Skip to main content

Robust Control of Cooperative Manipulators

  • Chapter
  • First Online:
Robust Control of Robots

Abstract

In this chapter we present three nonlinear \({\mathcal{H}}_{\infty}\) control techniques for underactuated cooperative manipulators. Two are based on a quasi-linear parameter varying (quasi-LPV) representation of the nonlinear system with solutions based on game theory. These controllers take into account a fundamental characteristic of cooperative manipulator control, namely, that squeeze force control is designed independently of position control. In these cases, only the position control problem is reflected in the \({\mathcal{H}}_{\infty}\) performance index. The third controller uses a neural network-based adaptive control law to estimate the parametric uncertainties of the system. In this case, the \({\mathcal{H}}_{\infty}\) performance index includes both the position and squeeze force errors of the cooperative manipulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang YC (2000) Neural network-based \({\mathcal{H}}_{\infty}\) tracking control for robotic systems. IEEE Proc Control Theory Appl 147(3):303–311

    Article  Google Scholar 

  2. Chen BS, Lee TS, Feng JH (1994) A nonlinear \({\mathcal{H}}_{\infty}\) control design in robotic systems under parameter perturbation and external disturbance. Int J Control 59(2):439–461

    Article  MathSciNet  MATH  Google Scholar 

  3. Khalil HK (1996) Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Trans Autom Control 41(2):177–188

    Article  MathSciNet  MATH  Google Scholar 

  4. Lian KY, Chiu CS, Liu P (2002) Semi-descentralized adaptive fuzzy control for cooperative multirobot systems with \({\mathcal{H}}_\infty\) motion/internal force tracking performance. IEEE Trans Syst, Man Cybern—Part B: Cybernetics 32(3):269–280

    Article  Google Scholar 

  5. McClamroch NH, Wang D (1988) Feedback stabilization and tracking of constrained robots. IEEE Trans Autom Control 33(5):419–426

    Article  MathSciNet  MATH  Google Scholar 

  6. Siqueira AAG, Terra MH (2007) Neural network-based \({{\mathcal{H}}}_{\infty}\) control for fully actuated and underactuated cooperative manipulators. In: Proceedings of the American Control Conference, New York, USA pp 3259–3264

    Google Scholar 

  7. Tinós R, Terra MH (2006) Motion and force control of cooperative robotic manipulators with passive joints. IEEE Trans Control Syst Technol 14(4):725–734

    Article  Google Scholar 

  8. Wen T, Kreutz-Delgado K (1992) Motion and force control for multiple robotic manipulators. Automatica 28(4):729–743

    Article  MathSciNet  MATH  Google Scholar 

  9. Wu F, Yang XH, Packard A, Becker G (1996) Induced \({\mathcal{L}}_2\)-norm control for LPV systems with bounded parameter variation rates. Int J Robust Nonlinear Control 6(9–10):983–998

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Bergerman .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Siqueira, A.A.G., Terra, M.H., Bergerman, M. (2011). Robust Control of Cooperative Manipulators. In: Robust Control of Robots. Springer, London. https://doi.org/10.1007/978-0-85729-898-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-898-0_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-897-3

  • Online ISBN: 978-0-85729-898-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics