Skip to main content

RANK(L) as a Key Target for Controlling Bone Loss

  • Chapter
Book cover Therapeutic Targets of the TNF Superfamily

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 647))

Abstract

Bone-related diseases, such as osteoporosis or rheumatoid arthritis, affect hundreds of millions of people worldwide and pose a tremendous burden to health care. By deepening our understanding of the molecular mechanisms of bone metabolism and bone turnover, it became possible over the past years to devise new and promising strategies for treating such diseases. In particular, three molecules, the receptor activator of NF-κB(RANK), its ligand RANKL and the decoy receptor of RANKL, osteoprotegerin (OPG), attracted the attention of scientists and pharmaceutical companies alike. Genetic experiments evolving around these molecules established their pivotal role as central regulators of osteoclast function. RANK-RANKL signaling not only activates a variety of downstream signaling pathways required for osteoclast development, but crosstalk with other signaling pathways also fine-tunes bone homeostasis both in normal physiology and disease. Consequently, novel drugs specifically targeting RANK-RANKL and their signaling pathways in osteoclasts are expected to revolutionize the treatment of various ailments associated with bone loss, such as arthritis, cancer metastases, or osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002; 2(4):389–406.

    Article  PubMed  CAS  Google Scholar 

  2. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T-cells, bone loss and mammalian evolution. Annu Rev Immunol 2002; 20:795–823.

    Article  PubMed  CAS  Google Scholar 

  3. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003; 423(6937):337–342.

    Article  PubMed  CAS  Google Scholar 

  4. Wada T, Nakashima T, Hiroshi N et al. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 2006; 12(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  5. Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med 2004; 351(27):2839–2849.

    Article  PubMed  Google Scholar 

  6. Anderson DM, Maraskovsky E, Billingsley WL et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390(6656):175–179.

    Article  PubMed  CAS  Google Scholar 

  7. Wong BR, Rho J, Arron J et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T-cells, J Biol Chem 1997; 272(40):25190–25194.

    Article  PubMed  CAS  Google Scholar 

  8. Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93(2):165–176.

    Article  PubMed  CAS  Google Scholar 

  9. Yasuda H, Shima N, Nakagawa N et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclasto genesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95(7):3597–3602.

    Article  PubMed  CAS  Google Scholar 

  10. Yasuda H, Shima N, Nakagawa N et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrimology. 1998; 139(3):1329–1337.

    Article  Google Scholar 

  11. Tsuda E, Goto M, Mochizuki S et al. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 1997; 234(1):137–142.

    Article  PubMed  CAS  Google Scholar 

  12. Simonet WS, Lacey DL, Dunstan CR et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89(2):309–319.

    Article  PubMed  CAS  Google Scholar 

  13. Dougall WC, Glaccum M, Charrier K et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13(18):2412–2424.

    Article  PubMed  CAS  Google Scholar 

  14. Kong YY, Yoshida H, Sarosi I et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999; 397(6717):315–323.

    Article  PubMed  CAS  Google Scholar 

  15. Li J, Sarosi I, Yan XQ et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl Acad Sci USA 2000; 94(4):1566–1571.

    Article  Google Scholar 

  16. Chesneau V, Becherer JD, Zheng Y et al. Catalytic properties of ADAM19. J Biol Chem 2003; 278(25):22331–22340.

    Article  PubMed  CAS  Google Scholar 

  17. Schlondorff J, Lum L, Blobel CP. Biochemical and pharmacological criteria define two shedding activities for TRANCE/OPGL that are distinct from the tumor necrosis factor alpha convertase. J Biol Chem 2001; 276(18):14665–14674.

    Article  PubMed  CAS  Google Scholar 

  18. Lum L, Wong BR, Josien R et al. Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem 1999; 274(19):13613–13618.

    Article  PubMed  CAS  Google Scholar 

  19. Ikeda T, Kasai M, Utsuyama M et al. Determination of three isoforms of the receptor activator of nuclear factor-kappaB ligand and their differential expression in bone and thymus. Endocrinology 2001; 142(4):1419–1426.

    Article  PubMed  CAS  Google Scholar 

  20. Lynch CC, Hikosaka A, Acuff HB et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 2005; 7(5):485–496.

    Article  PubMed  CAS  Google Scholar 

  21. Lam J, Nelson CA, Ross FP et al. Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity. J Clin Invest 2001; 108(7):971–979.

    PubMed  CAS  Google Scholar 

  22. Ito S, Wakabayashi K, Ubukata O et al. Crystal structure of the extracellular domain of mouse RANK ligand at 2.2-A resolution. J Biol Chem 2002; 277(8):6631–6636.

    Article  PubMed  CAS  Google Scholar 

  23. Hofbauer LC, Khosla S, Dunstan CR et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000; 15(1):2–12.

    Article  PubMed  CAS  Google Scholar 

  24. Chan FK, Chun HJ, Zheng L et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000; 288(5475):2351–2354.

    Article  PubMed  CAS  Google Scholar 

  25. Siegel RM, Frederiksen JK, Zacharias DA et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288(5475):2354–2357.

    Article  PubMed  CAS  Google Scholar 

  26. Chan KF, Siegel MR, Lenardo JM. Signaling by the TNF receptor superfamily and T-cell homeostasis. Immunity 2000; 13(4):419–422.

    Article  PubMed  CAS  Google Scholar 

  27. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104(4):487–501.

    Article  PubMed  CAS  Google Scholar 

  28. Tan KB, Harrop J, Reddy M et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and nonhematopoietic cells. Gene 1997; 204(1–2):35–46.

    Article  PubMed  CAS  Google Scholar 

  29. Kwon BS, Wang S, Udagawa N et al. TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J 1998; 12(10):845–854.

    PubMed  CAS  Google Scholar 

  30. Bucay N, Sarosi I, Dunstan CR et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12(9):1260–1268.

    Article  PubMed  CAS  Google Scholar 

  31. Mizuno A, Amizuka N, Irie K et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998; 247(3):610–615.

    Article  PubMed  CAS  Google Scholar 

  32. Nakagawa N, Kinosaki M, Yamaguchi K et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 18 1998; 253(2):395–400.

    Article  CAS  Google Scholar 

  33. Hsu H, Lacey DL, Dunstan CR et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999; 96(7):3540–3545.

    Article  PubMed  CAS  Google Scholar 

  34. Hughes AE, Ralston SH, Marken J et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 2000; 24(1):45–48.

    Article  PubMed  CAS  Google Scholar 

  35. Whyte MP, Mills BG, Reinus WR et al. Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res 2000; 15(12):2330–2344.

    Article  PubMed  CAS  Google Scholar 

  36. Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 2002; 17(1):26–29.

    Article  PubMed  CAS  Google Scholar 

  37. Cundy T, Hegde M, Naot D et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 2002; 11(18):2119–2127.

    Article  PubMed  CAS  Google Scholar 

  38. Chong B, Hegde M, Fawkner M et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res 2003; 18(12):2095–2104.

    Article  PubMed  CAS  Google Scholar 

  39. Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 2005; 83(3):170–179.

    Article  PubMed  CAS  Google Scholar 

  40. Inoue J, Ishida T, Tsukamoto N et al. Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 2000; 254(1):14–24.

    Article  PubMed  CAS  Google Scholar 

  41. Darnay BG, Haridas V, Ni J et al. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 1998; 273(32):20551–20555.

    Article  PubMed  CAS  Google Scholar 

  42. Galibert L, Tometsko ME, Anderson DM et al. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-kappaB, a member of the TNFR superfamily. J Biol Chem 1998; 273(51):34120–34127.

    Article  PubMed  CAS  Google Scholar 

  43. Wong BR, Josien R, Lee SY et al. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem 1998; 273(43):28355–28359.

    Article  PubMed  CAS  Google Scholar 

  44. Lee ZH, Kwack K, Kim KK et al. Activation of c-Jun N-terminal kinase and activator protein 1 by receptor activator of nuclear factor kappaB. Mol Pharmacol 2000; 58(6):1536–1545.

    PubMed  CAS  Google Scholar 

  45. Lomaga MA, Yeh WC, Sarosi I et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40 and LPS signaling. Genes Dev 1999; 13(8):1015–1024.

    Article  PubMed  CAS  Google Scholar 

  46. Naito A, Azuma S, Tanaka S et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999; 4(6):353–362.

    Article  PubMed  CAS  Google Scholar 

  47. Kobayashi N, Kadono Y, Naito A et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J 2001; 20(6):1271–1280.

    Article  PubMed  CAS  Google Scholar 

  48. Kobayashi T, Walsh PT, Walsh MC et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 2003; 19(3):353–363.

    Article  PubMed  CAS  Google Scholar 

  49. Franzoso G, Carlson L, Xing L et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11(24):3482–3496.

    Article  PubMed  CAS  Google Scholar 

  50. Iotsova V, Caamano J, Loy J et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 1997; 3(11):1285–1289.

    Article  PubMed  CAS  Google Scholar 

  51. Wong BR, Besser D, Kim N et al. TRANCE a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999; 4(6):1041–1049.

    Article  PubMed  CAS  Google Scholar 

  52. Arron JR, Vologodskaia M, Wong BR et al. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 2001; 276(32):30011–30017.

    Article  PubMed  CAS  Google Scholar 

  53. Soriano P, Montgomery C, Geske R et al. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64(4):693–702.

    Article  PubMed  CAS  Google Scholar 

  54. Wada T, Nakashima T, Oliveira-dos-Santos AJ et al. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 2005; 11(4):394–399.

    Article  PubMed  CAS  Google Scholar 

  55. Wong BR, Josien R, Lee SY et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T-cells, is a dendritic cell-specific survival factor. J Exp Med 1997; 186(12):2075–2080.

    Article  PubMed  CAS  Google Scholar 

  56. Bachmann MF, Wong BR, Josien R et al. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med 1999; 189(7):1025–1031.

    Article  PubMed  CAS  Google Scholar 

  57. Josien R, Wong BR, Li HL et al. TRANCE, a TNF family member, is differentially expressed on T-cell subsets and induces cytokine production in dendritic cells. J Immunol 1999; 162(5):2562–2568.

    PubMed  CAS  Google Scholar 

  58. Josien R, Li HL, Ingulli E et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med 2000; 191(3):495–502.

    Article  PubMed  CAS  Google Scholar 

  59. Emery JG, McDonnell P, Burke MB et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273(23):14363–14367.

    Article  PubMed  CAS  Google Scholar 

  60. Yun TJ, Chaudhary PM, Shu GL et al. OPG/FDCR-1 a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 1998; 161(11):6113–6121.

    PubMed  CAS  Google Scholar 

  61. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol 1999; 77(2):188–193.

    Article  PubMed  CAS  Google Scholar 

  62. Kim N, Odgren PR, Kim DK et al. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA 2000; 97(20):10905–10910.

    Article  PubMed  CAS  Google Scholar 

  63. Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T-cells in immunological tolerance to self and nonself. Nat Immunol 2005; 6(4):345–352.

    Article  PubMed  CAS  Google Scholar 

  64. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685–711.

    Article  PubMed  CAS  Google Scholar 

  65. Mehling A, Loser K, Varga G et al. Overexpression of CD40 ligand in murine epidermis results in chronic skin inflammation and systemic autoimmunity. J Exp Med 2001; 194(5):615–628.

    Article  PubMed  CAS  Google Scholar 

  66. Loser K, Mehling A, Loeser S et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 2006; 12(12):1372–1379.

    Article  PubMed  CAS  Google Scholar 

  67. Kong YY, Feige U, Sarosi I et al. Activated T-cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand., Nature 1999; 402(6759):304–309.

    Article  PubMed  CAS  Google Scholar 

  68. Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270(5238):985–988.

    Article  PubMed  CAS  Google Scholar 

  69. Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell 1996; 85(3):307–310.

    Article  PubMed  CAS  Google Scholar 

  70. Takayanagi H, Oda H, Yamamoto S et al. A new mechanism of bone destruction in rheumatoid arthritis: synovial fibroblasts induce osteoclastogenesis. Biochem Biophys Res Commun 1997; 240(2):279–286.

    Article  PubMed  CAS  Google Scholar 

  71. Panayi GS, Lanchbury JS, Kingsley GH. The importance of the T-cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis Rheum 1992; 35(7):729–735.

    Article  PubMed  CAS  Google Scholar 

  72. Bendele A, McComb J, Gould T et al. Animal models of arthritis: relevance to human disease. Toxicol Pathol 1999; 27(1):134–142.

    Article  PubMed  CAS  Google Scholar 

  73. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996; 14:397–440.

    Article  PubMed  CAS  Google Scholar 

  74. Muller-Ladner U, Gay RE, Gay S. Molecular biology of cartilage and bone destruction. Curr Opin Rheumatol 1998; 10(3):212–219.

    Article  PubMed  CAS  Google Scholar 

  75. Kouskoff V, Korganow AS, Duchatelle V et al. Organ-specific disease provoked by systemic autoimmunity. Cell 1996; 87(5):811–822.

    Article  PubMed  CAS  Google Scholar 

  76. Korganow AS, Ji H, Mangialaio S et al. From systemic T-cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999; 10(4):451–461.

    Article  PubMed  CAS  Google Scholar 

  77. Pettit AR, Ji, H, von Stechow D et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 2001; 159(5):1689–1699.

    PubMed  CAS  Google Scholar 

  78. Keffer J, Probert L, Cazlaris H et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 1991; 10(13):4025–4031.

    PubMed  CAS  Google Scholar 

  79. Mori H, Kitazawa R, Mizuki S et al. RANK ligand, RANK and OPG expression in type II collageninduced arthritis mouse. Histochem Cell Biol 2002; 117(3):283–292.

    Article  PubMed  CAS  Google Scholar 

  80. Redlich K, Hayer S, Maier A et al. Tumor necrosis factor alpha-mediated joint destruction is inhibited by targeting osteoclasts with osteoprotegerin. Arthritis Rheum 2002; 46(3):785–792.

    Article  PubMed  CAS  Google Scholar 

  81. Romas E, Sims NA, Hards DK et al. Osteoprotegerin reduces osteoclast numbers and prevents bone erosion in collagen-induced arthritis. Am J Pathol 2002; 161(4):1419–1427.

    PubMed  CAS  Google Scholar 

  82. Nakashima T, Wada T, Penninger JM. RANKL and RANK as novel therapeutic targets, for arthritis. Curr Opin Rheumatol 2003; 15(3):280–287.

    Article  PubMed  CAS  Google Scholar 

  83. Kotake S, Udagawa N, Hakoda M et al. Acuvated human T-cells directly induce osteoclastogenesis from human monocytes: possible role of T-cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum 2001; 44(5):1003–1012.

    Article  PubMed  CAS  Google Scholar 

  84. Takayanagi H, Iizuka H, Juji T et al. Involvement of receptor activator of nuclear factor kappaB ligand/ osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum 2000; 43(2):259–269.

    Article  PubMed  CAS  Google Scholar 

  85. Oliveri MB, Mautalen CA, Rodriguez Fuchs CA et al. Vertebral compression fractures at the onset of acute lymphoblastic leukemia in a child. Henry Ford Hosp Med J 1991; 39(1):45–48.

    PubMed  CAS  Google Scholar 

  86. Stellon AJ, Davies A, Compston J et al. Bone loss in autoimmune chronic active hepatitis on maintenance corticosteroid therapy. Gastroenterology 1985; 89 (5):1078–1083.

    PubMed  CAS  Google Scholar 

  87. Piepkorn B, Kann P, Forst T et al. Bone mineral density and bone metabolism in diabetes mellitus. Horm Metab Res 1997; 29(11):584–591.

    Article  PubMed  CAS  Google Scholar 

  88. Seitz M, Hunstein W. Enhanced prostanoid release from monocytes of patients with rheumatoid arthritis and active systemic lupus erythematosus. Ann Rheum Dis 1985; 44(7):438–445.

    Article  PubMed  CAS  Google Scholar 

  89. Ebeling PR, Erbas B, Hopper JL et al. Bone mineral density and bone turnover in asthmatics treated with long-term inhaled or oral glucocorticoids. J Bone Miner Res 1998; 13(8):1283–1289.

    Article  PubMed  CAS  Google Scholar 

  90. Lipton A. Future treatment of bone metastases. Clin Cancer Res 2006; 13(20 Pt 2:6305s–6308s.

    Article  Google Scholar 

  91. Teng YT, Nguyen H, Gao X et al. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest 2000; 106(6):R59–67.

    PubMed  CAS  Google Scholar 

  92. Mahamed DA, Marleau A, Alnaeeli M et al. G(-) anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes 2005; 54(5):1477–1486.

    Article  PubMed  CAS  Google Scholar 

  93. Brandt J, Haibel H, Cornely D et al. Successful treatment of active ankylosing spondylitis with the antitumor necrosis factor alpha monoclonal antibody infliximab. Arthritis Rheum 2000; 43(96)1346–1352.

    Article  PubMed  CAS  Google Scholar 

  94. Takayanagi H, Ogasawara K, Hida S et al. T-cell-mediated regulation of osteoclatogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000; 408(6812):600–605.

    Article  PubMed  CAS  Google Scholar 

  95. Vermeire K, Heremans H, Vandeputte M et al. Accelerated collagen-induced arthritis in IFN-gamma receptor-deficient mice. J Immunol 1997; 158(11):5507–5513.

    PubMed  CAS  Google Scholar 

  96. Manoury-Schwartz B, Chiocchia G, Bessis N et al. High susceptibility to collagen-induced arthritis in mice lacking IFN-gamma receptors. J Immunol 1997; 158(11):5501–5506.

    PubMed  CAS  Google Scholar 

  97. Horwood NJ, Elliott J, Martin TJ et al. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol 2001; 166(8):4915–4921.

    PubMed  CAS  Google Scholar 

  98. Abu-Amer Y. IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J Clin Invest 2001; 107(11):1375–1385.

    Article  PubMed  CAS  Google Scholar 

  99. Bendixen AC, Shevde NK, Dienger KM et al. IL-4 inhibits osteoclast formation through a direct action on osteoclast precursors via peroxisome proliferator-activated receptor gamma 1. Proc Natl Acad Sci USA 2001; 98(5):2443–2448.

    Article  PubMed  CAS  Google Scholar 

  100. Sato K, Suematsu A, Okamoto K et al. Th17 functions as an osteoclastogenic helper T-cell subset that links T-cell activation and bone destruction. J Exp Med 2006; 203(12):2673–2682.

    Article  PubMed  CAS  Google Scholar 

  101. Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T-cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6(11):1123–1132.

    Article  PubMed  CAS  Google Scholar 

  102. Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T-cells regulates tissue inflammations by producing interleukin 17. Nat Immunol 2005; 6(11):1133–1141.

    Article  PubMed  CAS  Google Scholar 

  103. Dong C. Diversification of T-helper-cell lineages: finding the family root of IL-17 producing cells. Nat Rev Immunol. 2006; 6(4):329–333.

    Article  PubMed  CAS  Google Scholar 

  104. Kotake S, Udagawa N, Takahashi N et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 1999; 103(9):1345–1352.

    Article  PubMed  CAS  Google Scholar 

  105. Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 2006.

    Google Scholar 

  106. McClung MR, Lewiecki EM, Cohen SB et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006; 354(8):821–831.

    Article  PubMed  CAS  Google Scholar 

  107. Body JJ, Facon T, Coleman RE et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006; 12(4):1221–1228.

    Article  PubMed  CAS  Google Scholar 

  108. Lane NE, Iannini M, Atkins C et al. RANKL Inhibition with Decreases Markers of Bone and Cartilage Turnover in Patients with Rheumatoid Arthritis. Arthritis Rheum 2006; 54(9 (Supplement)):S225–226.

    Google Scholar 

  109. Dore R, Hurd E, Palmer W et al. Denosumab Increases Bone Mineral Density in Patients With Rheumatoid Arthritis. Arthritis Rheum. 2006; 54(9 (Supplement)):S240.

    Google Scholar 

  110. Cohen SB, Valen P, Ritchlin C et al. RANKL Inhibition with Denosumab Reduces Progression of Bone Erosions in Patients with Rheumatoid Arthritis: Month 6 MRI Results. Arthritis Rheum 2006; 54(9(Supplement)):S831–832.

    Google Scholar 

  111. Hofbauer LC, Dunstan CR, Spelsberg TC et al. Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2 and cytokines. Biochem Biophys Res Commun 1998; 250(3):776–781.

    Article  PubMed  CAS  Google Scholar 

  112. Hofbauer LC, Khosla S, Dunstan CR et al. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 1999; 140(9):4367–4370.

    Article  PubMed  CAS  Google Scholar 

  113. Brandstrom H, Jonsson KB, Vidal O et al. Tumor necrosis factor-alpha and-beta upregulate the levels of osteoprotegerin mRNA in human osteosarcoma MG-63 cells. Biochem Biophys Res Commun 1998; 248(3):454–457.

    Article  PubMed  CAS  Google Scholar 

  114. Hofbauer LC, Lacey DL, Dunstan CR et al. Interleukin-1 beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999; 25(3):255–259.

    Article  PubMed  CAS  Google Scholar 

  115. Vidal ON, Sjogren K, Eriksson BI et al. Osteoprotegerin mRNA is increased by interleukin-1 alpha in the human osteosarcoma cell line MG-63 and in human osteoblast-like cells. Biochem Biophys Res Commun 1998; 248(3):696–700.

    Article  PubMed  CAS  Google Scholar 

  116. Palmqvist P, Persson E, Conaway HH et al. IL-6, leukemia inhibitory factor and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin and receptor activator of NF-kappa B in mouse calvariae. J Immunol 2002; 169(6):3353–3362.

    PubMed  CAS  Google Scholar 

  117. Takai H, Kanematsu M, Yano K et al. Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem 1998; 273(42):27091–27096.

    Article  PubMed  CAS  Google Scholar 

  118. Rubin J, Ackert-Bicknell CL, Zhu L et al. IGF-I regulates osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand in vitro and OPG in vivo. J Clin Endocrinol Metab 2002; 87(9):4273–4279.

    Article  PubMed  CAS  Google Scholar 

  119. Vidal NO, Brandstrom H, Jonsson KB et al. Osteoprotegerin mRNA is expressed in primary human osteoblast-like cells: down-regulation by glucocorticoids. J Endocrinol 1998; 159(1):191–195.

    Article  PubMed  CAS  Google Scholar 

  120. Hofbauer LC, Gori F, Riggs BL et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 1999; 140(10):4382–4389.

    Article  PubMed  CAS  Google Scholar 

  121. Hofbauer LC, Shui C, Riggs BL et al. Effects of immunosuppressants on receptor activator of NF-kappaB ligand and osteoprotegerin production by human osteoblastic and coronary artery smooth muscle cells. Biochem Biophys Res Commun 2001; 280(1):334–339.

    Article  PubMed  CAS  Google Scholar 

  122. Brandstrom H, Jonsson KB, Ohlsson C et al. Regulation of osteoprotegerin mRNA levels by prostaglandin E2 in human bone marrow stroma cells. Biochem Biophys Res Commun 1998; 247(2):338–341.

    Article  PubMed  CAS  Google Scholar 

  123. Murakami T, Yamamoto M, Ono K et al. Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem Biophys Res Commun 1998; 252(3):747–752.

    Article  PubMed  CAS  Google Scholar 

  124. Takami M, Takahashi N, Udagawa N et al. Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in osteoblasts. Endocrinology 2000; 141(12):4711–4719.

    Article  PubMed  CAS  Google Scholar 

  125. Nagasawa T, Kobayashi H, Kiji M et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp Immunol 2002; 130(2):338–344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Leibbrandt, A., Penninger, J.M. (2009). RANK(L) as a Key Target for Controlling Bone Loss. In: Grewal, I.S. (eds) Therapeutic Targets of the TNF Superfamily. Advances in Experimental Medicine and Biology, vol 647. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89520-8_9

Download citation

Publish with us

Policies and ethics