Skip to main content

Hydrocarbon Fluid Inclusion Fluorescence: A Review

  • Chapter
Book cover Reviews in Fluorescence 2007

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2007))

Abstract

Geological fluid inclusions are small voids that can contain a variety of liquids which are often found in natural minerals and rocks. Typically they are less than 10 micrometres in size that host fossil fluids which existed when the minerals grew or healed after fracture. Of particular interest to the petroleum industry are inclusions that contain hydrocarbon fluids, which originated from petroleum that once migrated through the rocks before becoming trapped. These hydrocarbon-bearing fluid inclusions (HCFI) are useful for learning about the processes, fluid compositions, temperatures and pressure conditions in geologic systems such as the migration of hydrocarbon fluids in petroleum basins. The accurate characterisation of the petroleum fluid entrapped in inclusions presents the analyst with considerable challenges. HCFI samples are very valuable (usually obtained from core drilling) and thus a non-contact, non-destructive, analytical method is required. The small size of HCFI necessitates the use of microscopy based techniques while spectroscopic methods are needed to characterise the chemical composition. Fluorescence based methods offer the best combination of high sensitivity, diagnostic potential, and relatively uncomplicated instrumentation. It is the fluorescence of HCFI and the spectroscopic methods employed for their analysis which is the focus of this review. Specific sections focus on the description of HCFI, petroleum fluorescence, and microscopic techniques. The review and discussion focuses primarily on advances and studies reported in the literature from 1980’s onwards, and outlines some of the issues that need to be addressed to make fluorescence methods more reproducible and quantitative for HCFI analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Basinal brines are responsible for transporting hydrocarbons from deep basins where the hydrocarbons were generated from plant or animal matter.

  2. 2.

    Hydrocarbon gas content generally indicates the maturity of an oil, controlled by the degree to which it has been heated to induce breakdown of large organic molecules to form oil and gas. Immature oils have low gas content (methane is dominant), whereas mature oils have moderate gas content with high ethane and propane concentrations: finally overmature oils have high methane contents.

  3. 3.

    Topped oils are those in which the light fraction is intentionally removed by heating to 60°C (typically) prior to analysis.

  4. 4.

    API gravity = ((141.5/specific gravity at 15.6°C)–131.5).

References

  1. E. Roedder, Fluid inclusions. Mineralogical society of America. Rev. Mineral., 12, 1–644, (1984).

    Google Scholar 

  2. I.A. Munz, Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications. Lithos, 55(1–4), 195–212, (2001).

    Article  CAS  Google Scholar 

  3. S.C. George, H. Volk, and M. Ahmed, Geochemical analysis techniques and geological applications of oil-bearing fluid inclusions, with some Australian case studies. J. Petrol. Sci. Eng., 57(1–2), 119–138, (2007).

    Article  CAS  Google Scholar 

  4. I.A. Munz, K. Iden, H. Johansen, and K. Vagle, The fluid regime during fracturing of the Embla field, Central Trough, North Sea. Mar. Pet. Geol., 15(8), 751–768, (1998).

    Article  CAS  Google Scholar 

  5. O. Walderhaug, Temperatures of quartz cementation in Jurassic sandstones from the Norwegian continental shelf—evidence from fluid inclusions. J. Sediment. Petrol., 64(2), 311–323, (1994).

    Google Scholar 

  6. O. Walderhaug, and P.A. Bjorkum, The effect of stylolite spacing on quartz cementation in the lower Jurassic Stø Formation, southern Barents Sea. J. Sediment. Res., 73(2), 146–156, (2003).

    Article  CAS  Google Scholar 

  7. N.H. Oxtoby, A.W. Mitchell, and J.G. Gluyas, The filling and emptying of the Ula Oilfield: fluid inclusion constraints. In: The Geochemistry of Reservoirs: Special Publication, (Eds. Cubitt, J. M., and England, W. A.), Geological Society, London, 86, 141–157, (1995).

    Google Scholar 

  8. R.C. Burruss, K.R. Cercone, and P.M. Harris, Fluid inclusion petrography and tectonic-burial history of the Al Ali No. 2 well; evidence for the timing of diagenesis and oil migration, northern Oman Foredeep. Geology, 11(10), 567–570, (1983).

    Article  Google Scholar 

  9. J. Jensenius and R.C. Burruss, Hydrocarbon-water interactions during brine migration: Evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oil fields. Geochim. Cosmochim. Acta, 54(3), 705–713, (1990).

    Article  CAS  Google Scholar 

  10. E. Gonzalez-Partida, A. Carrillo-Chavez, J.O.W. Grimmer, J. Pironon, J. Mutterer, and G. Levresse, Fluorite deposits at Encantada-Buenavista, Mexico: products of Mississippi Valley type processes. Ore Geol. Rev., 23(3–4), 107–124, (2003).

    Article  Google Scholar 

  11. M.A. Kendrick, R. Burgess, R.A.D. Pattrick, and G. Turner, Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-Type district: Combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine Ore Field, United Kingdom. Econ. Geol., 97(3), 435–451, (2002).

    Article  CAS  Google Scholar 

  12. A. Dutkiewicz, B. Rasmussen, and R. Buick, Oil preserved in fluid inclusions in Archaean sandstones. Nature, 395, 885–888, (1998).

    Article  CAS  Google Scholar 

  13. G.L. England, B. Rasmussen, B. Krapez, and D.I. Groves, Archaean oil migration in the Witwatersrand Basin of South Africa. J. Geol. Soc., 159(2), 189–201, (2002).

    Article  CAS  Google Scholar 

  14. B. Rasmussen, Evidence for pervasive petroleum generation and migration in 3.2 and 2.63 Ga shales. Geology, 33(6), 497–500, (2005).

    Article  CAS  Google Scholar 

  15. V. Lüders and K. Rickers, Fluid inclusion evidence for impact-related hydrothermal fluid and hydrocarbon migration in Cretaceous sediments of the ICDP-Chicxulub drill core Yax-1. Meteorit. Planet. Sci., 39(7), 1187–1197, (2004).

    Article  Google Scholar 

  16. J. Parnell, G.R. Watt, D. Middleton, J. Kelly, and M. Baron, Deformation band control on hydrocarbon migration. J. Sediment. Res., 74(4), 552–560, (2004).

    Article  Google Scholar 

  17. J.M. Peter, B.R.T. Simoneit, O.E. Kawka, and S.D. Scott, Liquid hydrocarbon-bearing inclusions in modern hydrothermal chimneys and mounds from the southern trough of Guaymas Basin, Gulf of California. Appl. Geochem., 5(1–2), 51–63, (1990).

    Article  Google Scholar 

  18. J.M. Hunt, Petroleum Geochemistry and Geology. W.H. Freeman and Company, San Francisco, (1979).

    Google Scholar 

  19. T.J. Shepherd, A.H. Rankin, and D.H.M. Alderton, A Practical Guide to Fluid Inclusion Studies, Blackie and Son, Glasgow, (1985).

    Google Scholar 

  20. S.C. George, T.E. Ruble, A. Dutkiewicz, and P.J. Eadington, Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Appl. Geochem., 16(4), 451–473, (2001).

    Article  CAS  Google Scholar 

  21. J. Parnell, D. Middleton, C. Honghan, and D. Hall, The use of integrated fluid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d'Arc Basin, offshore Newfoundland. Mar. Pet. Geol., 18(5), 535–549, (2001).

    Article  CAS  Google Scholar 

  22. N. Guilhaumou, N. Szydlowskii, and B. Pradier, Characterization of hydrocarbon fluid inclusions by infra-red and fluorescence microspectroscopy. Mineral. Mag., 54(375), 311–324, (1990).

    Article  CAS  Google Scholar 

  23. J. Pironon and B. Pradier, Ultraviolet-fluorescence alteration of hydrocarbon fluid inclusions. Org. Geochem., 18(4), 501–509, (1992).

    Article  CAS  Google Scholar 

  24. A.G. Ryder, Analysis of crude petroleum oils using fluorescence spectroscopy. In: C.D. Geddes and J.R. Lakowicz, Editors, Reviews in Fluorescence 2005, Springer New York, 169–198, (2005).

    Chapter  Google Scholar 

  25. T.D. Downare and O.C. Mullins, Visible and near-infrared fluorescence of crude oils. Appl. Spectrosc., 49(6), 754–764, (1995).

    Article  CAS  Google Scholar 

  26. C.Y. Ralston, X. Wu, and O.C. Mullins, Quantum yields of crude oils. Appl. Spectrosc., 50(12), 1563–1568, (1996).

    Article  CAS  Google Scholar 

  27. O.C. Mullins and E.Y. Sheu, Structure and Dynamics of Asphaltenes, Plenum Press, New York, 21–77, (1998).

    Google Scholar 

  28. A.G. Ryder, T.J. Glynn, M. Feely, and A.J.G. Barwise, Characterization of crude oils using fluorescence lifetime data. Spectrochim. Acta (A), 58(5), 1025–1038, (2002).

    CAS  Google Scholar 

  29. X. Wang and O.C. Mullins, Fluorescence lifetime studies of crude oils. Appl. Spectrosc., 48(8), 977–984, (1994).

    Article  CAS  Google Scholar 

  30. H.W. Hagemann and A. Hollerbach, The fluorescence behaviour of crude oils with respect to their thermal maturation and degradation. Org. Geochem., 10(1–3), 473–480, (1986).

    Article  CAS  Google Scholar 

  31. L.D. Stasiuk and L.R. Snowdon, Fluorescence micro-spectrometry of synthetic and natural hydrocarbon fluid inclusions: crude oil chemistry, density and application to petroleum migration. Appl. Geochem., 12(3), 229–241, (1997).

    Article  CAS  Google Scholar 

  32. L.D. Stasiuk, T. Gentzis, and P. Rahimi, Application of spectral fluorescence microscopy for the characterization of Athabasca bitumen vacuum bottoms. Fuel, 79(7), 769–775, (2000).

    Article  CAS  Google Scholar 

  33. B. Pradier, C. Largeau, S. Derenne, L. Martinez, P. Bertrand, and Y. Pouet, Chemical basis of fluorescence alteration of crude oils and kerogens–I. Microfluorimetry of an oil and its isolated fractions; relationships with chemical structure. Org. Geochem., 16(1–3), 451–460, (1990).

    Article  CAS  Google Scholar 

  34. K.Y. Liu and P. Eadington, Quantitative fluorescence techniques for detecting residual oils and reconstructing hydrocarbon charge history. Org. Geochem., 36(7), 1023–1036, (2005).

    Article  CAS  Google Scholar 

  35. S. Gong, S.C. George, H. Volk, K. Liu, and P. Peng. Petroleum charge history in the Lunnan low uplift, Tarim basin, China - Evidence from oil-bearing fluid inclusions. Org. Geochem., 38(8), 1341–1355, (2007).

    Article  CAS  Google Scholar 

  36. R.C. Murray, Hydrocarbon fluid inclusions in quartz. Amer. Assoc. Pet. Geol. Bull. 41(5), 950–956, (1957).

    Google Scholar 

  37. R.C. Burruss, D.J. Toth, and R.H. Goldstein, Fluorescence microscopy of hydrocarbon fluid inclusions: relative timing of hydrocarbon migration events in the Arkoma Basin, NW Arkansas. EOS 61, 400, (1980).

    Google Scholar 

  38. R.C. Burruss, Hydrocarbon fluid inclusions in studies of sedimentary diagenesis. Mineral. Assoc. Canada, Short Course Handbook 6, 138–156, (1981).

    CAS  Google Scholar 

  39. R.C. Burruss, Practical aspects of fluorescence microscopy of petroleum fluid inclusions. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. In: Barker, C.E., and Kopp, O.C. (Eds.), SEPM Short Course 25, 1–7, (1991).

    Google Scholar 

  40. A.G. Ryder, M.A. Przyjalgowski, M. Feely, B. Szczupak, and T.J. Glynn, Time-resolved fluorescence microspectroscopy for characterizing crude oils in bulk and hydrocarbon bearing fluid inclusions. Appl. Spectrosc., 58(9), 1106–1115, (2004).

    Article  CAS  PubMed  Google Scholar 

  41. A. Blanchet, M. Pagel, F. Walgenwitz, and A. Lopez, Microspectrofluormetric and microthermometric evidence for variability in hydrocarbon fluid inclusions in quartz overgrowths: implications for inclusion trapping in the Alwyn North field, North Sea. Org. Geochem., 34(11), 1477–1490, (2003).

    Article  CAS  Google Scholar 

  42. W.-L. Huang and G.A. Otten, Cracking kinetics of crude oil and alkanes determined by diamond anvil cell-fluorescence spectroscopy pyrolysis: technique development and preliminary results. Org. Geochem., 32(6), 817–830, (2001).

    Article  CAS  Google Scholar 

  43. R.-F. Weng, W.-L. Huang, C.-L. Kuo, and S. Inan, Characterization of oil generation and expulsion from coals and source rocks using diamond anvil cell pyrolysis. Org. Geochem. 34(6), 771–787, (2003).

    Article  CAS  Google Scholar 

  44. Y.-J. Chang and W.-L. Huang, Simulation of the fluorescence evolution of "live" oils from kerogens in a diamond anvil cell: application to inclusion oils in terms of maturity and source. Geochim. Cosmochim. Acta, 72(15), 3771–3787, (2008).

    Article  CAS  Google Scholar 

  45. J. Kihle and H. Johansen, Low-temperature isothermal trapping of hydrocarbon fluid inclusions in synthetic-crystals of KH2PO4. Geochim. Cosmochim. Acta, 58(3), 1193–1202, (1994).

    Article  CAS  Google Scholar 

  46. S. Teinturier, M. Elie, and J. Pironon, Oil-cracking processes evidence from synthetic petroleum inclusions. J. Geochem. Explor., 78-79, 421–425, (2003).

    Article  CAS  Google Scholar 

  47. A.M. Van den Kerkhof and U.F. Hein, Fluid inclusion petrography. Lithos, 55(1–4), 27–47, (2001).

    Article  Google Scholar 

  48. B. McNeil and E. Morris, The preparation of double-polished fluid inclusion wafers from friable, water-sensitive material. Mineral. Mag., 56(382), 120–122, (1992).

    Article  CAS  Google Scholar 

  49. N.H. Oxtoby, Comments on: assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours. Appl. Geochem., 17(10), 1371–1374, (2002).

    Article  CAS  Google Scholar 

  50. S.C. George, T.E. Ruble, A. Dutkiewicz, and P.J. Eadington, Reply to comment by Oxtoby on “Assessing the maturity of oil trapped in fluid inclusions using molecular geochemistry data and visually-determined fluorescence colours”. Appl. Geochem., 17(10), 1375–1378, (2002).

    Article  CAS  Google Scholar 

  51. P.K. Mukhopadhyay and J. Rullkotter, Quantitative microscopic spectral fluorescence measurement of crude oil, bitumen, kerogen and coal. AAPG Bull., 70(5), 624, (1986).

    Google Scholar 

  52. R.K. McLimans, The application of fluid inclusions to migration of oil and diagenesis of in petroleum reservoirs. Appl. Geochem., 2(5–6), 585–603, (1987).

    Article  CAS  Google Scholar 

  53. R.J. Bodnar, Petroleum migration in the Miocene Monterey Formation, California, USA: constraints from fluid inclusion studies. Mineral. Mag., 54(375), 295–304, (1990).

    Article  CAS  Google Scholar 

  54. J.R. Levine, I.M. Samson, and R. Hesse, Occurrence of fracture-hosted impsonite and petroleum fluid inclusions, Quebec City region, Canada. AAPG Bull., 75(1), 139–155, (1991).

    Google Scholar 

  55. M.R. Moser, A.H. Rankin, and H.J. Milledge, Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll Bitumen Deposit, UK. Geochim. Cosmochim. Acta, 56(1), 155–168, (1992).

    Article  CAS  Google Scholar 

  56. K.D. Newell, R.C. Burruss, and J.G. Palacas, Thermal maturation and organic richness of potential petroleum source rocks in Proterozoic Rice Formation, North American Mid-Continent Rift System, northeastern Kansas. AAPG Bull., 77(11), 1922–1941, (1993).

    CAS  Google Scholar 

  57. J. Pironon, M. Pagel, M.H. Leveque, and M. Moge, Organic inclusions in salt .1. Solid and liquid organic-matter, carbon-dioxide and nitrogen species in fluid inclusions from the Bresse Basin (France). Org. Geochem., 23(5), 391–402, (1995).

    Article  CAS  Google Scholar 

  58. J. Pironon, M. Pagel, F. Walgenwitz, and O. Barres, Organic inclusions in salt .2. Oil, gas and ammonium in inclusions from the Gabon Margin. Org. Geochem., 23(8), 739–750, (1995).

    Article  CAS  Google Scholar 

  59. J. Parnell, P.F. Carey, and B. Monson, Fluid inclusion constraints on temperatures of petroleum migration from authigenic quartz in bitumen veins. Chem. Geol., 129(3–4), 217–226, (1996).

    Article  CAS  Google Scholar 

  60. X.M. Xiao, D.H. Liu, and J.M. Fu, Multiple phases of hydrocarbon generation and migration in the Tazhong petroleum system of the Tarim Basin, People's Republic of China. Org. Geochem., 25(3–4), 191–197, (1996).

    Article  CAS  Google Scholar 

  61. S.C. George, F.W. Krieger, P.J. Eadington, R.A. Quezada, P.F. Greenwood, L.I. Eisenberg, P.J. Hamilton, and M.A. Wilson, Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro Sandstone, Papua New Guinea. Org. Geochem., 26(3–4), 155–173, (1997).

    Article  CAS  Google Scholar 

  62. J. Parnell, P. Carey, and W. Duncan, History of hydrocarbon charge on the Atlantic margin: evidence from fluid-inclusion studies, West of Shetland. Geology, 26(9), 807–810, (1998).

    Article  CAS  Google Scholar 

  63. S.C. George, M. Lisk, R.E. Summons, and R.A. Quezada, Constraining the oil charge history of the South Pepper oilfield from the analysis of oil-bearing fluid inclusions. Org. Geochem., 29(1–3), 631–648, (1998).

    Article  CAS  Google Scholar 

  64. C. O’Reilly, P.M. Shannon, and M. Feely, A fluid inclusion study of cement and vein minerals from the Celtic Sea Basins, offshore Ireland. Mar. Pet. Geol., 15(6), 519–533, (1998).

    Article  Google Scholar 

  65. H.-Y. Tseng, R.C. Burruss, T.C. Onstott, and G. Omar, Paleofluid-flow circulation within a Triassic rift basin: Evidence from oil inclusions and thermal histories. Geo. Soc. Am. Bull., 111(2), 275–290, (1999).

    Article  CAS  Google Scholar 

  66. D. Smale, J.L. Mauk, J. Palmer, R. Soong, and P. Blattner, Variations in sandstone diagenesis with depth, time, and space, onshore Taranaki wells, New Zealand. New Zeal. J. Geol. Geop., 42, 137–154, (1999).

    Article  CAS  Google Scholar 

  67. G. Rantitsch, J. Jochum, R.F. Sachsenhofer, B. Russegger, E. Schroll, and B. Horsfield, Hydrocarbon-bearing fluid inclusions in the Drau Range (Eastern Alps, Austria): implications for the genesis of Bleiberg-type Pb-Zn deposits. Mineral. Petrol., 65(3–4), 141–159, (1999).

    Article  CAS  Google Scholar 

  68. J. Parnell, P.F. Carey, P. Green, and W. Duncan, Hydrocarbon migration history, west of Shetland; integrated fluid inclusion and fission track studies. Petroleum Geology of Northwest Europe: Proc. Geol. Soc. London Conf., 5, 613–625, (1999).

    Google Scholar 

  69. N.N. Cesaretti, J. Parnell, and E.A. Dominguez, Pore fluid evolution within a hydrocarbon reservoir: Yacoraite formation (upper Cretaceous), northwest basin, Argentina. J. Pet. Geol., 23(4), 375–398, (2000).

    Article  CAS  Google Scholar 

  70. J. Lonnee and I.S. Al-Aasm, Dolomitization and fluid evolution in the Middle Devonian Sulphur Point Formation, Rainbow South Field, Alberta: petrographic and geochemical evidence. Bull. Can. Pet. Geol., 48(3), 262–283, (2000).

    Article  Google Scholar 

  71. A.M.E. Marchand, R.S. Haszeldine, C.I. Macaulay, R. Swennen, and A.E. Fallick, Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone, UK North Sea. Clay Miner., 35(1), 201–210, (2000).

    Article  CAS  Google Scholar 

  72. R. Thiéry, J. Pironon, F. Walgenwitz, and F. Montel, PIT (Petroleum Inclusion Thermodynamic): a new modeling tool for the characterization of hydrocarbon fluid inclusions from volumetric and microthermometric measurements. J. Geochem. Explor., 69, 701–704, (2000).

    Article  Google Scholar 

  73. J. Parnell, C. Honghan, D. Middleton, T. Haggan, and P. Carey, Significance of fibrous mineral veins in hydrocarbon migration: fluid inclusion studies. J. Geochem. Explor., 69, 623–627, (2000).

    Article  Google Scholar 

  74. D. Middleton, J. Parnell, P. Carey, and G. Xu, Reconstruction of fluid migration history in Northwest Ireland using fluid inclusion studies. J. Geochem. Explor., 69, 673–677, (2000).

    Article  Google Scholar 

  75. D. Lavoie, G. Chi, and M.G. Fowler, The Lower Devonian Upper Gaspé Limestones in eastern Gaspé: carbonate diagenesis and reservoir potential. Bull. Can. Pet. Geol., 49(2), 346–365, (2001).

    Article  Google Scholar 

  76. A. Ceriani, A. Di Giulio, R.H. Goldstein, and C. Rossi, Diagenesis associated with cooling during burial: an example from Lower Cretaceous Reservoir Sandstones (Sirt Basin, Libya). AAPG Bull., 86(9), 1573–1591, (2002).

    CAS  Google Scholar 

  77. C. Rossi, R.H. Goldstein, A. Ceriani, and R. Marfil, Fluid inclusions record thermal and fluid evolution in reservoir sandstones, Khatatba Formation, Western Desert, Egypt: A case for fluid injection. AAPG Bull., 86(10), 1773–1799, (2002).

    CAS  Google Scholar 

  78. M. Lisk, G.W. O'Brien, and P.J. Eadington, Quantitative evaluation of the Oil-Leg potential in the Oliver Gas Field, Timor Sea, Australia. AAPG Bull., 86(9), 1531–1542, (2002).

    CAS  Google Scholar 

  79. J.L. Mauk and R.C. Burruss, Water washing of Proterozoic oil in the Midcontinent rift system. AAPG Bull., 86(6), 1113–1127, (2002).

    Google Scholar 

  80. H. Volk, B. Horsfield, U. Mann, and V. Suchy, Variability of petroleum inclusions in vein, fossil and vug cements – a geochemical study in the Barrandian Basin (Lower Palaeozoic, Czech Republic). Org. Geochem., 33(12), 1319–1341, (2002).

    Article  CAS  Google Scholar 

  81. H.-Y. Tseng and R.J. Pottorf, Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn-South Brent petroleum system, northern North Sea. Mar. Pet. Geol., 19(7), 797–809, (2002).

    Article  CAS  Google Scholar 

  82. A. Dutkiewicz, J. Ridley, and R. Buick, Oil-bearing CO2-CH4-H2O fluid inclusions; oil survival since the Palaeoproterozoic after high temperature entrapment. Chem. Geol., 194 (1–3), 51–79, (2003).

    Article  CAS  Google Scholar 

  83. A. Dutkiewicz and J. Ridley, Hydrocarbon pseudo-inclusions in barite: how to recognize and avoid artifacts. J. Sediment. Res., 73(2), 171–176, (2003).

    Article  CAS  Google Scholar 

  84. A. Dutkiewicz, H. Volk, J. Ridley, and S.C. George, Biomarkers, brines, and oil in the Mesoproterozoic, Roper Superbasin, Australia. Geology, 31(11), 981–984, (2003).

    Article  CAS  Google Scholar 

  85. M. Feely and J. Parnell, Fluid inclusion studies of well samples from the hydrocarbon prospective Porcupine Basin, offshore Ireland. J. Geochem. Explor., 78-79, 55–59, (2003).

    Article  CAS  Google Scholar 

  86. J.R. Boles, P. Eichhubl, G. Garven, and J. Chen, Evolution of a hydrocarbon migration pathway along basin-bounding faults: Evidence from fault cement. AAPG Bull., 88(7), 947–970, (2004).

    Article  CAS  Google Scholar 

  87. R. Martinez-Ibarra, J. Tritlla, E. Cedillo-Pardo, J.M. Grajales-Nishimura, and G. Murillo-Muneton, Brine and hydrocarbon evolution during the filling of the Cantarell oil field (Gulf of Mexico). J. Geochem. Explor., 78-79, 399–403, (2003).

    Article  CAS  Google Scholar 

  88. A. Dutkiewicz, H. Volk, J. Ridley, and S.C. George, Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion: implications for the source of hydrocarbons in crystalline rocks. Org. Geochem., 35(8), 937–957, (2004).

    Article  CAS  Google Scholar 

  89. R. Jonk, J. Parnell, and A. Whitham, Fluid inclusion evidence for a Cretaceous-Palaeogene petroleum system, Kangerlussuaq Basin, East Greenland. Mar. Pet. Geol., 22(3), 319–330, (2005).

    Article  CAS  Google Scholar 

  90. H. Volk, S.C. George, A. Dutkiewicz, and J. Ridley, Characterization of fluid inclusion oil in a mid-Proterozoic sandstone and dolerite (Roper Superbasin, Australia). Chem. Geol., 223(1–3), 109–135, (2005).

    Article  CAS  Google Scholar 

  91. A. Dutkiewicz, H. Volk, S.C. George, J. Ridley, and R. Buick, Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology, 34(6), 437–440, (2006).

    Article  CAS  Google Scholar 

  92. C.L. Hanks, T.M. Parris, and W.K. Wallace, Fracture paragenesis and microthermometry in Lisburne Group detachment folds: implications for the thermal and structural evolution of the northeastern Brooks Range, Alaska. AAPG Bull., 90(1), 1–20, (2006).

    Article  CAS  Google Scholar 

  93. M. Brincat, A. Gartrell, M. Lisk, W. Bailey, L. Johnson, and D. Dewhurst, An integrated evaluation of hydrocarbon charge and retention at the Griffin, Chinook, and Scindian oil and gas fields, Barrow Subbasin, North West Shelf, Australia. AAPG Bull., 90(9), 1359–1380, (2006).

    Article  CAS  Google Scholar 

  94. C.M. Rott and H. Qing, Analysis of Mississippian anhydrite by fluorescence microscopy – implications for the origin of oil-bearing anhydrite. In Summary of Investigations 2006, Volume 1, Saskatchewan Geological Survey, Sask, Report 2006–4.1, 1–11, (2006).

    Google Scholar 

  95. R. Wierzbicki, J.J. Dravis, I. Al-Aasm, and N. Harland, Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada. AAPG Bull., 90(11), 1843–1861, (2006).

    Article  CAS  Google Scholar 

  96. M. Wilkinson, R.S. Haszeldine, and A.E. Fallick, Hydrocarbon filling and leakage history of a deep geopressured sandstone, Fulmar Formation, United Kingdom North Sea. AAPG Bull., 90(12), 1945–1961, (2006).

    Article  CAS  Google Scholar 

  97. M. Baron and J. Parnell, Relationships between stylolites and cementation in sandstone reservoirs: examples from the North Sea, U.K. and East Greenland. Sed. Geol., 194(1–2), 17–35, (2007).

    Article  CAS  Google Scholar 

  98. A. Dutkiewicz, S.C. George, D.J. Mossman, J. Ridley, and H. Volk, Oil and its biomarkers associated with the Palaeoproterozoic Oklo, natural fission reactors, Gabon. Chem. Geol., 244(1–2), 130–154, (2007).

    Article  CAS  Google Scholar 

  99. K.E. Higgs, H. Zwingmann, A.G. Reyes, and R.H. Funnell, Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand. J. Sediment. Res., 77(11–12), 1003–1025, (2007).

    Article  CAS  Google Scholar 

  100. F. Schubert, L.W. Diamond, and T.M. Toth, Fluid inclusion evidence for petroleum migration through a buried metamorphic dome in the Pannonian Basin, Hungary. Chem. Geol., 244(3–4), 357–381, (2007).

    Article  CAS  Google Scholar 

  101. M. Baron, J. Parnell, D. Mark, A. Carr, M. Przyjalgowski, and M. Feely, Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, Clair Field, west of Shetland, UK. Mar. Pet. Geol., 25(2), 153–172, (2008).

    Article  Google Scholar 

  102. J. Bourdet, J. Pironon, G. Levresse, and J. Tritlla, Petroleum type determination through homogenization temperature and vapour volume fraction measurements in fluid inclusions. Geofluids 8(1), 46–59, (2008).

    Article  CAS  Google Scholar 

  103. R.K. McLimans, Studies of reservoir diagenesis, burial history, and petroleum migration using luminescence microscopy. In Barker, C.E., Kopp, O. (Eds.), Luminescence Microscopy: Qualitative and Quantitative Applications, (SEPM) Short Course 25, 97–106, Society for Sedimentary Geology, Tulsa, USA, (1991).

    Google Scholar 

  104. R.C. Burruss, K.R. Cercone, and P.M. Harris, Timing of hydrocarbon migration: evidence from fluid inclusions in calcite cements, tectonics and burial history. In: N. Schneidermann, and P.M. Harris (eds.), Carbonate Cements, Special Publication – Society of Economic Paleontologists and Mineralogists, 36, 277–289, (1985).

    Google Scholar 

  105. N.J.F. Blamey, A.G. Ryder, M. Feely, and P. Owens, Fluorescence lifetime analysis of single hydrocarbon-bearing fluid inclusions – A paragenetic perspective. 23rd IMOG, Torquay, UK, 669–670, (2007).

    Google Scholar 

  106. S.C. George, M. Ahmed, K. Liu, and H. Volk, The analysis of oil trapped during secondary migration. Org. Geochem., 35 (11–12), 1489–1511, (2004).

    Google Scholar 

  107. J. Conliffe, M. Feely, J. Parnell, N.J.F. Blamey, and A.G. Ryder, Unpublished work.

    Google Scholar 

  108. J.B. Pawley (Ed.). Handbook of Biological Confocal Microscopy, 2nd ed. Plenum Press, New York, (1995).

    Google Scholar 

  109. G. Macleod, S.R. Larter, A.C. Aplin, K.S. Pedersen, and T.A. Booth. Determination of the effective composition of single petroleum inclusions using Confocal Scanning Laser Microscopy and PVT simulation. In P.E. Brown, S.G. Hagemann (Eds.), Biennial Pan-American Conference on Research on Fluid Inclusions (PACROFI VI) Madison Wisconsin, USA, 81–82, (1996).

    Google Scholar 

  110. J. Pironon, M. Canals, M. Dubessy, F. Walgenwitz, and C. Laplace-Builhe, Volumetric reconstruction of individual oil inclusions by confocal scanning laser microscopy. Eur. J. Mineral., 10(6), 1143–1150, (1998).

    CAS  Google Scholar 

  111. A.C. Aplin, G. Macleod, S.R. Larter, K.S. Pedersen, H. Sørensen, and T. Booth, Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions. Mar. Pet. Geol., 16(2), 97–110, (1999).

    Article  CAS  Google Scholar 

  112. R. Thiéry, J. Pironon, F. Walgenwitz, and F. Montel, Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils. Mar. Pet. Geol., 19(7), 847 -859, (2002).

    Article  Google Scholar 

  113. J. Kihle, Adaptation of fluorescence excitation-emission micro-spectroscopy for characterization of single hydrocarbon fluid inclusions. Org. Geochem., 23(11–12), 1029–1042, (1995).

    Article  CAS  Google Scholar 

  114. J.A. Musgrave, R.G. Carey, D.R. Janecky, and C.D. Tait, Adaption of Synchronously Scanned Luminescence Spectroscopy to organic-rich fluid inclusion microanalysis. Rev. Sci. Instrum., 65(6), 1877–1882, (1994).

    Article  CAS  Google Scholar 

  115. A.C. Aplin, S.R. Larter, M.A. Bigge, G. Macleod, R.E. Swarbrick, and D. Grunberger. Confocal microscopy of fluid inclusions reveals fluid-pressure histories of sediments and an unexpected origin of gas condensate. Geology, 28(11), 1047–1050, (2000).

    Article  Google Scholar 

  116. R.E. Swarbrick, M.J. Osborne, D. Grunberger, G.S. Yardley, G. Macleod, A.C. Aplin, S.R. Larter, I. Knight, and H.A. Auld, Integrated study of the Judy Field (Block 30/7a) — an overpressured Central North Sea oil/gas field. Mar. Pet. Geol., 17(9), 993–1010, (2000).

    Article  CAS  Google Scholar 

  117. R. Thiéry, J. Pironon, F. Walgenwitz, and F. Montel, Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy: inferences from applied thermodynamics of oils. Mar. Pet. Geol., 19(7), 847–859, (2002).

    Article  Google Scholar 

  118. P. Stoller, Y. Krüger, J. Rička, and M. Frenz, Femtosecond lasers in fluid inclusion analysis: Three-dimensional imaging and determination of inclusion volume in quartz using second harmonic generation microscopy. Earth Planet. Sci. Lett., 253(3–4), 359–368, (2007).

    Article  CAS  Google Scholar 

  119. N.J.F. Blamey, A.G. Ryder, M. Feely, P. Dockery, and P. Owens, The application of structured-light illumination to hydrocarbon-bearing fluid inclusions. Geofluids, 8(2), 102–112, (2008).

    Article  CAS  Google Scholar 

  120. M.A.A. Neil, R. Juškaitis, and T. Wilson, Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 22(24), 1905–1907, (1997).

    Article  CAS  PubMed  Google Scholar 

  121. A.G. Ryder, Quantitative analysis of crude oils by fluorescence lifetime and steady state measurements using 380-nm excitation. Appl. Spectrosc., 56(1), 107–116, (2002).

    Article  CAS  Google Scholar 

  122. E.S. Wachman, W.-H. Niu, and D.L. Farkas, AOTF Microscope for imaging with increased speed and spectral versatility. Biophys. J., 73(3), 1215–1222, (1997).

    Article  CAS  PubMed  Google Scholar 

  123. A. Feofanov, S. Sharonov, P. Valisa, E. Dasilva, I. Nabiev, and M. Manfait, A new confocal stigmatic spectrometer for micro-Raman and microfluorescence spectral imaging analysis – design and applications. Rev. Sci. Instrum., 66(5), 3146–3158, (1995).

    Article  CAS  Google Scholar 

  124. E.A.J. Burke, Raman microspectrometry of fluid inclusions. Lithos, 55, 139–158, (2001).

    Article  CAS  Google Scholar 

  125. J. Jochum, G. Friedrich, D. Leythaeuser, R. Littke, and B. Ropertz, Hydrocarbon-bearing fluid inclusions in calcite-filled horizontal fractures from mature Posidonia Shale (Hils Syncline, NW Germany). Ore Geol. Rev., 9(5), 363–370, (1995).

    Article  Google Scholar 

  126. G. Chi, D. Lavoie, and R. Bertrand, Regional-scale variation of characteristics of hydrocarbon fluid inclusions and thermal conditions along the Paleozoic Laurentian continental margin in eastern Quebec, Canada. Bull. Can. Petrol. Geol., 48(3), 193–211, (2000).

    Article  Google Scholar 

  127. D. Kirkwood, M.M. Savard, and G. Chi, Microstructural analysis and geochemical vein characterization of the Salinic event and Acadian Orogeny: evaluation of the hydrocarbon reservoir potential in eastern Gaspé. Bull. Can. Petrol. Geol., 49(2), 262–281, (2001).

    Article  Google Scholar 

  128. D.W. Morrow, M. Zhao, and L.D. Stasiuk, The gas-bearing Devonian Presqu'ile Dolomite of the Cordova embayment region of British Columbia, Canada: Dolomitization and the stratigraphic template. AAPG Bull., 86(9), 1609–1638, (2002).

    CAS  Google Scholar 

  129. R. Li and J. Parnell, In situ microanalysis of petroleum fluid inclusions by Time of Flight-Secondary Ion Mass Spectrometry as an indicator of evolving oil chemistry: a pilot study in the Bohai Basin, China. J. Geochem. Explor., 78-9, 377–384, (2003).

    Article  CAS  Google Scholar 

  130. D.H.M. Alderton, N.H. Oxtoby, H. Brice, N. Grassineau, and R.E. Bevins, The link between fluids and rank variation in the South Wales Coalfield: evidence from fluid inclusions and stable isotopes. Geofluids, 4(3), 221–236, (2004).

    Article  Google Scholar 

  131. I.A. Munz, M. Wangen, J-P. Girard, J-C. Lacharpagne, and H. Johansen, Pressure-temperature-time-composition (P-T-t-X) constraints of multiple petroleum charges in the Hild field, Norwegian North Sea. Mar. Pet. Geol., 21(8), 1043–1060, (2004).

    Article  CAS  Google Scholar 

  132. D. Lavoie, G. Chi, P. Brennan-Alpert, A. Desrochers, and R. Bertrand, Hydrothermal dolomitization in the Lower Ordovician Romaine Formation of the Anticosti Basin: significance for hydrocarbon exploration. Bull. Can. Pet. Geol., 53(4), 454–471, (2005).

    Article  Google Scholar 

  133. M. Li, L. Stasiuk, R. Maxwell, F. Monnier, and O. Bazhenova, Geochemical and petrological evidence for Tertiary terrestrial and Cretaceous marine potential petroleum source rocks in the western Kamchatka coastal margin, Russia. Org. Geochem., 37(3), 304–320, (2006).

    Article  CAS  Google Scholar 

  134. R. Baranger, L.Martinez, J.-L. Pittion, and J. Pouleau, A new calibration procedure for fluorescence measurements of sedimentary organic matter. Org. Geochem. 17(4), 467–475, (1991).

    Article  CAS  Google Scholar 

  135. U. Resch-Genger, K. Hoffmann, and A. Hoffmann, Standardization of fluorescence measurements – criteria for the choice of suitable standards and approaches to fit-for-purpose calibration tools. Ann. NY Acad. Sci., 1130, 35–43, (2008)

    Article  CAS  PubMed  Google Scholar 

  136. O. Barres, A. Burneau, J. Dubessy, and M. Pagel, Application of micro-FT-IR spectroscopy to individual hydrocarbon fluid inclusion analysis. Appl. Spectrosc., 41(6), 1000–1008, (1987).

    Article  CAS  Google Scholar 

  137. N. Guilhaumou, J.C. Touray, V. Perthuisot, and F. Roure, Palaeocirculation in the basin of southeastern France sub-alpine range: a synthesis from fluid inclusions studies. Mar. Pet. Geol., 13(6), 695–706, (1996).

    Article  CAS  Google Scholar 

  138. N. Guilhaumou, N. Ellouz, T.M. Jaswal, and P. Mougin. Genesis and evolution of hydrocarbons entrapped in the fluorite deposit of Koh-i-Maran, (North Kirthar Range, Pakistan). Mar. Pet. Geol., 17(10), 1151–1164, (2000).

    Article  CAS  Google Scholar 

  139. Commission Internationale de l’E´ clairage, Colorimetry. Publication No. 15. Commission Internationale de l’E´ clairage, Paris, (1971).

    Google Scholar 

  140. Commission Internationale de l‘E´ clairage, Standard on Colorimetric Observers. CIE S002. Commission Internationale de l’E´ clairage, Vienna, (1986).

    Google Scholar 

  141. S. Mazères, Mise en oeuvre d'un microspectrofluorimètre pour l'étude de mircroéchantillons en fluorescence stationnaire et résolue dans le temps. In: Biophysique, Université Paul Sabatier, Toulouse, pp. 200, (1997).

    Google Scholar 

  142. A. G. Ryder and P. Owens, manuscript in preparation.

    Google Scholar 

  143. A.G. Ryder, Assessing the maturity of crude petroleum oils using Total Synchronous Fluorescence Scan Spectra. J. Fluoresc., 14(1), 99–104, (2004).

    Article  CAS  Google Scholar 

  144. O. Abbas, C. Rébufa, N. Dupuy, A. Permanyer, J. Kister, and D.A. Azevedo, Application of chemometric methods to synchronous UV fluorescence spectra of petroleum oils. Fuel, 85(17–18), 2653–2661, (2006).

    Article  CAS  Google Scholar 

  145. G. Ellingsen and S. Fery-Forgues, Application of fluorescence spectroscopy to the study of petroleum: challenging complexity. Revue De L Institut Francais Du Petrole, 53(2), 201–216, (1998).

    CAS  Google Scholar 

  146. J.R. Lakowicz, Principles of Fluorescence Spectroscopy. 3rd edition, Springer, New York, (2006).

    Google Scholar 

  147. A.G. Ryder, Time-resolved fluorescence spectroscopic study of crude petroleum oils: influence of chemical composition. Appl. Spectrosc., 58(5), 613–623, (2004).

    Article  CAS  PubMed  Google Scholar 

  148. A.G. Ryder, T.J. Glynn, and M. Feely. Influence of chemical composition on the fluorescence lifetimes of crude petroleum oils. Proc SPIE – Int. Soc. Opt. Eng., 4876, 1188–1195, (2003).

    Google Scholar 

  149. K. Dowling, M.J. Dayel, S.C.W. Hyde, P.M.W. French, M.J. Lever, J.D. Hares, and A.K.L. Dymoke-Bradshaw. High resolution time-domain fluorescence lifetime imaging for biomedical applications. J. Mod. Opt., 46(2), 199–209, (1999).

    CAS  Google Scholar 

  150. M.F. Quinn, A.S. Al-Otaibi, A. Abdullah, P.S. Sethi, F. Al-Bahrani, and O. Alameddine, Determination of intrinsic fluorescence lifetime parameters of crude oils using a laser fluorosensor with a streak camera detection system. Instrum. Sci. Tech. 23(3), 201–215, (1995).

    Article  CAS  Google Scholar 

  151. A.G. Ryder, T.J. Glynn, M. Przyjalgowski, and B. Szczupak. A compact violet diode laser based fluorescence lifetime microscope. J. Fluoresc., 12(2), 177–180, (2002).

    Article  CAS  Google Scholar 

  152. P. Owens, A.G. Ryder, and N.J.F. Blamey. Frequency domain fluorescence lifetime study of crude petroleum oils. J. Fluoresc., 18 (5), 997–1006, (2008).

    Google Scholar 

  153. T.W.J. Gadella, T.M. Jovin, and R.M. Clegg, Fluorescence lifetime imaging microscopy (FLIM) – spatial-resolution of microstructures on the nanosecond time-scale. Biophys. Chem., 48(2), 221–239, (1993).

    Article  CAS  Google Scholar 

  154. E.B. van Munster, J. Goedhart, G.J. Kremers, E.M.M. Manders, and T.W.J. Gadella Jr., Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy. Cytometry Part A, 71A(4), 207–214, (2007).

    Article  Google Scholar 

  155. K. Nithipatikom and L.B. McGown, Factors affecting calibration for phase-modulation fluorescence lifetime determinations. Appl. Spectrosc. 40(4), 549–553, (1986).

    Article  CAS  Google Scholar 

  156. N.J.F. Blamey, J.F. Conliffe, J. Parnell, A.G. Ryder, and M. Feely, unpublished results.

    Google Scholar 

  157. N.J.F. Blamey, A.G. Ryder, P. Owens, and M. Feely, unpublished results.

    Google Scholar 

  158. M.A. Przyjalgowski, A.G. Ryder, M. Feely, and T.J. Glynn, Analysis of hydrocarbon-bearing fluid inclusions (HCFI) using time-resolved fluorescence spectroscopy. Proc. SPIE-Int. Soc. Opt. Eng., 5826, 173–184, (2005).

    CAS  Google Scholar 

  159. M.A. Przyjalgowski, Time-resolved fluorescence spectroscopic analysis of petroleum oils and hydrocarbon bearing fluid inclusions (HCFI), Ph.D. Thesis, National University of Ireland, Galway, Galway, Ireland (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blamey, N.J., Ryder, A.G. (2009). Hydrocarbon Fluid Inclusion Fluorescence: A Review . In: Reviews in Fluorescence 2007. Reviews in Fluorescence, vol 2007. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88722-7_13

Download citation

Publish with us

Policies and ethics