Skip to main content

Development and Function of the Arbuscular Mycorrhizal Symbiosis in Petunia

  • Chapter
Book cover Petunia

Abstract

The majority of terrestrial plants live in symbiotic associations with fungi or bacteria that improve their nutrition. Critical steps in such a symbiosis are mutual recognition and subsequent establishment of an intimate association that involves the penetration of plant tissues and, in many cases, the invasion of individual host cells by the microbial symbiont. The most widespread symbiosis of plants is the arbuscular mycorrhizal (AM) symbiosis, which can improve plant nutrition and stress resistance. The AM symbiosis is controlled by intrinsic factors such as SYM symbiosis genes, and extrinsic factors such as nutrients. Important experimental systems in symbiosis research are legumes (Medicago truncatula and Lotus japonicus) and grasses (rice and maize), but Solanaceae are also catching up. In this chapter, we summarize recent advances in AM research on Petunia, which complement ongoing efforts in the AM research community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Ames, R.N., Reid, C.P.P., Porter, L.K and Cambardella, C. (1983) Hyphal uptake and transport of nitrogen from 2 N-15-labeled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytol. 95, 381–396.

    Article  Google Scholar 

  • Amijée, F., Tinker, P.B. and Stribley, D.P. (1989) The development of endomycorrhizal root systems; 7. A detailed study of effects of soil-phosphorus on colonization. New Phytol. 111, 435–446.

    Article  Google Scholar 

  • Ané, J.-M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E.D., Ayax, C., Lévy, J., Debellé, F., Baek, J.M., Kalo, P., Rosenberg, C., Roe, B.A., Long, S.R., Dénarié, J. and Cook, D.R. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364–1367.

    Article  PubMed  CAS  Google Scholar 

  • Azcon, R., Ambrosano, E. and Charest, C. (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci. 165, 1137–1145.

    Article  CAS  Google Scholar 

  • Azcon-Aguilar, C. and Barea, J. (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza 6, 457.

    Article  Google Scholar 

  • Balestrini, R., Perotto, S., Gasverde, E., Dahiya, P., Guldmann, L.L., Brewin, N.J. and Bonfante, P. (1999) Transcription of a gene encoding a lectinlike glycoprotein is induced in root cells harboring arbuscular mycorrhizal fungi in Pisum sativum. Mol. Plant-Microbe Interact. 12, 785–791.

    Article  CAS  Google Scholar 

  • Balestrini, R. and Bonfante, P. (2005) The interface compartment in arbuscular mycorrhizae: A special type of plant cell wall? Plant Biosystems 139, 8–15.

    Google Scholar 

  • Barker, S.J., Stummer, B., Gao, L., Dispain, I., O'Connor, P.J. and Smith, S.E. (1998) A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: Isolation and preliminary characterisation. Plant J. 15, 791–797.

    Article  CAS  Google Scholar 

  • Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J.C., Roux, C., Bécard, G. and Séjalon-Delmas, N. (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. Plos Biol. 4, 1239–1247.

    Article  CAS  Google Scholar 

  • Bieleski, R.L. (1973) Phosphate pools, phosphate transport and phosphate availability. Ann. Rev. Plant Physiol. Plant Mol. Biol. 24, 225–252.

    CAS  Google Scholar 

  • Bonfante, P. and Perotto, S. (1995) Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. A30, 3–21.

    Article  Google Scholar 

  • Bonfante-Fasolo, P. (1984) Anatomy and morphology of VA mycorrhizae. In: C.L. Powell and D.J. Bagyaraj (Eds.), VA Mycorrhizae. CRC Press, Boca Raton, pp. 5–33.

    Google Scholar 

  • Brachmann, A. and Parniske, M. (2006) The most widespread symbiosis on earth. Plos Biol. 4, 1111–1112.

    Article  CAS  Google Scholar 

  • Brechenmacher, L., Weidmann, S., van Tuinen, D., Chatagnier, O., Gianinazzi, S., Franken, P. and Gianinazzi-Pearson, V. (2004) Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14, 253–262.

    Article  CAS  PubMed  Google Scholar 

  • Brundrett, M.C. (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304.

    Article  Google Scholar 

  • Bucher, M., Rausch, C. and Daram, P. (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. 164, 209–217.

    Article  CAS  Google Scholar 

  • Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol. 173, 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Buée, M., Rossignol, M., Jauneau, A., Ranjeva, R. and Bécard, G. (2000) The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13, 693–698.

    Article  PubMed  Google Scholar 

  • Catford, J.G., Stähelin, C., Lerat, S., Piché, Y. and Vierheilig, H. (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre- inoculation and treatment with Nod factors. J. Exp. Bot. 54, 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro, T.R., Smith, F.A., Kolesik, P., Ayling, S.M. and Smith, S.E. (2001) Arbuscular mycorrhizas formed by Asphodelus fistulosus and Glomus coronatum: Three dimensional analysis of plant nuclear shift using laser scanning confocal microscopy. Symbiosis 30, 109–121.

    Google Scholar 

  • Chalot, M., Blaudez, D. and Brun, A. (2006) Ammonia: A candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci. 11, 263–266.

    Article  CAS  PubMed  Google Scholar 

  • Chen, A., Hu, J., Sun, S. and Xu, G. (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol. 173, 817–831.

    Article  CAS  PubMed  Google Scholar 

  • Clark, R.B. and Zeto, S.K. (2000) Mineral acquisition by arbuscular mycorrhizal plants. J. Plant Nutr. 23, 867–902.

    Article  CAS  Google Scholar 

  • Daram, P., Brunner, S., Persson, B.L., Amrhein, N. and Bucher, M. (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • David-Schwartz, R., Badani, H., Smadar, W., Levy, A.A., Galili, G. and Kapulnik, Y. (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: Plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J. 27, 561–569.

    Article  CAS  PubMed  Google Scholar 

  • David-Schwartz, R., Gadkar, V., Wininger, S., Bendov, R., Galili, G., Levy, A.A. and Kapulnik, Y. (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycorrhizal fungal colonization. Mol. Plant-Microbe Interact. 16, 382–388.

    Article  CAS  PubMed  Google Scholar 

  • Declerck, S., Strullu, D.-G. and Fortin, J.A. (2005) In vitro Culture of Mycorrhizas. Springer, Berlin.

    Book  Google Scholar 

  • Demchenko, K., Winzer, T., Stougaard, J., Parniske, M. and Pawlowski, K. (2004) Distinct roles of Lotus japonicus SYMRK and SYM15 in root colonization and arbuscule formation. New Phytol. 163, 381–392.

    Article  CAS  Google Scholar 

  • Dickson, S. and Kolesik, P. (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9, 205–213.

    Article  Google Scholar 

  • Drissner, D., Kunze, G., Callewaert, N., Gehrig, P., Tamasloukht, M., Boller, T., Felix, G., Amrhein, N. and Bucher, M. (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318, 265–268.

    Article  CAS  PubMed  Google Scholar 

  • Duc, G., Trouvelot, A., Gianinazzi-Pearson, V. and Gianinazzi, S. (1989) First report of non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.) Plant Sci. 60, 215–222.

    Article  Google Scholar 

  • Dumas-Gaudot, E., Gollotte, A., Cordier, C., Gianinazzi, S. and Gianinazzi-Pearson, V. (2000) Modulation of host defence systems. In: Y. Kapulnik and D.D.J. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp. 173–200.

    Google Scholar 

  • Ehrhardt, D., Wais, R. and Long, S.R. (1996) Calcium spiking in alfalfa root hairs responding to Rhizobium meliloti nodulation signals. Cell 85, 673–681.

    Article  CAS  PubMed  Google Scholar 

  • Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kaló, P. and Kiss, G.B. (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966.

    Article  CAS  PubMed  Google Scholar 

  • Ezawa, T., Smith, S.E. and Smith, F.A. (2002) P metabolism and transport in AM fungi. Plant Soil 244, 221–230.

    Article  CAS  Google Scholar 

  • Ferrol, N., Gianinazzi, S. and Gianinazzi-Pearson, V. (2002) Arbuscular mycorrhiza induced ATPases and membrane nutrient transport mechanisms. In: S. Gianinazzi, H. Schüepp, J.M. Barea and K. Haselwandter (Eds.), Mycorrhizal Technology in Agriculture: From Genes to Bioproducts. Birkhäuser, Basel, pp. 113–122.

    Google Scholar 

  • Fortin, J.A., Bécard, G., Declerck, S., Dalpé, Y., St.-Arnaud, M., Coughlan, A.P. and Piché, Y. (2002) Arbuscular mycorrhiza on root organ cultures. Can. J. Bot. 80, 1–20.

    Article  CAS  Google Scholar 

  • Frenzel, A., Manthey, K., Perlick, A.M., Meyer, F., Puhler, A., Kuster, H. and Krajinski, F. (2005) Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. Mol. Plant-Microbe Interact. 18, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Frey, B. and Schüepp, H. (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol. 124, 221–230.

    Article  Google Scholar 

  • Fritz, M., Jakobsen, I., Lyngkjaer, M., Thordal-Christensen, H. and Pons-Kühnemann, J. (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16, 413–419.

    Article  PubMed  Google Scholar 

  • García-Garrido, J.M. and Ocampo, J.A. (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot. 53, 1377–1386.

    Article  PubMed  Google Scholar 

  • Garriock, M.L., Peterson, R.L. and Ackerley, C.A. (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus Glomus versiforme. New Phytol. 112, 85–92.

    Article  Google Scholar 

  • Genre, A. and Bonfante, P. (2005) Building a mycorrhizal cell: How to reach compatibility between arbuscular mycorrhizal fungi. J. Plant Interact. 1, 3–13.

    Article  CAS  Google Scholar 

  • Genre, A., Chabaud, M., Timmers, T., Bonfante, P. and Barker, D.G. (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17, 3489–3499.

    Article  CAS  PubMed  Google Scholar 

  • George, E. (2000) Nutrient Uptake – Contributions of arbuscular mycorrhizal fungi to plant mineral nutrition. In: Y. Kapulnik and D.D. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp. 307–343.

    Google Scholar 

  • Gianinazzi-Pearson, V. and Dénarié, J. (1997) Red carpet genetic programmes for root endosymbioses. Trends Plant Sci. 2, 371–372.

    Article  Google Scholar 

  • Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., Arango, M. and Gianinazzi, S. (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211, 609–613.

    Article  CAS  PubMed  Google Scholar 

  • Gleason, C., Chaudhuri, S., Yang, T.B., Munoz, A., Poovaiah, B.W. and Oldroyd, G.E.D. (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441, 1149–1152.

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu, M., Pfeffer, P.E., Jin, H.R., Abubaker, J., Douds, D.D., Allen, J.W., Bucking, H., Lammers, P.J. and Shachar-Hill, Y. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823.

    Article  CAS  PubMed  Google Scholar 

  • Grunwald, U., Nyamsuren, O., Tamasloukht, M., Lapopin, L., Becker, A., Mann, P., Gianinazzi-Pearson, V., Krajinski, F. and Franken, P. (2004) Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol.Biol. 55, 553–566.

    Article  CAS  PubMed  Google Scholar 

  • Güimil, S., Chang, H.S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ionnidis, V., Oakeley, E.J., Docquier, M., Descombes, P., Briggs, S.P. and Paszkowski, U. (2005) Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci., USA 102, 8066–8070.

    Article  PubMed  CAS  Google Scholar 

  • Guttenberger, M. (2000) Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211, 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Harper, J.E., Breton, G. and Harmon, A. (2004) Decoding Ca2+ signals through plant protein kinases. Ann. Rev. Plant Biol. 55, 263–288.

    Article  CAS  Google Scholar 

  • Harrison, M.J., Dewbre, G.R. and Liu, J.Y. (2002) A phosphate transporter from Medicago truncatula involved in the acquisiton of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14, 2413–2429.

    Article  CAS  PubMed  Google Scholar 

  • Hays, R., Reid, C.P.P., Stjohn, T.V. and Coleman, D.C. (1982) Effects of nitrogen and phosphorus on blue grama growth and mycorrhizal infection. Oecologia 54, 260–265.

    Article  Google Scholar 

  • He, X.H. and Nara, K. (2007) Element biofortification: Can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition? Trends Plant Sci. 12, 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Heijne, B., Dueck, T.A., Vandereerden, L.J. and Heil, G.W. (1994) Effects of atmospheric ammonia and ammonium sulfate on vesicular-arbuscular mycorrhizal colonization in three heathland species. New Phytol. 127, 685–696.

    Article  CAS  Google Scholar 

  • Hepper, C.M. (1983) The effect of nitrate and phosphate on the vesicular arbuscular mycorrhizal infection of lettuce. New Phytol. 93, 389–399.

    Article  CAS  Google Scholar 

  • Hohnjec, N., Vieweg, M.E., Puhler, A., Becker, A. and Kuster, H. (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol. 137, 1283–1301.

    Article  CAS  PubMed  Google Scholar 

  • Imaizumi-Anraku, H., Takeda, N., Charpentier, M., Perry, J., Miwa, H., Umehara, Y., Kouchi, H., Murakami, Y., Mulder, L., Vickers, K., Pike, J., Downie, J.A., Wang, T., Sato, S., Asamizu, E., Tabata, S., Yoshikawa, M., Murooka, Y., Wu, G.J., Kawaguchi, M., Kawasaki, S., Parniske, M. and Hayashi, M. (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433, 527–531.

    Article  CAS  PubMed  Google Scholar 

  • Jasper, D.A., Robson, A.D. and Abbott, L.K. (1979) Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biol. Biochem. 11, 501–505.

    Article  CAS  Google Scholar 

  • Javot, H., Pumplin, N. and Harrison, M.J. (2007a) Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant Cell Environ. 30, 310–322.

    Google Scholar 

  • Javot, H., Penmetsa, R.V., Terzaghi, N., Cook, D.R. and Harrison, M.J. (2007b) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci., USA 104, 1720–1725.

    Google Scholar 

  • Johansen, A., Jakobsen, I. and Jensen, E.S. (1994) Hyphal N-transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160, 1–9.

    Article  CAS  Google Scholar 

  • Journet, E.P., El-Gachtouli, N., Vernoud, V., de Billy, F., Pichon, M., Dedieu, A., Arnould, C., Morandi, D., Barker, D.G. and Gianinazzi-Pearson, V. (2001) Medicago truncatula ENOD11: A novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol. Plant-Microbe Interact. 14, 737–748.

    Article  CAS  PubMed  Google Scholar 

  • Kai, M., Masuda, Y., Kisuhiro, Y., Osaki, M. and Tadano, T. (1997) Isolation and characterisation of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Sci. Plant Nutr. 43, 227–235.

    CAS  Google Scholar 

  • Kalo, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A. and Oldroyd, G.E.D. (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308, 1786–1789.

    Article  CAS  PubMed  Google Scholar 

  • Kanamori, N., Madsen, L.H., Radutoiu, S., Frantescu, M., Quistgaard, E.M.H., Miwa, H., Downie, J.A., James, E.K., Felle, H.H., Haaning, L.L., Jensen, T.H., Sato, S., Nakamura, Y., Tabata, S., Sandal, N. and Stougaard, J. (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl. Acad. Sci., USA 103, 359–364.

    Article  CAS  PubMed  Google Scholar 

  • Karandashov, V., Nagy, R., Wegmüller, S., Amrhein, N. and Bucher, M. (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci., USA 101, 6285–6290.

    Article  CAS  PubMed  Google Scholar 

  • Karandashov, V. and Bucher, M. (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10, 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Kistner, C. and Parniske, M. (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci. 7, 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Kistner, C., Winzer, T., Pitzschke, A., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Webb, K.J., Szczyglowski, K. and Parniske, M. (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17, 2217–2229.

    Article  CAS  PubMed  Google Scholar 

  • Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Dénarié, J., Barker, D.G. and Bécard, G. (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 131, 952–962.

    Article  CAS  PubMed  Google Scholar 

  • Kosuta, S., Hazledine, S., Sun, J., Miwa, H., Morris, R.J., Downie, J.A. and Oldroyd, G.E.D. (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathways of legumes. Proc. Natl. Acad. Sci., USA 105, 9823–9828.

    Google Scholar 

  • Krusell, L., Madsen, L.H., Sato, S., Aubert, G., Genua, A., Szczyglowski, K., Duc, G., Kaneko, T., Tabata, S., de Bruijn, F., Pajuelo, E., Sandal, N. and Stougaard, J. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420, 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Leggewie, G., Willmitzer, L. and Riesmeier, J.W. (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. Plant Cell 9, 381–392.

    Article  CAS  PubMed  Google Scholar 

  • Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., Ané, J.M., Lauber, E., Bisseling, T., Denarie, J., Rosenberg, C. and Debellé, F. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J.Y., Blaylock, L.A., Endre, G., Cho, J., Town, C.D., VandenBosch, K.A. and Harrison, M.J. (2003) Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15, 2106–2123.

    Article  CAS  PubMed  Google Scholar 

  • Mäder, P., Vierheilig, H., Streitwolf-Engel, R., Boller, T., Frey, B., Christie, P. and Wiemken, A. (2000) Transport of N-15 from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol. 146, 155–161.

    Article  Google Scholar 

  • Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N. and Stougaard, J. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425, 637–640.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, D., Ashida, K., Iguchi, K., Chechetka, S.A., Hijikata, A., Okusako, Y., Deguchi, Y., Izui, K. and Hata, S. (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol. 47, 807–817.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, J.F. and Schultze, M. (2001) Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. New Phytol. 150, 525–532.

    Article  Google Scholar 

  • Menge, J.A., Steirle, D., Bagyaraj, D.J., Johnson, E.L.V. and Leonard, R.T. (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol. 80, 575–578.

    Article  CAS  Google Scholar 

  • Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E.D. and Long, S.R. (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci., USA 101, 4701–4705.

    Article  CAS  PubMed  Google Scholar 

  • Muchhal, U.S., Pardo, J.M. and Gaghothama, K.G. (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci., USA 93, 10519–10523.

    Article  CAS  PubMed  Google Scholar 

  • Mudge, S.R., Rae, A.L., Diatloff, E. and Smith, F.W. (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J. 31, 341–353.

    Article  CAS  PubMed  Google Scholar 

  • Nagahashi, G. and Douds, D.D. (1997) Appressorium formation by AM fungi on isolated cell walls of carrot roots. New Phytol. 136, 299–304.

    Article  Google Scholar 

  • Nagy, F., Karandashov, V., Chague, W., Kalinkevich, K., Tamasloukht, M., Xu, G.H., Jakobsen, I., Levy, A.A., Amrhein, N. and Bucher, M. (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 42, 236–250.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, R., Hayashi, M., Wu, G.J., Kouchi, H., Imaizumi-Anraku, H., Murakami, Y., Kawasaki, S., Akao, S., Ohmori, M., Nagasawa, M., Harada, K. and Kawaguchi, M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420, 426–429.

    Article  CAS  PubMed  Google Scholar 

  • Novero, M., Faccio, A., Genre, A., Stougaard, J., Webb, K.J., Mulder, L., Parniske, M. and Bonfante, P. (2002) Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots. New Phytol. 154, 741–749.

    Article  CAS  Google Scholar 

  • Oldroyd, G.E.D. and Downie, J.A. (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr. Opin. Plant Biol. 9, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Pao, S.S., Paulsen, I.T. and Saier, M.H., Jr. (1998) Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34.

    CAS  PubMed  Google Scholar 

  • Parniske, M. (2000) Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease? Curr. Opin. Plant Biol. 3, 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Parniske, M. (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 7, 414–421.

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski, U. (2006) Mutualism and parasitism: The yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9, 364–370.

    Article  PubMed  Google Scholar 

  • Paszkowski, U., Jakovleva, L. and Boller, T. (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J. 47, 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Peterson, R.L. and Guinel, F. (2000) The use of plant mutants to study regulation of colonization by AM fungi. In: Y. Kapulnik and D.D. Douds (Eds.), Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht, pp. 147–171.

    Google Scholar 

  • Peterson, R.L., Massicotte, H.B. and Melville, L.H. (2004) Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ontario.

    Google Scholar 

  • Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Gronlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N. and Stougaard, J. (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Raghothama, K.G. and Karthikeyan, A.S. (2005) Phosphate acquisition. Plant Soil 274, 37–49.

    Article  CAS  Google Scholar 

  • Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G., Amrhein, N. and Bucher, M. (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–466.

    Article  CAS  PubMed  Google Scholar 

  • Redecker, D. (2002) Molecular identification and phylogeny of arbuscular mycorrhizal fungi. Plant Soil 244, 67–73.

    Article  CAS  Google Scholar 

  • Reinhardt, D. (2007) Programming good relations – development of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 10, 98–105.

    Article  PubMed  Google Scholar 

  • Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) 4-Hundred-Million-Year-Old Vesicular-Arbuscular Mycorrhizae. Proc. Natl. Acad. Sci., USA 91, 11841–11843.

    Article  CAS  PubMed  Google Scholar 

  • Riély, B.K., Lougnon, G., Ané, J.M. and Cook, D.R. (2007) The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J. 49, 208–216.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., Yoshikawa, M., Yano, K., Miwa, H., Uchida, H., Asamizu, E., Sato, S., Tabata, S., Imaizumi-Anraku, H., Umehara, Y., Kouchi, H., Murooka, Y., Szczyglowski, K., Downie, J.A., Parniske, M., Hayashi, M. and Kawaguchi, M. (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses and seed production in Lotus japonicus. Plant Cell 19, 610–624.

    Article  CAS  PubMed  Google Scholar 

  • Sbrana, C. and Giovannetti, M. (2005) Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15, 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Schauser, L., Roussis, A., Stiller, J. and Stougaard, J. (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402, 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Schüssler, A., Schwarzott, D. and Walker, C. (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 105, 1413–1421.

    Article  Google Scholar 

  • Sekhara Reddy, D.M.R. (2007) Molecular Genetics of the Arbuscular Mycorrhizal Symbiosis in a New Model System: Petunia hybrida. Dept. of Biology, University of Fribourg.

    Google Scholar 

  • Sekhara Reddy, D.M.R., Schorderet, M., Feller, U. and Reinhardt, D. (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant J. 51, 739–750.

    Article  CAS  Google Scholar 

  • Smith, S.E. and Read, D.J. (1997) Mycorrhizal Symbiosis. Academic Press, NY.

    Google Scholar 

  • Smith, F.W., Ealing, P.M., Dong, B. and Delhaize, E. (1997) The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J. 11, 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S.E., Smith, F.A. and Jakobsen, I. (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol. 133, 16–20.

    Article  CAS  PubMed  Google Scholar 

  • Smit, P., Raedts, J., Portyanko, V., Debelle, F., Gough, C., Bisseling, T. and Geurts, R. (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 308, 1789–1791.

    Article  CAS  PubMed  Google Scholar 

  • Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J. and Szczyglowski, K. (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417, 959–962.

    Article  CAS  PubMed  Google Scholar 

  • Sylvia, D.M. and Neal, L.H. (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol. 115, 303–310.

    Article  CAS  Google Scholar 

  • Tamasloukht, M., Séjalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Bécard, G. and Franken, P. (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol. 131, 1468–1478.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, B.D., Robson, A.D. and Abbott, L.K. (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103, 751–765.

    Article  Google Scholar 

  • Timonen, S. and Peterson, R.L. (2002) Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244, 199–210.

    Article  CAS  Google Scholar 

  • Tirichine, L., Imaizumi-Anraku, H., Yoshida, S., Murakami, Y., Madsen, L.H., Miwa, H., Nakagawa, T., Sandal, N., Albrektsen, A.S., Kawaguchi, M., Downie, A., Sato, S., Tabata, S., Kouchi, H., Parniske, M., Kawasaki, S. and Stougaard, J. (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441, 1153–1156.

    Article  CAS  PubMed  Google Scholar 

  • Tobar, R., Azcon, R. and Barea, J.M. (1994) Improved nitrogen uptake and transport from N-15-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126, 119–122.

    Article  Google Scholar 

  • Udvardi, M.K., Tabata, S., Parniske, M. and Stougaard, J. (2005) Lotus japonicus: Legume research in the fast lane. Trends Plant Sci. 10, 222–228.

    Article  CAS  PubMed  Google Scholar 

  • van Buuren, M.L., Maldonado-Mendoza, I.E., Trieu, A.T., Blaylock, L.A. and Harrison, M.J. (1999) Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol. Plant-Microbe Interact. 12, 171–181.

    Article  PubMed  Google Scholar 

  • Vierheilig, H. (2004a) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can. J. Bot. 82, 1166–1176.

    Google Scholar 

  • Vierheilig, H. (2004b) Further root colonization by arbuscular mycorrhizal fungi in already mycorrhizal plants is suppressed after a critical level of root colonization. J. Plant Physiol. 161, 339–341.

    Google Scholar 

  • Wegmüller, S., Svistoonoff, S., Reinhardt, D., Stuurman, J., Amrhein, N. and Bucher, M. (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant J. 54, 1115–1127.

    Article  PubMed  CAS  Google Scholar 

  • Wellman, C.H., Osterloff, P.L. and Mohiuddin, U. (2003) Fragments of the earliest land plants. Nature 425, 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H., Riely, B.K., Burns, N.J. and Ané, J.-M. (2006) Tracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses. Genetics 172, 2491–2499.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sekhara Reddy, D., Svistoonoff, S., Breuillin, F., Wegmüller, S., Bucher, M., Reinhardt, D. (2009). Development and Function of the Arbuscular Mycorrhizal Symbiosis in Petunia. In: Gerats, T., Strommer, J. (eds) Petunia. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84796-2_7

Download citation

Publish with us

Policies and ethics