Skip to main content

PROPped-Up Graph Cohomology

  • Chapter
  • First Online:

Part of the book series: Progress in Mathematics ((PM,volume 270))

Summary

We consider graph complexes with a flow and compute their cohomology. More specifically, we prove that for a PROP generated by a Koszul dioperad, the corresponding graph complex gives a minimal model of the PROP. We also give another proof of the existence of a minimal model of the bialgebra PROP from [14]. These results are based on the useful notion of a \(\frac{1}{2}\)PROP introduced by Kontsevich in [9].

2000 Mathematics Subject Classifications: 18D50, 55P48

Partially supported by the grant GA ČR 201/02/1390 and by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

Partially supported by NSF grant DMS-0227974.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aguiar, Infinitesimal Hopf algebras, New trends in Hopf algebra theory (La Falda, 1999), Contemporary Math., vol. 267, Amer. Math. Soc., 2000, pp. 1–29.

    Google Scholar 

  2. M. Culler, K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), pp. 91–119.

    Article  MATH  MathSciNet  Google Scholar 

  3. T. Fox, M. Markl, Distributive laws, bialgebras, and cohomology, Operads: Proceedings of Renaissance Conferences (J.-L. Loday, J. Stasheff, A. Voronov, eds.), Contemporary Math., vol. 202, Amer. Math. Soc., 1997, pp. 167–205.

    Google Scholar 

  4. W. Gan, Koszul duality for dioperads, Math. Res. Lett. 10 (2003), no. 1, pp. 109–124.

    MATH  MathSciNet  Google Scholar 

  5. E. Getzler, M. Kapranov, Modular operads, Compositio Math. 110 (1998), no. 1, pp. 65–126.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Ginzburg, M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, pp. 203–272.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Kontsevich, Formal (non)commutative symplectic geometry, The Gel’fand mathematics seminars 1990–1992, Birkhäuser, 1993.

    Google Scholar 

  8. M. Kontsevich, Feynman diagrams and low-dimensional topology, First European Congress of Mathematics II, Progr. Math., vol. 120, Birkhäuser, Basel, 1994.

    Google Scholar 

  9. M. Kontsevich, An e-mail message to M. Markl, November 2002.

    Google Scholar 

  10. S. Mac Lane, Natural associativity and commutativity, Rice Univ. Stud. 49 (1963), no. 1, pp. 28–46.

    MathSciNet  Google Scholar 

  11. I. Madsen, M. S. Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, Preprint math.AT/0212321, December 2002.

    Google Scholar 

  12. M. Markl, Cotangent cohomology of a category and deformations, J. Pure Appl. Algebra 113 (1996), no. 2, pp. 195–218.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Markl, Models for operads, Comm. Algebra 24 (1996), no. 4, pp. 1471–1500.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Markl, A resolution (minimal model) of the PROP for bialgebras, J. Pure Appl. Algebra 205 (2006), no. 2, pp. 341–374.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Markl, S. Shnider, J. D. Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs, vol. 96, American Mathematical Society, Providence, Rhode Island, 2002.

    Google Scholar 

  16. S. Merkulov, PROP profile of deformation quantization, Preprint math.QA/0412257, December 2004.

    Google Scholar 

  17. R. Penner, Perturbative series and the moduli space of Riemann surfaces, J. Differential Geom. 27 (1988), no. 1, pp. 35–53.

    MATH  MathSciNet  Google Scholar 

  18. D. Thurston, Integral expressions for the Vassiliev knot invariants, Preprint math.QA/9901110, January 1999.

    Google Scholar 

  19. B. Vallette, Dualité de Koszul des PROPs, Thesis, Université Louis Pasteur, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Markl .

Editor information

Editors and Affiliations

Additional information

Dedicated to Yuri I. Manin on the occasion of his seventieth birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Markl, M., Voronov, A.A. (2009). PROPped-Up Graph Cohomology. In: Tschinkel, Y., Zarhin, Y. (eds) Algebra, Arithmetic, and Geometry. Progress in Mathematics, vol 270. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4747-6_8

Download citation

Publish with us

Policies and ethics