Skip to main content

Validation of Human Alternative Splice Forms Using the EASED Platform and Multiple Splice Site Discriminating Features

  • Chapter
Book cover Mathematical Modeling of Biological Systems, Volume I

Summary

We have shown for a dataset of computationally predicted alternative splice sites how inherent information can be utilized to validate the predictions by applying statistics on different features typical for splice sites. As a promising splice site feature we investigated the frequencies of binding motifs in the context of exonic and intronic splice site flanks and between the alternative and reference splice sites. We show that both partitions of splice sites can statistically be separated not only by their distance to the splice signal consensus but also via frequencies of splice regulatory protein (SRp) binding motifs in the splice site environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Black, D.L.: Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem., 72, 291–336 (2003).

    Article  Google Scholar 

  2. Boguski, M.S., Lowe, T.M., Tolstoshev, C.M.: dbEST–database for ‘expressed sequence tags’. Nat. Genet., 4, 332–3 (1993).

    Article  Google Scholar 

  3. Bourgeois, C.F., Lejeune, F., Stevenin, J.: Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. Prog. Nucleic. Acid. Res. Mol. Biol., 78, 37–88 (2004).

    Article  Google Scholar 

  4. Cartegni, L., Chew, S.L., Krainer, A.R.: Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet., 3, 285–298 (2002).

    Article  Google Scholar 

  5. Cartegni, L., Wang, J., Zhu, Z., et al.: ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic. Acids. Res., 31, 3568–3571 (2003).

    Article  Google Scholar 

  6. Clark, F., Thanaraj, T.A.: Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human. Hum. Mol. Genet., 11, 451–464 (2002).

    Article  Google Scholar 

  7. D’Souza, I., Schellenberg, G.D.: Determinants of 4-repeat tau expression. Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J. Biol. Chem., 275, 17700–17709 (2000).

    Article  Google Scholar 

  8. Elrick, L.L., Humphrey, M.B., Cooper, T.A., Berget, S.M.: A short sequence within two purine-richenhancers determines 5splice site specificity. Mol. Cell. Biol., 18, 343–352 (1998).

    Google Scholar 

  9. Fairbrother, W.G., Yeh, R.F., Sharp, P.A., Burge, C.B.: Predictive identification of exonic splicing enhancers in human genes. Science, 297, 1007–1013 (2002).

    Article  Google Scholar 

  10. Galperin, M.Y.: The molecular biology database collection: 2005 update. Nucleic. Acids. Res., 33, D5–D24 (2005).

    Article  Google Scholar 

  11. Graveley, B.R.: Sorting out the complexity of SR protein functions. Rna, 6, 1197–1211 (2000).

    Article  Google Scholar 

  12. Graveley, B.R.: Alternative splicing: increasing diversity in the proteomic world. Trends. Genet., 17, 100–107 (2001).

    Article  Google Scholar 

  13. Hertel, K.J., Graveley, B.R.: RS domains contact the pre-mRNA throughout spliceosome assembly. Trends. Biochem. Sci., 30, 115–118 (2005).

    Article  Google Scholar 

  14. Hertel, K.J., Maniatis, T.: The function of multisite splicing enhancers. Mol. Cell., 1: 449– 455 (1998).

    Article  Google Scholar 

  15. Hiller, M., Huse, K., Szafranski, K., et al.: Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat. Genet., 36, 1255–1257 (2004).

    Article  Google Scholar 

  16. Humphrey, M.B., Bryan, J., Cooper, T.A., Berget, S.M.: A 32-nucleotide exon-splicing enhancer regulates usage of competing 5splice sites in a differential internal exon. Mol. Cell. Biol., 15, 3979–3988 (1995).

    Google Scholar 

  17. Konig, H., Ponta, H., Herrlich, P.: Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. Embo. J., 17, 2904–2913 (1998).

    Article  Google Scholar 

  18. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature, 409, 860–921 (2001).

    Article  Google Scholar 

  19. Liu, H.X., Zhang, M., Krainer, A.R.: Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev., 12, 1998–2012 (1998).

    Article  Google Scholar 

  20. Lou, H., Neugebauer, K.M., Gagel, R.F., Berget, S.M.: Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol. Cell. Biol., 18, 4977–4985 (1998).

    Google Scholar 

  21. Maniatis, T., Tasic, B.: Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature, 418, 236–243 (2002).

    Article  Google Scholar 

  22. Modrek, B., Resch, A., Grasso, C., Lee, C.: Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic. Acids Res., 29, 2850–2859 (2001).

    Article  Google Scholar 

  23. Pospisil, H., Herrmann, A., Bortfeldt, R.H., Reich, J.G. EASED: Extended Alternatively Spliced EST Database. Nucleic. Acids Res., 32, D70–D74 (2004).

    Article  Google Scholar 

  24. Ramchatesingh, J., Zahler, A.M., Neugebauer, K.M., et al.: A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol. Cell. Biol., 15, 4898–4907 (1995).

    Google Scholar 

  25. Shen, H., Green, M.R.: A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol. Cell., 16, 363–373 (2004).

    Article  Google Scholar 

  26. Smith, C.W., Valcarcel, J.: Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem. Sci., 25, 381–388 (2000).

    Article  Google Scholar 

  27. Tacke, R., Chen, Y., Manley, J.L.: Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA, 94, 1148–1153 (1997).

    Article  Google Scholar 

  28. Tacke, R., Manley, J.L.: The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. Embo. J., 14, 3540–3551 (1995).

    Google Scholar 

  29. Venables, J.P.: Aberrant and alternative splicing in cancer. Cancer Res., 64, 7647–7654 (2004).

    Article  Google Scholar 

  30. Yeo, G., Burge, C.B.: Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals. RECOMB‘03 April 10–13 Berlin, Germany (2003).

    Google Scholar 

  31. Zhang, M.Q.: Statistical features of human exons and their flanking regions. Hum. Mol. Genet., 7, 919–932 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Bortfeldt, R., Herrmann, A., Pospisil, H., Schuster, S. (2007). Validation of Human Alternative Splice Forms Using the EASED Platform and Multiple Splice Site Discriminating Features. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_30

Download citation

Publish with us

Policies and ethics