Skip to main content

Pulmonary Hypertension Secondary to Congenital Systemic-to-Pulmonary (Left-to-Right) Shunts

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease
  • 228 Accesses

Abstract

Pulmonary arterial hypertension associated with congenital left-to-right shunts remains a matter of concern not only in underserved areas, but also in developed countries, in both un-operated on and operated on patients. The risk of developing advanced pulmonary vascular disease generally but not invariably depends on the size and location of the defect. Patients with restrictive ventricular septal defects (VSDs) are unlikely to acquire pulmonary arterial hypertension (the prevalence is only 3%). On the other hand, the likelihood of severe pulmonary hypertension and development of Eisenmenger syndrome is considerable in patients with nonrestrictive defects (greater than 1.5 cm in diameter); in this case, 50% will be affected. This is in contrast with subjects with ASDs, for whom the risk of acquiring pulmonary hypertension is not higher than 10% with a late onset (90% during the adulthood). However, pulmonary artery pressure and vascular resistance tend to be more frequently elevated in patients with sinus venosus defects than in those with secundum defects. Despite the general concept that pulmonary hypertension is not a matter of concern if patients undergo repair of the cardiac shunts during the first year of life, certain anomalies are known to be associated with early elevation of pulmonary vascular resistance. There is general agreement that this is the case for truncus arteriosus, atrioventricular septal defects, and transposition of the great arteries with VSD. For unknown reasons, some patients with simple defects such as VSD or patent ductus arteriosus have no history of pulmonary congestion or failure to thrive during the first months of life, suggesting early-onset pulmonary arterial hypertension. These patients cannot be safely assigned for repair of the defects on the basis of noninvasive evaluation only. Rather, complete evaluation including direct measurement of pulmonary vascular resistance is necessary to make a decision about the therapeutic strategies. This chapter explores how the appropriate recognition of a state of increased pulmonary blood flow or a state of increased pulmonary vascular resistance allows for decisions to be made between the therapeutic options that are applicable to patients with left-to-right shunts associated with pulmonary hypertension (correction of the defect, pulmonary artery banding, medical treatment, or combinations). Although there is not much evidence to support such decisions, expertise that has been accumulated in tertiary reference centers with high standards of medical assistance allows for proper selection of the therapeutic strategies. The issue of adults with ASD is particularly focused on. The pathogenic mechanisms of pulmonary vascular disease in left-to-right shunts and the correlations of pathological features with the outcomes are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman WF (1986) Proceedings of National Heart, Lung, and Blood Institute pediatric cardiology workshop: pulmonary hypertension. Pediatr Res 20:811–24

    PubMed  CAS  Google Scholar 

  2. Kidd L, Driscoll DJ, Gersony WM et al (1993) Second natural history study of congenital heart defects. Results of treatment of patients with ventricular septal defects. Circulation 87:I38–51

    Google Scholar 

  3. Engelfriet PM, Duffels MG, Möller T et al (2007) Pulmonary arterial hypertension in adults born with a heart septal defect: the Euro Heart Survey on adult congenital heart disease. Heart 93:682–7

    Article  PubMed  Google Scholar 

  4. Saha A, Balakrishnan KG, Jaiswal PK et al (1994) Prognosis for patients with Eisenmenger syndrome of various aetiology. Int J Cardiol 45:199–207

    Article  PubMed  CAS  Google Scholar 

  5. Vongpatanasin W, Brickner ME, Hillis LD et al (1998) The Eisenmenger syndrome in adults. Ann Intern Med 128:745–55

    PubMed  CAS  Google Scholar 

  6. Steele PM, Fuster V, Cohen M et al (1987) Isolated atrial septal defect with pulmonary vascular obstructive disease–long-term ­follow-up and prediction of outcome after surgical correction. Circulation 76:1037–42

    PubMed  CAS  Google Scholar 

  7. Vogel M, Berger F, Kramer A et al (1999) Incidence of secondary pulmonary hypertension in adults with atrial septal or sinus venosus defects. Heart 82:30–3

    PubMed  CAS  Google Scholar 

  8. Li YS, Shyy JY, Li S et al (1996) The Ras-JNK pathway is involved in shear-induced gene expression. Mol Cell Biol 16:5947–54

    PubMed  CAS  Google Scholar 

  9. Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. J Biomech 36:631–43

    Article  PubMed  Google Scholar 

  10. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–71

    Article  PubMed  Google Scholar 

  11. Rabinovitch M, Bothwell T, Hayakawa BN et al (1986) Pulmonary artery endothelial abnormalities in patients with congenital heart defects and pulmonary hypertension. A correlation of light with scanning electron microscopy and transmission electron microscopy. Lab Invest 55:632–53

    PubMed  CAS  Google Scholar 

  12. Chien S, Li S, Shyy YJ (1998) Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–9

    PubMed  CAS  Google Scholar 

  13. Kuebler WM, Uhlig U, Goldmann T et al (2003) Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am J Respir Crit Care Med 168:1391–8

    Article  PubMed  Google Scholar 

  14. Black SM, Fineman JR, Steinhorn RH et al (1998) Increased endothelial NOS in lambs with increased pulmonary blood flow and pulmonary hypertension. Am J Physiol 275:H1643–H51

    PubMed  CAS  Google Scholar 

  15. Berger RM, Geiger R, Hess J et al (2001) Altered arterial expression patterns of inducible and endothelial nitric oxide synthase in pulmonary plexogenic arteriopathy caused by congenital heart disease. Am J Respir Crit Care Med 163:1493–9

    PubMed  CAS  Google Scholar 

  16. Steinhorn RH, Russell JA, Lakshminrusimha S et al (2001) Altered endothelium-dependent relaxations in lambs with high pulmonary blood flow and pulmonary hypertension. Am J Physiol Heart Circ Physiol 280:H311–H7

    PubMed  CAS  Google Scholar 

  17. Rabinovitch M (1998) Elastase and the pathobiology of unexplained pulmonary hypertension. Chest 114:213S–24S

    Article  PubMed  CAS  Google Scholar 

  18. Jones PL, Cowan KN, Rabinovitch M (1997) Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease. Am J Pathol 150:1349–60

    PubMed  CAS  Google Scholar 

  19. Boudreau N, Turley E, Rabinovitch M (1991) Fibronectin, hyaluronan, and a hyaluronan binding protein contribute to increased ductus arteriosus smooth muscle cell migration. Dev Biol 143:235–47

    Article  PubMed  CAS  Google Scholar 

  20. Yoshibayashi M, Nishioka K, Nakao K et al (1991) Plasma endothelin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for increased production of endothelin in pulmonary circulation. Circulation 84:2280–5

    PubMed  CAS  Google Scholar 

  21. Black SM, Bekker JM, Johengen MJ et al (2000) Altered regulation of the ET-1 cascade in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 47:97–106

    Article  PubMed  CAS  Google Scholar 

  22. Lutz J, Gorenflo M, Habighorst M et al (1999) Endothelin-1- and endothelin-receptors in lung biopsies of patients with pulmonary hypertension due to congenital heart disease. Clin Chem Lab Med 37:423–8

    Article  PubMed  CAS  Google Scholar 

  23. Vincent JA, Ross RD, Kassab J et al (1993) Relation of elevated plasma endothelin in congenital heart disease to increased pulmonary blood flow. Am J Cardiol 71:1204–7

    Article  PubMed  CAS  Google Scholar 

  24. Ishikawa S, Miyauchi T, Ueno H et al (1995) Influence of pulmonary blood pressure and flow on endothelin-1 production in humans. J Cardiovasc Pharmacol 26:S429–S33

    PubMed  CAS  Google Scholar 

  25. Limsuwan A, Platoshyn O, Yu Y et al (2001) Inhibition of K+ channel activity in human pulmonary artery smooth muscle cells by serum from patients with pulmonary hypertension secondary to congenital heart disease. Pediatr Res 50:23–8

    Article  PubMed  CAS  Google Scholar 

  26. Geiger R, Berger RM, Hess J et al (2000) Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease. J Pathol 191:202–7

    Article  PubMed  CAS  Google Scholar 

  27. De Caestecker M, Meyrick B (2001) Bone morphogenetic proteins, genetics and the pathophysiology of primary pulmonary hypertension. Respir Res 2:193–7

    Article  PubMed  Google Scholar 

  28. Thomson JR, Machado RD, Pauciulo MW et al (2000) Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-β family. J Med Genet 37:741–5

    Article  PubMed  CAS  Google Scholar 

  29. Roberts KE, McElroy JJ, Wong WP et al (2004) BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur Respir J 24:371–4

    Article  PubMed  CAS  Google Scholar 

  30. Gaussin V, Van de Putte T, Mishina Y et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci U S A 99:2878–83

    Article  PubMed  CAS  Google Scholar 

  31. Jiao K, Kulessa H, Tompkins K et al (2003) An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev 17:2362–7

    Article  PubMed  CAS  Google Scholar 

  32. Délot EC, Bahamonde ME, Zhao M et al (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130:209–20

    Article  PubMed  Google Scholar 

  33. Heath D, Edwards JE (1958) The pathology of hypertensive pulmonary vascular disease; a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 18:533–47

    PubMed  CAS  Google Scholar 

  34. Wagenvoort CA, Heath D, Edwards JE (1964) The pathology of the pulmonary vasculature. Thomas, Springfield, pp 224–54

    Google Scholar 

  35. Rabinovitch M, Haworth SG, Castaneda AR et al (1978) Lung biopsy in congenital heart disease: a morphometric approach to pulmonary vascular disease. Circulation 58:1107–22

    PubMed  CAS  Google Scholar 

  36. Rabinovitch M, Keane JF, Norwood WI et al (1984) Vascular structure in lung tissue obtained at biopsy correlated with pulmonary hemodynamic findings after repair of congenital heart defects. Circulation 69:655–67

    PubMed  CAS  Google Scholar 

  37. Berner M, Beghetti M, Spahr-Schopfer I et al (1996) Inhaled nitric oxide to test the vasodilator capacity of the pulmonary vascular bed in children with long-standing pulmonary hypertension and congenital heart disease. Am J Cardiol 77:532–5

    Article  PubMed  CAS  Google Scholar 

  38. Atz AM, Adatia I, Lock JE et al (1999) Combined effects of nitric oxide and oxygen during acute pulmonary vasodilator testing. J Am Coll Cardiol 33:813–9

    Article  PubMed  CAS  Google Scholar 

  39. Yasuda T, Tauchi N, Baba R et al (1999) Inhalation of low-dose nitric oxide to evaluate pulmonary vascular reactivity in children with congenital heart disease. Pediatr Cardiol 20:278–82

    Article  PubMed  CAS  Google Scholar 

  40. Turanlahti MI, Laitinen PO, Pesonen EJ (2000) Preoperative and postoperative response to inhaled nitric oxide. Scand Cardiovasc J 34:46–52

    Article  PubMed  CAS  Google Scholar 

  41. Balzer DT, Kort HW, Day RW et al (2002) Inhaled nitric oxide as a preoperative test (INOP Test I): the INOP Test Study Group. Circulation 106:I76–81

    PubMed  Google Scholar 

  42. Galie N, Ghofrani HA, Torbicki A et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353:2148–57

    Article  PubMed  CAS  Google Scholar 

  43. Barst RJ, Langleben D, Frost A et al (2004) Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med 169:441–7

    Article  PubMed  Google Scholar 

  44. Apostolopoulou SC, Manginas A, Cokkinos DV et al (2007) Long-term oral bosentan treatment in patients with pulmonary arterial hypertension related to congenital heart disease: a 2-year study. Heart 93:350–4

    Article  PubMed  CAS  Google Scholar 

  45. Borowski A, Zeuchner M, Schickendantz S et al (1994) Efficacy of pulmonary artery banding in the prevention of pulmonary vascular obstructive disease. Cardiology 85:207–15

    Article  PubMed  CAS  Google Scholar 

  46. Wagenvoort CA, Wagenvoort N, Draulans-Noë Y (1984) Reversibility of plexogenic pulmonary arteriopathy following banding of the pulmonary artery. J Thorac Cardiovasc Surg 87:876–86

    PubMed  CAS  Google Scholar 

  47. O’Blenes SB, Fischer S, McIntyre B et al (2001) Hemodynamic unloading leads to regression of pulmonary vascular disease in rats. J Thorac Cardiovasc Surg 121:279–89

    Article  PubMed  Google Scholar 

  48. Bonnet D, Corno AF, Sidi D et al (2004) Early clinical results of the telemetric adjustable pulmonary artery banding FloWatch-PAB. Circulation 110:II158–63

    Article  PubMed  Google Scholar 

  49. Yamaki S, Abe A, Endo M et al (1998) Surgical indication for congenital heart disease with extremely thickened media of small pulmonary arteries. Ann Thorac Surg 66:1560–4

    Article  PubMed  CAS  Google Scholar 

  50. Bush A, Busst CM, Haworth SG et al (1988) Correlations of lung morphology, pulmonary vascular resistance, and outcome in children with congenital heart disease. Br Heart J 59:480–5

    Article  PubMed  CAS  Google Scholar 

  51. Cannon BC, Feltes TF, Fraley JK et al (2005) Nitric oxide in the evaluation of congenital heart disease with pulmonary hypertension: factors related to nitric oxide response. Pediatr Cardiol 26:565–9

    Article  PubMed  CAS  Google Scholar 

  52. Rimensberger PC, Spahr-Schopfer I, Berner M et al (2001) Inhaled nitric oxide versus aerosolized iloprost in secondary pulmonary hypertension in children with congenital heart disease: vasodilator capacity and cellular mechanisms. Circulation 103:544–8

    PubMed  CAS  Google Scholar 

  53. Engelfriet P, Meijboom F, Boersma E et al (2008) Repaired and open atrial septal defects type II in adulthood: an epidemiological study of a large European cohort. Int J Cardiol 126:379–85

    Article  PubMed  Google Scholar 

  54. Rosas M, Attie F, Sandoval J et al (2004) Atrial septal defect in adults ≥40 years old: negative impact of low arterial oxygen saturation. Int J Cardiol 93:145–55

    Article  PubMed  Google Scholar 

  55. Attie F, Rosas M, Granados N et al (2001) Surgical treatment for secundum atrial septal defects in patients >40 years old. A randomized clinical trial. J Am Coll Cardiol 38:2035–42, Comment in: J Am Coll Cardiol 2002;40:205; author reply 205

    Article  PubMed  CAS  Google Scholar 

  56. Sommer RJ, Hijazi ZM, Rhodes JF Jr (2008) Pathophysiology of congenital heart disease in the adult: part I: shunt lesions. Circulation 117:1090–9

    Article  PubMed  Google Scholar 

  57. Barreto AC, Franchi SM, Castro CR et al (2005) One-year follow-up of the effects of sildenafil on pulmonary arterial hypertension and veno-occlusive disease. Braz J Med Biol Res 38:185–95

    Article  PubMed  CAS  Google Scholar 

  58. Lim ZS, Salmon AP, Vettukattil JJ et al (2007) Sildenafil therapy for pulmonary arterial hypertension associated with atrial septal defects. Int J Cardiol 118:178–82

    Article  PubMed  Google Scholar 

  59. Frost AE, Quiñones MA, Zoghbi WA et al (2005) Reversal of pulmonary hypertension and subsequent repair of atrial septal defect after treatment with continuous intravenous epoprostenol. J Heart Lung Transplant 24:501–3

    Article  PubMed  Google Scholar 

  60. Schwerzmann M, Zafar M, McLaughlin PR et al (2006) Atrial septal defect closure in a patient with “irreversible” pulmonary hypertensive arteriopathy. Int J Cardiol 110:104–7

    Article  PubMed  Google Scholar 

  61. Althoff TF, Knebel F, Panda A et al (2008) Long-term follow-up of a fenestrated Amplatzer atrial septal occluder in pulmonary arterial hypertension. Chest 133:283–5

    Article  PubMed  Google Scholar 

  62. Balint OH, Samman A, Haberer K et al (2008) Outcomes in patients with pulmonary hypertension undergoing percutaneous atrial septal defect closure. Heart 94:1189–93, Comment in: Heart 2008;94:1120–1122

    Article  PubMed  CAS  Google Scholar 

  63. Rosenzweig EB, Kerstein D, Barst RJ (1999) Long-term prostacyclin for pulmonary hypertension with associated congenital heart defects. Circulation 99:1858–65

    PubMed  CAS  Google Scholar 

  64. Galié N, Beghetti M, Gatzoulis MA et al (2006) Bosentan therapy in patients with Eisenmenger syndrome. A multicenter, double-blind, randomized, placebo-controlled study. Circulation 114:48–54

    Article  PubMed  Google Scholar 

  65. D’Alto M, Vizza CD, Romeo E et al (2007) Long-term effects of bosentan treatment in adult patients with pulmonary arterial hypertension related to congenital heart disease (Eisenmenger physiology): safety, tolerability, clinical, and haemodynamic effect. Heart 93:621–5

    Article  PubMed  Google Scholar 

  66. Gatzoulis MA, Beghetti M, Galiè N et al (2008) Longer-term bosentan therapy improves functional capacity in Eisenmenger syndrome: results of the BREATHE-5 open-label extension study. Int J Cardiol 127:27–32

    Article  PubMed  Google Scholar 

  67. Van Loon RL, Hoendermis ES, Duffels MG et al (2007) Long-term effect of bosentan in adults versus children with pulmonary arterial hypertension associated with systemic-to-pulmonary shunt: does the beneficial effect persist? Am Heart J 154:776–82

    Article  PubMed  Google Scholar 

  68. Rubanyi GM, Ho EH, Cantor HE et al (1991) Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leucocytes. Biochem Biophys Res Comm 181:1392–7

    Article  PubMed  CAS  Google Scholar 

  69. Morita K, Inhken K, Buckberg GD et al (1996) Pulmonary vasoconstriction due to impaired nitric oxide production after cardiopulmonary bypass. Ann Thorac Surg 61:1775–80

    Article  PubMed  CAS  Google Scholar 

  70. Komai H, Adatia IT, Elliott MJ et al (1993) Increased plasma levels of endothelin-1 after cardiopulmonary bypass in patients with pulmonary hypertension and congenital heart disease. J Thorac Cardiovasc Surg 106:473–8

    PubMed  CAS  Google Scholar 

  71. Schulze-Neick I, Penny DJ, Rigby ML et al (1999) L-arginine and substance P reverse the pulmonary endothelial dysfunction caused by congenital heart surgery. Circulation 100:749–55

    PubMed  CAS  Google Scholar 

  72. Beghetti M, Habre W, Friedli B et al (1995) Continuous low dose inhaled nitric oxide for treatment of severe pulmonary hypertension after cardiac surgery in paediatric patients. Br Heart J 73:65–8

    Article  PubMed  CAS  Google Scholar 

  73. Russell IA, Zwass MS, Fineman JR et al (1998) The effects of inhaled nitric oxide on postoperative pulmonary hypertension in infants and children undergoing surgical repair of congenital heart disease. Anesth Analg 87:46–51

    Article  PubMed  CAS  Google Scholar 

  74. Journois D, Baufreton C, Mauriat P et al (2005) Effects of inhaled nitric oxide administration on early postoperative mortality in patients operated for correction of atrioventricular canal defects. Chest 128:3537–44

    Article  PubMed  CAS  Google Scholar 

  75. Miller OI, Tang SF, Keech A et al (2000) Inhaled nitric oxide and prevention of pulmonary hypertension after congenital heart surgery: a randomised double-blind study. Lancet 356:1464–9, Comment in: Lancet 2001;357:558–559

    Article  PubMed  CAS  Google Scholar 

  76. Day RW, Hawkins JA, McGough EC et al (2000) Randomized controlled study of inhaled nitric oxide after operation for congenital heart disease. Ann Thorac Surg 69:1907–2, discussion 1913

    Article  PubMed  CAS  Google Scholar 

  77. Miller OI, Celermajer DS, Deanfield JE et al (1994) Very-low-dose inhaled nitric oxide: a selective pulmonary vasodilator after operations for congenital heart disease. J Thorac Cardiovasc Surg 108:487–94

    PubMed  CAS  Google Scholar 

  78. Reddy VM, Hendricks-Munoz KD, Rajasinghe HA et al (1997) Post-cardiopulmonary bypass pulmonary hypertension in lambs with increased pulmonary blood flow. A role for endothelin 1. Circulation 95:1054–61

    PubMed  CAS  Google Scholar 

  79. Petrossian E, Parry AJ, Reddy VM et al (1999) Endothelin receptor blockade prevents the rise in pulmonary vascular resistance after cardiopulmonary bypass in lambs with increased pulmonary blood flow. J Thorac Cardiovasc Surg 117:314–23

    Article  PubMed  CAS  Google Scholar 

  80. Schulze-Neick I, Hartenstein P, Li J et al (2003) Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 108:II167–73

    Article  PubMed  Google Scholar 

  81. Namachivayam P, Theilen U, Butt WW et al (2006) Sildenafil prevents rebound pulmonary hypertension after withdrawal of nitric oxide in children. Am J Respir Crit Care Med 174:1042–7

    Article  PubMed  CAS  Google Scholar 

  82. Lee JE, Hilier SC, Knoderer CA (2008) Use of sildenafil to facilitate weaning from inhaled nitric oxide in children with pulmonary hypertension following surgery for congenital heart disease. J Int Care Med 23:3290–334

    Google Scholar 

  83. Haworth SG, Hislop AA (2009) Treatment and survival in children with pulmonary arterial hypertension: The UK Pulmonary Hypertension Service for Children 2001-2006. Heart 95(4):312–7

    Article  PubMed  CAS  Google Scholar 

  84. Barst RJ, Maislin G, Fishman AP (1999) Vasodilator therapy for primary pulmonary hypertension in children. Circulation 99:1197–208

    PubMed  CAS  Google Scholar 

  85. Humpl T, Reyes JT, Holtby H et al (2005) Beneficial effect of oral sildenafil therapy on childhood pulmonary arterial hypertension: twelve-month clinical trial of a single-drug, open-label, pilot study. Circulation 111:3274–80

    Article  PubMed  CAS  Google Scholar 

  86. Rosenzweig EB, Ivy DD, Widlitz A et al (2005) Effects of long-term bosentan in children with pulmonary arterial hypertension. J Am Coll Cardiol 46:697–704, Comment in: J Am Coll Cardiol 2005;46:705–706. J Am Coll Cardiol 2006;47:1914–1915; author reply 1915

    Article  PubMed  CAS  Google Scholar 

  87. Beghetti M (2007) Pulmonary arterial hypertension in children: new therapeutic approaches. Ann Fr Anesth Reanim 26:570–5

    PubMed  CAS  Google Scholar 

  88. Dimopoulos K, Peset A, Gatzoulis MA (2008) Evaluating operability in adults with congenital heart disease and the role of pretreatment with targeted pulmonary arterial hypertension therapy. Int J Cardiol 129:163–71

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio A. Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lopes, A.A. (2011). Pulmonary Hypertension Secondary to Congenital Systemic-to-Pulmonary (Left-to-Right) Shunts. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_78

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_78

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics