Skip to main content

A Fault Tolerance Framework for Cooperative Robotic Manipulators

  • Chapter
  • First Online:
Robust Control of Robots

Abstract

In this chapter we present a fault tolerance framework for cooperative manipulators. The fault detection and isolation (FDI) system uses the kinematic constraints of the cooperative system and neural networks to detect and treat four categories of faults: free-swinging joint faults (FSJF), where one or more joints lose actuation and become free-swinging; locked joint faults (LJF), where one or more joints become locked; incorrectly-measured joint position faults (JPF), where the measurement of one or more joint positions is incorrect; and incorrectly-measured joint velocity faults (JVF), where the measurement of one or more joint velocities is incorrect. After the faults are detected by the FDI system, the control system is reconfigured according to the nature of the isolated fault and the manipulation task is resumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonitz R, Hsia T (1996) Internal force-based impedance control for cooperating manipulators. IEEE Trans Robot Autom 12(1):78–89

    Article  Google Scholar 

  2. Carignan CR, Akin DL (1988) Cooperative control of two arms in the transport of an inertial load in zero gravity. IEEE Trans Robot Autom 4(4):414–419

    Article  Google Scholar 

  3. Dhillon BS, Fashandi ARM (1997) Robotic systems probabilistic analysis. Microeletron Reliab 37(2):211–224

    Article  Google Scholar 

  4. English JD, Maciejewski AA (1998) Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures. IEEE Trans Robot Autom 14(4):566–575

    Article  Google Scholar 

  5. Goel M, Maciejewski AA, Balakrishnan V (2004) Analyzing unidentified locked-joint failures in kinematically redundant manipulators. J Robot Systs 22(1):15–29

    Article  Google Scholar 

  6. Hassan M, Notash L (2004) Analysis of active joint failure in parallel robot manipulators. J Mech Design 126(6):959–968

    Article  Google Scholar 

  7. Hassan M, Notash L (2005) Design modification of parallel manipulators for optimum fault tolerance to joint jam. Mech Mach Theory 40(5):559–577

    Article  MATH  Google Scholar 

  8. Jatta F, Legnani G, Visioli A, Ziliani G (2006) On the use of velocity feedback in hybrid force/velocity control of industrial manipulators. Control Eng Pract 14(9):1045–1055

    Article  Google Scholar 

  9. Liu YH, Xu Y, Bergerman M (1999) Cooperation control of multiple manipulators with passive joints. IEEE Transa Robot Autom 15(2):258–267

    Article  Google Scholar 

  10. Luh JYS, Zheng YF (1987) Constrained relations between two coordinated industrial robots for robot motion control. Int J Robot Res 6(3):60–70

    Article  Google Scholar 

  11. McIntyre ML, Dixon WE, Dawson DM, Walker ID (2005) Fault identification for robot manipulators. IEEE Trans Robot Autom 21(5):1028–1034

    Google Scholar 

  12. Miyagi PE, Riascos LAM (2006) Modeling and analysis of fault-tolerant systems for machining operations based on Petri nets. Control Eng Pract 14(4):397–408

    Article  Google Scholar 

  13. Monteverde V, Tosunoglu S (1999) Development and application of a fault tolerance measure for serial and parallel robotic structures. Int J Modeling Simulat 19(1):45–51

    Google Scholar 

  14. Schneider H, Frank PM (1996) Observer-based supervision and fault-detection in robots using nonlinear and fuzzy logic residual evaluation. IEEE Trans Control Syst Technol 4(3):274–282

    Article  Google Scholar 

  15. Terra MH, Tinós R (2001) Fault detection and isolation in robotic manipulators via neural networks—a comparison among three architectures for residual analysis. J Robot Syst 18(7):357–374

    Article  MATH  Google Scholar 

  16. Tinós R, Terra MH, Bergerman M (2001) Fault detection and isolation in cooperative manipulators via artificial neural networks. In: Proceedings of IEEE Conference on Control Applications, Mexico City, Mexico, pp 988–1003

    Google Scholar 

  17. Tinós R, Terra MH, Ishihara JY (2006) Motion and force control of cooperative robotic manipulators with passive joints. IEEE Trans Control Syst Technol 14(4):725–734

    Article  Google Scholar 

  18. Vemuri AT, Polycarpou MM (2004) A methodology for fault diagnosis in robotic systems using neural networks. Robotica 22(4):419–438

    Article  Google Scholar 

  19. Visinsky ML, Cavallaro JR, Walker ID (1994) Robotic fault detection and fault tolerance: a survey. Reliab Eng Syst Safe 46:139–158

    Article  Google Scholar 

  20. Visinsky ML, Cavallaro JR, Walker ID (1995) A dynamic fault tolerance framework for remote robots. IEEE Trans Robot Autom 11(4):477–490

    Article  Google Scholar 

  21. Vukobratovic M, Tuneski A (1998) Mathematical model of multiple manipulators: cooperative compliant manipulation on dynamical environments. Mech Mach Theory 33(8):1211–1239

    Article  MathSciNet  MATH  Google Scholar 

  22. Wen T, Kreutz-Delgado K (1992) Motion and force control for multiple robotic manipulators. Automatica 28(4):729–743

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Bergerman .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Siqueira, A.A.G., Terra, M.H., Bergerman, M. (2011). A Fault Tolerance Framework for Cooperative Robotic Manipulators. In: Robust Control of Robots. Springer, London. https://doi.org/10.1007/978-0-85729-898-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-898-0_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-897-3

  • Online ISBN: 978-0-85729-898-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics