Skip to main content

Nonlinear \({\mathcal{H}}_{\varvec\infty}\) Control

  • Chapter
  • First Online:
Robust Control of Robots

Abstract

This chapter deals with nonlinear \({\mathcal{H}}_{\infty}\) control methodologies for robot manipulators. The nonlinear \({\mathcal{H}}_{\infty}\) control considered guarantees an appropriate attenuation of the torque disturbance effect on the joint positions. We deal with two fundamental approaches for this class of controllers; the first is based on game theory and the second is based on linear parameter-varying (LPV) techniques. We provide solutions based on state and output feedback controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apkarian P, Adams RJ (1998) Advanced gain-scheduling techniques for uncertain systems. IEEE Trans Control Syst Technol 6(1):21–32

    Article  Google Scholar 

  2. Basar T, Bernhard P (1990) \({\mathcal{H}}_{\infty}\)-Optimal control and related minimax problems. Birkhauser, Berlin

    Google Scholar 

  3. Chen BS, Chang YC (1997) Nonlinear mixed \({\mathcal{H}}_{2} / {\mathcal{H}}_{\infty}\) control for robust tracking design of robotic systems. Int J Control 67(6):837–857

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen BS, Lee TS, Feng JH (1994) A nonlinear \({\mathcal{H}}_{\infty}\) control design in robotic systems under parameter perturbation and external disturbance. Int J Control 59(2):439–461

    Article  MathSciNet  MATH  Google Scholar 

  5. Gahinet P, Apkarian P (1994) A linear matrix inequality approach to \({\mathcal{H}}_\infty\) control. Int J Robust Nonlinear Control 4(4):421–448

    Article  MathSciNet  MATH  Google Scholar 

  6. Gahinet P, Nemiroviski A, Laub AJ, Chilali M (1995) LMI control toolbox. The MathWorks, Inc., Natick

    Google Scholar 

  7. Johansson R (1990) Quadratic optimization of motion coordination and control. IEEE Trans Autom Control 35(11):1197–1208

    Article  MathSciNet  MATH  Google Scholar 

  8. Postlethwaite I, Bartoszewicz A (1998) Application of non-linear \({\mathcal{H}}_{\infty}\) control to the tetrabot robot manipulator. Proc Inst Mech Eng: Part I. J Syst Control Eng 212(16):459–465

    Article  Google Scholar 

  9. Wu F, Yang XH, Packard A, Becker G (1996) Induced \({\mathcal{L}}_2\)-norm control for LPV systems with bounded parameter variation rates. Int J Robust Nonlinear Control 6(9–10):983–998

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Bergerman .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Siqueira, A.A.G., Terra, M.H., Bergerman, M. (2011). Nonlinear \({\mathcal{H}}_{\varvec\infty}\) Control. In: Robust Control of Robots. Springer, London. https://doi.org/10.1007/978-0-85729-898-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-898-0_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-897-3

  • Online ISBN: 978-0-85729-898-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics