medicine (Baltimore) 94(27):e1097

    Article  CAS  Google Scholar 

  164. Monami M, Filippi L, Ungar A (2013) Further data on beta-blockers and cancer risk: observational study and meta-analysis of randomised clinical trials. Curr Med Res Opin 29(4):369–378

    Article  CAS  PubMed  Google Scholar 

  165. Zhang D, Ma Q, Shen S (2009) Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoceptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas 38(1):94–100

    Article  CAS  PubMed  Google Scholar 

  166. Guo K, Ma Q, Wang L (2009) Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep 22(4):825–830

    CAS  PubMed  Google Scholar 

  167. Pantziarka P, Bouche G, Sukhatme V (2016) Repurposing drugs in oncology (ReDO)—propanolol as an anti-cancer agent. Ecancermedicalscience 10:680

    PubMed  PubMed Central  Google Scholar 

  168. Liao X, Che X, Zhao W (2010) The β-adrenoceptor antagonist, propranolol, induces human gastric cancer cell apoptosis and cell cycle arrest via inhibiting nuclear factor κB signaling. Oncol Rep 24(6):1669–1676

    CAS  PubMed  Google Scholar 

  169. Ito K, Ito M, Ando A (2017) Simplified intraoperative goal-directed therapy using the FloTrac/Vigileo system: an analysis of its usefulness and safety. Open J Anesthesiol 7(1):1–14

    Article  Google Scholar 

  170. Cannesson M, Musard H, Desebbe O, Boucau C, Simon R, Henaine R (2009) The ability of stroke volume variations obtained with Vigileo/Frotrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg 108(2):513–517

    Article  PubMed  Google Scholar 

  171. Ramsingh DS, Sanghvi C, Gamboa J, Cannesson M, Applegate RL 2nd (2013) Outcome impact of goal directed fluid therapy during high risk abdominal surgery in Low to moderate risk patients: a randomized controlled trial. J Clin Monit Comput 27(3):249–257

    Article  PubMed  Google Scholar 

  172. Scheeren TW, Wiesenack C, Gerlach H, Marx G (2013) Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput 27(3):225–233

    Article  PubMed  Google Scholar 

  173. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot J, Vallet B (2011) Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “Gray zone” approach. Anesthesiology 115(2):231–241

    Article  PubMed  Google Scholar 

  174. Eng OS, Arlow RL, Moore D (2016) Fluid administration and morbidity in transhiatal esophagectomy. J Surg Res 200(1):91–97

    Article  PubMed  Google Scholar 

  175. Xing X, Gao Y, Wang H (2015) Correlation of fluid balance and postoperative pulmonary complications in patients after esophagectomy for cancer. J Thorac Dis 7(11):1986–1993

    PubMed  PubMed Central  Google Scholar 

  176. Chau EH, Slinger P (2014) Perioperative fluid management for pulmonary resection surgery and esophagectomy. Semin Cardiothorac Vasc Anesth 18(1):36–44

    Article  PubMed  Google Scholar 

  177. Brandstrup B, Tonnesen H, Beier-Holgersen R (2003) Effects of intravenous fluid restriction on postoperative complications: comparisons of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238(5):641–648

    Article  PubMed  PubMed Central  Google Scholar 

  178. Nisanevich V, Felsentein I, Almogy G (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103(1):25–32

    Article  PubMed  Google Scholar 

  179. Wei S, Tian J, Song X (2008) Association of perioperative fluid balance and adverse surgical outcomes in esophageal cancer and esophagogastric junction cancer. Ann Thorac Surg 86(1):266–272

    Article  PubMed  Google Scholar 

  180. Kita T, Mammoto T, Kishi Y (2002) Fluid management and postoperative respiratory disturbances in patients with transthoracic esophagectomy for carcinoma. J Clin Anesth 14(4):252–256

    Article  PubMed  Google Scholar 

  181. Casado D, Lopez F, Marti R (2010) Perioperative fluid management and major respiratory complications in patients undergoing esophagectomy. Dis Esophagus 23:523–528

    Article  CAS  PubMed  Google Scholar 

  182. Goepfert MS, Reuter DA, Akyol D (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33(1):96–103

    Article  PubMed  Google Scholar 

  183. Gan TJ, Soppitt A, Maroof M (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97(4):820–826

    Article  PubMed  Google Scholar 

  184. Pearse R, Dawson D, Fawcett J (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay: a randomized, controlled trial. Crit Care 9(6):R687–R693

    Article  PubMed  PubMed Central  Google Scholar 

  185. Donati A, Loggi S, Preiser JC (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132(6):1817–1824

    Article  PubMed  Google Scholar 

  186. Neal JM, Wilcox RT, Allen HW (2003) Near-total esophagectomy: the influence of standardized multimodal management and intraoperative fluid restriction. Reg Anesth Pain Med 28(4):328–334

    PubMed  Google Scholar 

  187. Pearse RM, Harrison DA, MacDonald N (2014) OPTIMISE study group. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on out- comes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 311(21):2181–2190

    Article  CAS  PubMed  Google Scholar 

  188. Veelo DP, van Berge Henegouwen MI, Ouwehand KS (2017) Effect of goal-directed therapy on outcome after esophageal surgery: a quality improvement study. PLoS One 12(3):e0172806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Assaad S, Popescu W, Perrino A (2013) Fluid management in thoracic surgery. Curr Opin Anaesthesiol 26(1):31–39

    Article  PubMed  Google Scholar 

  190. Jin J, Min S, Liu D (2018) Clinical and economic impact of goal-directed fluid therapy during elective gastrointestinal surgery. Periop Med 7(22):1–8

    Google Scholar 

  191. Hamilton MA, Cecconi M, Rhodes A (2011) A systematic review and meta-analysis on the use of Preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg 112(6):1392–1402

    Article  PubMed  Google Scholar 

  192. Secher NH (2013) When is enough? Individualized goal-directed fluid therapy for surgery. J Clin Monit Comput 27(3):223–224

    Article  PubMed  Google Scholar 

  193. Kotake Y, Fukuda M, Yamagata A, Iwasaki R, Toyoda D, Sato N (2014) Low molecular weight pentastarch is more effective than crystalloid solution in goal-directed fluid management in patients undergoing major gastrointestinal surgery. J Anesth 28(2):180–188

    Article  PubMed  Google Scholar 

  194. Yates DR, Davies SJ, Milner HE, Wilson RJ (2014) Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth 112(2):281–289

    Article  CAS  PubMed  Google Scholar 

  195. Feldheiser A, Pavlova V, Bonomo T, Jones A, Fotopoulou C, Sehouli J (2013) Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm. Br J Anaesth 110(2):231–240

    Article  CAS  PubMed  Google Scholar 

  196. Ogata T, Nakajima T, Kano K (2016) Multimodal analgesia combined with intravenous administration of acetaminophen in perioperative management of esophagectomy using modified ERAS protocol. J Clin Oncol 34(4):94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Irwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chan, E.Y.F., Ip, D.K.Y., Irwin, M.G. (2020). Anesthetic Management for Squamous Cell Carcinoma of the Esophagus. In: Lam, A. (eds) Esophageal Squamous Cell Carcinoma. Methods in Molecular Biology, vol 2129. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0377-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0377-2_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0376-5

  • Online ISBN: 978-1-0716-0377-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics