Skip to main content

Fabrication of Microscale Rotating Magnetic Machines

  • Chapter
  • First Online:
Book cover Multi-Wafer Rotating MEMS Machines

Part of the book series: MEMS Reference Shelf ((MEMSRS))

Abstract

In this chapter, microfabrication techniques are discussed to enable miniaturized magnetic machines for use with silicon microturbomachinery. These rotational machines could be used as either motors (for motoring or fluidic pumping) or as generators for electrical power generation. Challenges and methods for microfabricating microscale magnetic machines are described, and examples of previously implemented devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn CH, Kim YJ, Allen MG (1993) A planar variable reluctance magnetic micromotor with fully integrated stator and wrapped coils. Proc. IEEE MEMS Conf., Ft. Lauderdale, FL, Feb. 2003, 1–6

    Google Scholar 

  2. Arnold DP, Zana I, Cros F, Allen MG (2004a) Vertically laminated magnetic cores by electroplating Ni-Fe into micromachined Si. IEEE Trans. Magn. 40(4):3060–3062

    Article  Google Scholar 

  3. Arnold DP, Cros F, Zana I, Veazie D, Allen MG (2004b) Electroplated metal microstructures embedded in fusion-bonded silicon: conductors and magnetic materials. J. Microelectromech. Syst. 13(5):791–798

    Article  Google Scholar 

  4. Arnold DP, Zana I, Allen MG (2005) Analysis and optimization of vertically oriented, through-wafer, laminated magnetic cores in silicon. J. Micromech. Microeng. 15(5): 971–977

    Article  Google Scholar 

  5. Arnold DP, Das S, Cros F, Zana I, Lang JH, Allen MG (2006a) Magnetic induction machines integrated into bulk-micromachined silicon. J. Microelectromech. Syst. 15(2):406–414

    Article  Google Scholar 

  6. Arnold DP, Das S, Park J-W, Zana I, Lang JH, Allen MG (2006b) Microfabricated high-speed axial-flux multiwatt permanent-magnet generators – Part II: design, fabrication, and testing. J. Microelectromech. Syst. 15(5):1351–1363

    Article  Google Scholar 

  7. Arnold DP, Herrault F, Zana I, Galle P, Park J-W, Das S, Lang JH, Allen MG (2006c) Design optimization of an 8-Watt, microscale, axial-flux, permanent-magnet generator. J. Micromech. Microeng. 16(9):S290–S296

    Article  Google Scholar 

  8. Bowers BJ, Agashe JS, Arnold DP (2007) A method to form bonded micromagnets embedded in silicon. Tech. Dig. 14th Int. Conf. Solid-State Sensors, Actuators, and Microsystems (Transducers ’07), Lyon, France, June 2007, vol.2, 1581–1584

    Google Scholar 

  9. Budde T, Gatzen HH (2006) Thin film SmCo magnets for use in electromagnetic microactuators. J. Appl. Phys. 99:08N304

    Article  Google Scholar 

  10. Busch-Vishniac IJ (1992) The case for magnetically-driven micro-actuators Sens. & Actuat. A33:207–220

    Article  Google Scholar 

  11. Campbell P (1994) Permanent magnet materials and their application. Cambridge University Press, Cambridge, UK, Ch. 2

    Book  Google Scholar 

  12. Cho H, Ahn C (2003) Microscale resin-bonded permanent magnets for magnetic micro-electro-mechanical systems applications. J. Appl. Phys. 93(10):8674–8676

    Article  Google Scholar 

  13. Cooper EI, Bonhôte C, Heidmann J, Hsu Y, Kern P, Lam JW, Ramasubramanian M, Robertson N, Romankiw LT, Xu H (2005) Recent developments in high-moment electroplated materials for recording heads. IBM J. Res. Develop. 49:103–126

    Article  Google Scholar 

  14. Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39:3607–3612

    Article  Google Scholar 

  15. Cullity BD, Graham CD (2009) Introduction to magnetic materials. IEEE Press/Wiley, Hoboken, New Jersey

    Google Scholar 

  16. Das S, Arnold DP, Zana I, Park J-W, Allen MG, Lang JH (2006) Microfabricated high-speed axial-flux multiwatt permanent-magnet generators – Part I: modeling. J. Microelectromech. Syst. 15(5):1330–1350

    Article  Google Scholar 

  17. Dempsey NM, Walther A, May F, Givord D, Khlopkov K, Gutfleisch O (2007) High performance hard magnetic NdFeB thick films for integration into micro-electro-mechanical systems. App. Phys. Lett. 90:092509

    Article  Google Scholar 

  18. Dutoit BM, Bese P-A, Blanchard H, Guérin L, Popovich RS (1999) High performance micromachined Sm2Co17 polymer bonded magnets. Sens. Actuat. 77:178–182

    Article  Google Scholar 

  19. Dyos GT, Farrell T, Eds. (1992) Electrical resistivity handbook. Peter Peregrinus Ltd., London

    Google Scholar 

  20. Ehrfeld W, Gotz F, Munchmeyer D, Schelb W, Schmidt D (1988) “LIGA process: Sensor construction techniques via x-ray lithography,” Proc. IEEE Solid State Sensor and Actuator Workshop, 1–4.

    Google Scholar 

  21. Frazier AB, Allen MG (1992) High aspect ratio electroplated microstructures using a photosensitive polyimide process, Proc. IEEE MEMS Conf., Travemuende, Germany, 87–92

    Google Scholar 

  22. Furlani EP (2001) Permanent magnet and electromechanical devices. Academic Press, San Diego, CA, Ch 1

    Book  Google Scholar 

  23. Ge J, Turunen MPK, Kivilahti JK (2003) Surface modification and characterization of photodefinable epoxy/copper systems. Thin Solid Films 440:198–207

    Article  Google Scholar 

  24. Gilles P-A, Delamare J, Cugat O (2002) Rotor for a brushless micromotor. J. Magnet Magn. Mat. 242–245:1186–1189

    Article  Google Scholar 

  25. Guan S, Nelson BJ (2005a) Pulse-reverse electrodeposited nanograinsized CoNiP thin films and microarrays for MEMS actuators. J. Electrochem. Soc. 152(4):C190–C195

    Article  Google Scholar 

  26. Guan S, Nelson BJ (2005b) Fabrication of hard magnetic microarrays by electroless codeposition for MEMS actuators. Sens. & Actuat. A 118:307–312

    Article  Google Scholar 

  27. Guan S, Nelson BJ (2006) Magnetic composite electroplating for depositing micromagnets. J. Microelectromech. Syst. 15(2):330–337

    Article  Google Scholar 

  28. Lagorce L, Allen MG (1997) Magnetic and mechanical properties of micromachined strontium ferrite/polyimide composites. J. Microelectromech. Syst. 6(4):307–312

    Article  Google Scholar 

  29. Lammeraner J, Stafl M (1966) Eddy current. Iliffe, London, ch.1–2.

    Google Scholar 

  30. Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vettiger P (1997) SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 7:121–124

    Article  Google Scholar 

  31. Magnetic Materials Producers Association, MMPA Standard No. 0100-00, Standard Specifications for Permanent Magnet Materials. Available http://www.intl-magnetics.org

  32. Nordström M, Johansson A, Noguerón ES, Clausen B, Calleja M, Boisen A (2005) Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold. Microelec. Eng. 78–79:152–157

    Google Scholar 

  33. O’Handley RC (2000) Modern magnetic materials. Wiley, New York

    Google Scholar 

  34. Park JY, Han SH, Allen MG (1999) Batch-fabricated microinductors with electroplated magnetically anisotropic and laminated alloy cores. IEEE Trans. Magn. 35:4291–4300

    Article  Google Scholar 

  35. Park JW, Park JY, Joung YH, Allen MG (2002) Fabrication of high current and low profile micromachined inductor with laminated Ni/Fe core. IEEE Trans. Comp. Packag. Technol. 25:106–111

    Article  Google Scholar 

  36. Park JW, Allen MG (2003) Ultralow-profile micromachined power inductors with highly laminated Ni/Fe cores: Application to low-megahertz dc-dc converters. IEEE Trans. Magn. 39:3184–3186

    Article  Google Scholar 

  37. Pawlowski B, Töpfer J (2004) Permanent magnetic NdFeB thick films. J. Mat. Sci. 39:1321–1324

    Article  Google Scholar 

  38. Rhen FMF, Backen E, Coey JMD (2005) Thick-film permanent magnets by membrane electrodeposition. J. Appl. Phys. 97:113908

    Article  Google Scholar 

  39. Riley CD, Jewell GW, Howe D (1998) The design and analysis of axial field multipole impulse magnetizing fixtures. J. App. Phys. 83:7112–7114

    Article  Google Scholar 

  40. Romankiw LT, Croll I, Hatzakis M (1970) Batch-fabricated thin film magnetic recording heads. IEEE Trans. Magn. 6(3):597–601

    Article  Google Scholar 

  41. Romero JJ, Cuadrado R, Pina E, de Hoyos A, Pigazo F, Palomares FL, Hernando A, Sastre R, Gonzalez JM (2006) Anisotropic polymer bonded hard-magnetic films for microelectromechanical system applications. J. Appl. Phys. 99:08N303

    Article  Google Scholar 

  42. Schlesinger M, Paunovic M, Eds. (2000) Modern electroplating, 4th Ed. Wiley, New York

    Google Scholar 

  43. Schmidt MA (1988) Wafer-to-wafer bonding for microstructure formation. Proc. IEEE 86: 1575–1585

    Article  Google Scholar 

  44. Sullivan CR, Sanders SR (1995) Microfabrication process for high frequency power-conversion transformers. Proc. 26th Annu. Power Electronics Specialists Conf., June 1995, pp. 658–664

    Google Scholar 

  45. Thongmee S, Ding J, Lin JY, Blackwood DJ, Yi JB, Yin JH (2007) FePt films fabricated by electrodeposition. J. Appl. Phys. 101:09K519

    Article  Google Scholar 

  46. Tong Q-Y, Gösele U (1999) Semiconductor wafer bonding: science and technology. Wiley, New York

    Google Scholar 

  47. Töpfer J, Christoph V (2004) Multi-pole magnetization of NdFeB sintered magnets and thick films for magnetic micro-actuators. Sens. Actuat. A 113:257–263

    Article  Google Scholar 

  48. Trimmer W (1989) Microrobots and micromechanical systems. Sens. Actuat. 19:267–287

    Article  Google Scholar 

  49. Wagner, B, Kreutzer M, Benecke W (1992) Linear and rotational magnetic micromotorsfabricated using silicon technology. Proc. IEEE MEMS Conf., Travemuende, Germany, 183–189

    Google Scholar 

  50. Wang N, Arnold DP (2008) Thick electroplated Co-rich Co–Pt micromagnet arrays for magnetic MEMS. IEEE Trans. Magn. 44:3969–3972

    Article  Google Scholar 

  51. Wang N, Bowers BJ, Arnold DP (2008) Wax-bonded NdFeB micromagnets for microelectromechanical systems applications. J. Appl. Phys. 103:07E109

    Article  Google Scholar 

  52. Xu M, Liakopoulos TM, Ahn CH, Han SH, Kim HJ (1998) A microfabricated transformer for high-frequency power or signal conversion. IEEE Trans. Magn. 34:1369–1371

    Article  Google Scholar 

  53. Yufeng S, Wang H, Ding G, Cui F, Zhang W, Chen W (2005) Electroplated hard magnetic material and its application in microelectromechanical systems. IEEE Trans. Magn. 41(12):4380–4383

    Article  Google Scholar 

  54. Zana I, Herrault F, Arnold DP, Allen MG (2005) Magnetic patterning of permanent-magnet rotors for microscale motor/generators. Proc. 5th Int. Workshop Micro Nanotechnology For Power Generation and Energy Conversion Apps. (PowerMEMS 2005), Tokyo, Japan, Nov. 2005, 116–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arnold, D.P., Allen, M.G. (2009). Fabrication of Microscale Rotating Magnetic Machines. In: Lang, J. (eds) Multi-Wafer Rotating MEMS Machines. MEMS Reference Shelf. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77747-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77747-4_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77746-7

  • Online ISBN: 978-0-387-77747-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics