Skip to main content

Abstract

Antibody, also known as immunoglobulin, is normally made in the body in defense of foreign antigen or invading pathogen. Highly specific biorecognition property of antibody with antigen has made antibody as one of the most indispensable molecules for broad application, not only in the diagnosis or detection but also in prevention or curing of diseases. Animals are routinely used for production of both polyclonal and monoclonal antibodies; however, recombinant and phage display technologies are being adopted to improve antibody specificity and to cut cost for antibody production. Available genome sequence of pathogens is also allowing researchers to find and select suitable target antigens for production of antibody with improved specificity. In recent years, however, demand for antibody is even greater as novel biosensor or nanotechnology-based methods continue to utilize antibody for analyte capture and interrogation. Conventional immunoassay methods such as lateral flow and enzyme-linked immunoassays, though lack sensitivity, are available commercially and are widely used. While biosensor-based methods such as time-resolved fluorescence immunoassay, chemiluminescence assay, electrochemical immunoassay, surface plasmon resonance sensor, fiber optic sensor, and microfluidic biochip have, in some cases, demonstrated improved sensitivity, they require further optimization with real-world samples. Furthermore, environmental stress and the growth media are known to affect the physiological state of microorganism and antigen expression, often rendering unsatisfactory signal response from immunoassays. Thus, one must understand the microorganisms’ response to these factors before designing an immunoassay to avoid false results. With the advent of microfluidics and nanotechnology, the adaptation of lab-on-chip concept in immunoassays will soon be a reality for near real-time detection of pathogens from food or clinical specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allos BM, Moore MR, Griffin PM and Tauxe RV (2004) Surveillance for sporadic foodborne disease in the 21st century: The foodnet perspective. Clin. Infect. Dis. 38: S115–S120

    Google Scholar 

  • Amagliani G, Omiccioli E, del Campo A, Bruce IJ, Brandi and Magnani M (2006) Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J. Appl. Microbiol. 100: 375–383

    Google Scholar 

  • Anderson GP, King KD, Gaffney KL and Johnson LH (2000) Multi-analyte interrogation using the fiber optic biosensor. Biosens. Bioelectron. 14: 771–777

    Google Scholar 

  • Angeletti RH (1999) Design of useful peptide antigens. J. Biomol. Tech. 10: 2–10

    Google Scholar 

  • Bak H, Ekeroth L and Houe H (2007) Quality control using a multilevel logistic model for the danish pig salmonella surveillance antibody-ELISA programme. Prev. Vet. Med. 78: 130–41

    Google Scholar 

  • Balasubramanian S, Sorokulova IB, Vodyanoy VJ and Simonian AL (2007) Lytic phage as a specific and selective probe for detection of staphylococcus aureus - a surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22: 948–955

    Google Scholar 

  • Banada PP, Liu YS, Yang LJ, Bashir R and Bhunia AK (2006) Performance evaluation of a low conductive growth medium (LCGM) for growth of healthy and stressed Listeria monocytogenes and other common bacterial species. Intl. J. Food Microbiol. 111: 12–20

    Google Scholar 

  • Bange A, Halsall HB and Heineman WR (2005) Microfluidic immunosensor systems. Biosens. Bioelectron. 20: 2488–2503

    Google Scholar 

  • Barbuddhe SB, Chaudhari SP and Malik SVS (2002) The occurrence of pathogenic Listeria monocytogenes and antibodies against Listeriolysin-o in buffaloes. J. Vet. Med. B-Infect. Dis. Vet. Pub. Health. 49:181–184

    Google Scholar 

  • Bauwens L, Vercammen F and Hertsens A (2003) Detection of pathogenic Listeria spp. In zoo animal faeces: Use of immunomagnetic separation and a chromogenic isolation medium. Vet. Microbiol. 91:115–123

    Google Scholar 

  • Bennett-Wood VR, Russell J, Bordun A-M, Johnson PDR and Robins-Browne RM (2004) Detection of enterohaemorrhagic Escherichia coli in patients attending hospital in Melbourne, Australia. Pathology 36: 345–51

    Google Scholar 

  • Bergwerff AA and Van Knapen F (2006) Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J. AOAC Int. 89:826–831

    Google Scholar 

  • Bhunia AK (1997) Antibodies to Listeria monocytogenes. Crit. Rev. Microbiol. 23: 77–107

    Google Scholar 

  • Bhunia AK (2006) Detection of significant bacterial pathogens and toxins of interest in homeland security. In: Amass SF, Bhunia AK, Chaturvedi AR, Dolk DR, Peeta S, and Atallah MJ (eds) The Science of Homeland Security. Purdue University Press, West Lafayette, Indiana

    Google Scholar 

  • Bhunia AK and Johnson MG (1992) Monoclonal antibody specific for Listeria monocytogenes associated with 66-kDa cell surface antigen. Appl. Environ.Microbiol. 58:1924–1929

    Google Scholar 

  • Bhunia AK, Ball PH, Fuad AT, Kurz BW, Emerson JW and Johnson MG (1991) Development and characterization of a monoclonal-antibody specific for Listeria monocytogenes and Listeria innocua. Infect. Immun. 59:3176–3184

    Google Scholar 

  • Bhunia AK, Banada PP, Banerjee P, Valadez A, Hirleman ED (2007) Light scattering, fiber optic and cell-based sensors for sensitive detection of foodborne pathogens. J. Rapid Methods Automat. Microbiol. 15:121–145

    Google Scholar 

  • Bialek M, Grabowski S, Kaminski Z and Kaca W (2006) Synthetic peptides mimicking antigenic epitope of helicobacter pylori urease. Acta Biochimica. Polonica. 53:83–86

    Google Scholar 

  • Blais BW, Bosley J, Martinez-Perez A and Popela M (2006) Polymyxin-based enzyme-linked immunosorbent assay for the detection of Escherichia coli O111 and O26. J. Microbiol. Methods 65: 468–475

    Google Scholar 

  • Boerlin P, Boerlin-Petzold F and Jemmi T (2003) Use of Listeriolysin O and internalin A in a seroepidemiological study of Listeriosis in swiss dairy cows. J. Clin. Microbiol. 41:1055–1061

    Google Scholar 

  • Bohaychuk VM, Gensler GE, King RK, Wu JT and McMullen LM (2005) Evaluation of detection methods for screening meat and poultry products for the presence of foodborne pathogens. J. Food Prot. 68: 2637–2647

    Google Scholar 

  • Briggs J, Dailianis A, Hughes D and Garthwaite I (2004) Validation study to demonstrate the equivalence of a minor modification (TECRA®, ULTIMA™ protocol) to AOAC method 998.09 (TECRA® Salmonella visual immunoassay) with the cultural reference method. J. AOAC Int. 87:374–379

    Google Scholar 

  • Cadieux B, Blanchfield B, Smith JP and Austin JW (2005) A rapid chemiluminescent slot blot immunoassay for the detection and quantification of Clostridium botulinum neurotoxin type E, in cultures. Int. J Food Microbiol. 101: 9–16

    Google Scholar 

  • Cai HY, Lu L, Muckle CA, Prescott JF and Chen S (2005) Development of a novel protein microarray method for serotyping Salmonella enterica strains. J. Clin. Microbiol. 43: 3427–3430

    Google Scholar 

  • Cauchard J, Taouji S, Sevin C, Duquesne F, Bernabe M, Laugier C and Ballet JJ (2006) Immunogenicity of synthetic rhodococcus equi virulence-associated protein peptides in neonate foals. Int. J. Med. Microbiol. 296:389–396

    Google Scholar 

  • CDC (2006) Update on multi-state outbreak of E. coli O157:H7 infections from fresh spinach, October 6, 2006. In: Department of Health and Human Services (ed) E. coli O157:H7 Outbreak in Spinach. Center for Disease control and Prevention (CDC), Atlanta, Georgia, http://www.cdc.gov/foodborne/ecolispinach/100606.htm

    Google Scholar 

  • Chander H, Majumdar S, Sapru S and Rishi P (2004) Reactivity of typhoid patients sera with stress induced 55 kda phenotype in Salmonella enterica serovar Typhi. Mol. Cell. Biochem. 267: 75–82

    Google Scholar 

  • Chandler DP, Brown J, Call DR, Wunschel S, Grate JW, Holman DA, Olson L, Stottlemyre MS and Bruckner-Lea CJ (2001) Automated immunomagnetic separation and microarray detection of E. coli O157: H7 from poultry carcass rinse. Int. J. Food Microbiol. 70:143–154

    Google Scholar 

  • Chapman PA and Ashton R (2003) An evaluation of rapid methods for detecting Escherichia coli O157 on beef carcasses. Int. J. Food Microbiol. 87, 279–285

    Google Scholar 

  • Chapman PA and Cudjoe KS (2001) Evaluation of BeadRetriever™, an automated system for concentration of Escherichia coli O157 from enrichment cultures by immunomagnetic separation. J. Rapid Methods Automat. Microbiol. 9: 203–214

    Google Scholar 

  • Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T and Hain T (2006) Intracellular gene expression profile of Listeria monocytogenes. Infect. Immun. 74:1323–1338

    Google Scholar 

  • Chaudhari SP, Malik SVS, Chatlod LR and Barbuddhe SB (2004) Isolation of pathogenic Listeria monocytogenes and detection of antibodies against phosphatidylinositol-specific phospholipase C in buffaloes. Comp. Immunol. Microbiol. Infect. Dis. 27:141–148

    Google Scholar 

  • Cheng VCC, Yew WW and Yuen KY (2005) Molecular diagnostics in tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. 24:711–720

    Google Scholar 

  • Chung HJ, Bang W and Drake MA (2006) Stress response of Escherichia coli. Compr. Rev. Food Sci. Food Safety 5:52–64

    Google Scholar 

  • Croci L, Delibato E,Volpe G, De Medici D and Palleschi G (2004) Comparison of PCR, electrochemical enzyme-linked immunosorbent assays, and the standard culture method for detecting salmonella in meat products. Appl. Environ. Microbiol. 70:1393–1396

    Google Scholar 

  • Dale JB, Chiang EY, Hasty DL and Courtney HS (2002) Antibodies against a synthetic peptide of saga neutralize the cytolytic activity of streptolysins from group A streptococci. Infect. Immun. 70:2166–2170

    Google Scholar 

  • De Paula AMR, Gelli DS, Landgraf M, Destro MT and Franco B (2002) Detection of Salmonella in foods using TECRA Salmonella VIA and TECRA Salmonella UNIQUE rapid immunoassays and a cultural procedure. J. Food Prot. 65: 552–555

    Google Scholar 

  • DeCory TR, Durst RA, Zimmerman SJ, Garringer LA, Paluca G, DeCory HH and Montagna RA (2005) Development of an immunomagnetic bead-immunoliposome fluorescence assay for rapid detection of Escherichia coli 0157: H7 in aqueous samples and comparison of the assay with a standard microbiological method. Appl. Environ. Microbiol. 71: 1856–1864

    Google Scholar 

  • DeMarco DR and Lim DV (2002) Detection of Escherichia coli O157: H7 in 10-and 25-gram ground beef samples with an evanescent-wave biosensor with silica and polystyrene waveguides. J. Food Prot. 65: 596–602

    Google Scholar 

  • Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H and Nystrom T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Reports 4: 400–404

    Google Scholar 

  • Dmitriev DA, Massino YS, Segal OL, Smirnova MB, Pavlova EV, Gurevich KG, Gnedenko OV, Ivanov YD, Kolyaskina GI, Archakov AI, Osipov AP, Dmitriev AD and Egorov AM (2002) Analysis of the binding of bispecific monoclonal antibodies with immobilized antigens (human IgG and horseradish peroxidase) using a resonant mirror biosensor. J. Immunol. Methods 261: 103–118

    Google Scholar 

  • Donnelly CW (2002) Detection and isolation of Listeria monocytogenes from food samples: Implications of sub lethal injury. J. AOAC Int. 85: 495–500

    Google Scholar 

  • Duncanson P, Wareing DRA and Jones O (2003) Application of an automated immunomagnetic separation-enzyme immunoassay for the detection of Salmonella spp. During an outbreak associated with a retail premises. Lett. Appl. Microbiol. 37:144–148

    Google Scholar 

  • Ekong TAN, McLellan K and Sesardic D (1995) Immunological detection of Clostridium botulinum toxin type A in therapeutic preparations. J. Immun. Method. 180:181–191

    Google Scholar 

  • Emanuel P, Obrien T, Burans J, DasGupta BR, Valdes JJ and Eldefrawi M (1996) Directing antigen specificity towards botulinum neurotoxin with combinatorial phage display libraries. J. Immunol. Methods 193: 189–197

    Google Scholar 

  • Emanuel PA, Dang J, Gebhardt JS, Aldrich J, Garber EAE, Kulaga H, Stopa P, Valdes JJ and Dion-Schultz A (2000). Recombinant antibodies: A new reagent for biological agent detection. Biosens. Bioelectron. 14:751–759

    Google Scholar 

  • Fegan N, Higgs G, Vanderlinde P and Desmarchelier P (2004) Enumeration of Escherichia coli O157 in cattle faeces using most probable number technique and automated immunomagnetic separation. Lett. Appl. Microbiol. 38: 56–59

    Google Scholar 

  • Feng P (2001) Rapid methods for detecting foodborne pathogens. In Bacteriological Analytical Manual, Ed. 8 (revised: Jan 25, 2001)

    Google Scholar 

  • Ferreira JL, Eliasberg SJ, Edmonds P and Harrison MA (2004) Comparison of the mouse bioassay and enzyme-linked immunosorbent assay procedures for the detection of type a botulinal toxin in food. J. Food Prot. 67:203–206

    Google Scholar 

  • Filiatrault MJ, Wagner VE, Bushnell D, Haidaris CG, Iglewski BH and Passador L (2005) Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infect. Immun. 73: 3764–3772

    Google Scholar 

  • Fratamico PM (2003) Comparison of culture, polymerase chain reaction (PCR), Taqman Salmonella, and TRANSIA card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol. Cell. Probe. 17: 215–221

    Google Scholar 

  • Fratamico PM, Strobaugh TP, Medina MB and Gehring AG (1998) Detection of Escherichia coli O157: H7 using a surface plasmon resonance biosensor. Biotechnol. Tech. 12: 571–576

    Google Scholar 

  • Fu Z, Rogelj S and Kieft TL (2005) Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 99: 47–57

    Google Scholar 

  • Gasanov U, Hughes D and Hansbro PM (2005) Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: A review. FEMS Microbiol. Rev. 29: 851–875

    Google Scholar 

  • Gehring AG, Patterson DL and Tu SI (1998) Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157: H7. Anal. Biochem. 258: 293–298

    Google Scholar 

  • Gehring AG, Irwin PL, Reed SA, Tu SI, Andreotti PE, Akhavan-Tafti H and Handley RS (2004) Enzyme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. J. Immunol. Methods 293: 97–106

    Google Scholar 

  • Gehring AG, Albin DM, Bhunia AK, Reed SA, Tu S-I and Uknalis J (2006) Antibody microarray detection of Escherichia coli O157:H7: Quantification, assay limitations, and capture efficiency. Anal. Chem. 78:6601–6607

    Google Scholar 

  • Geng T and Bhunia AK (2007) Optical biosensors in foodborne pathogen detection. In: Knopf GK and Bassi AS (eds) Smart Biosensor Technology. Taylor and Francis, Boca Raton, Florida, pp 503–519

    Google Scholar 

  • Geng T, Kim KP, Gomez R, Sherman DM, Bashir R, Ladisch MR and Bhunia AK (2003) Expression of cellular antigens of Listeria monocytogenes that react with monoclonal antibodies C11E9 and EM-7G1 under acid-, salt- or temperature-induced stress environments. J. Appl. Microbiol. 95: 762–772

    Google Scholar 

  • Geng T, Morgan MT and Bhunia AK (2004) Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl. Environ. Microbiol. 70: 6138–6146

    Google Scholar 

  • Geng T, Uknalis J, Tu SI and Bhunia AK (2006) Fiber-optic biosensor employing Alexa-fluor conjugated antibody for detection of Escherichia coli O157: H7 from ground beef in four hours. Sensors 6: 796–807

    Google Scholar 

  • Geng T, Hahm BK and Bhunia AK (2006b) Selective enrichment media affect the antibody-based detection of stress-exposed Listeria monocytogenes due to differential expression of anti body-reactive antigens identified by protein sequencing. J. Food Prot. 69: 1879–1886

    Google Scholar 

  • Germani Y, Deroquigny H and Begaud E (1994) Escherichia coli heat-stable enterotoxin (stA)-biotin enzyme-linked-immunosorbent-assay (stA-biotin ELISA). J. Immunol. Methods 173: 1–5

    Google Scholar 

  • Giletto A and Fyffe JG (1998) A novel ELISA format for the rapid and sensitive detection of staphylococcal enterotoxin A. Biosci. Biotechnol. Biochem. 62: 2217–2222

    Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F et al. (2001) Comparative genomics of Listeria species. Science 294: 849–852

    Google Scholar 

  • Goldman ER, Pazirandeh MP, Mauro JM, King KD, Frey JC and Anderson G P (2000) Phage-displayed peptides as biosensor reagents. J. Mol. Recognit. 13: 382–387

    Google Scholar 

  • Gracias KS and McKillip JL (2004) A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 50: 883–890

    Google Scholar 

  • Gray KM and Bhunia AK (2005) Specific detection of cytopathogenic Listeria monocytogenes using a two-step method of immunoseparation and cytotoxicity analysis. J. Microbiol. Methods 60: 259–268

    Google Scholar 

  • Grow AE, Wood LL, Claycomb JL and Thompson PA (2003) New biochip technology for label-free detection of pathogens and their toxins. J. Microbiol. Methods 53: 221–233

    Google Scholar 

  • Haggerty TD, Perry S, Sanchez L, Perez-Perez G and Parsonnet J (2005) Significance of transiently positive enzyme-linked immunosorbent assay results in detection of helicobacter pylori in stool samples from children. J. Clin. Microbiol. 43:2220–2223

    Google Scholar 

  • Hahm BK and Bhunia AK (2006) Effect of environmental stresses on antibody-based detection of Escherichia coli O157: H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J. Appl. Microbiol.100:1017–1027

    Google Scholar 

  • Hara-Kudo Y, Kumagai S, Masuda T, Goto K, Ohtsuka K, Masaki H, Tanaka H, Tanno K, Miyahara M and Konuma H (2001) Detection of Salmonella enteritidis in shell and liquid eggs using enrichment and plating. Int. J. Food Microbiol. 64:395–399

    Google Scholar 

  • Hearty S, Leonard P, Quinn J and O’Kennedy R (2006) Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. J. Microbiol. Methods 66: 294–312

    Google Scholar 

  • Hitchins AD (1998) Chapter 10, Listeria monocytogenes, FDA Bacteriological Analytical Manual. AOAC Int., Maryland

    Google Scholar 

  • Homola J, Dostalek J, Chen SF, Rasooly A, Jiang SY and Yee SS (2002) Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int. J. Food Microbiol. 75:61–69

    Google Scholar 

  • Homola J, Yee SS and Gauglitz G (1999) Surface plasmon resonance sensors: Review. Sens. Actuat. B-Chem. 54:3–15

    Google Scholar 

  • Hoogenboom HR (2005) Selecting and screening recombinant antibody libraries. Nature Biotechnol. 23:1105–1116

    Google Scholar 

  • Howell SW, Inerowicz HD, Regnier FE and Reifenberger R (2003) Patterned protein microarrays for bacterial detection. Langmuir 19:436–439

    Google Scholar 

  • Hsieh HV, Stewart B, Hauer P, Haaland P and Campbell R (1998) Measurement of Clostridium perfringens beta-toxin production by surface plasmon resonance immunoassay. Vaccine 16: 997–1003

    Google Scholar 

  • Hsih HY and Tsen HY (2001) Combination of immunomagnetic separation and polymerase chain reaction for the simultaneous detection of Listeria monocytogenes and Salmonella spp. in food samples. J. Food Prot. 64: 1744–1750

    Google Scholar 

  • Huang TT, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP and Ladisch MR (2003) Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol. Bioeng. 81:618–624

    Google Scholar 

  • Hudson JA, Lake RJ, Savill MG, Scholes P and McCormick RE (2001) Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J. Appl. Microbiol. 90: 614–621

    Google Scholar 

  • Huelseweh B, Ehricht R and Marschall HJ (2006) A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics 6: 2972–2981

    Google Scholar 

  • Huesca M, Sun Q, Peralta R, Shivji GM, Sauder DN and McGavin MJ (2000) Synthetic peptide immunogens elicit polyclonal and monoclonal antibodies specific for linear epitopes in the d motifs of Staphylococcus aureus fibronectin-binding protein, which are composed of amino acids that are essential for fibronectin binding. Infect. Immun. 68:1156–1163

    Google Scholar 

  • Imaz MS, Comini MA, Zerbini E, Sequeira MD, Latini O, Claus JD and Singh M (2004) Evaluation of commercial enzyme-linked immunosorbent assay kits for detection of tuberculosis in Argentinean population. J. Clin. Microbiol. 42: 884–887

    Google Scholar 

  • Inerowicz HD, Howell S, Regnier FE and Reifenberger R (2002) Multiprotein immunoassay arrays fabricated by microcontact printing. Langmuir 18: 5263–5268

    Google Scholar 

  • Jaradat ZW and Bhunia AK (2002) Glucose and nutrient concentrations affect the expression of a 104-kilodalton listeria adhesion protein in Listeria monocytogenes. Appl. Environ. Microbiol. 68: 4876–4883

    Google Scholar 

  • Jenikova G, Pazlarova J and Demnerova K (2000) Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int. Microbiol. 3: 225–9

    Google Scholar 

  • Jesudason MV and Sivakumar S (2006) Prospective evaluation of a rapid diagnostic test TyphiDot® for typhoid fever. Ind. J. Med. Res. 123:513–516

    Google Scholar 

  • Jordan D, Vancov T, Chowdhury A, Andersen LM, Jury K, Stevenson AE and Morris SG. (2004) The relationship between concentration of a dual marker strain of Salmonella typhimurium in bovine faeces and its probability of detection by immunomagnetic separation and culture. J. Appl. Microbiol. 97:1054–1062

    Google Scholar 

  • Jung YS, Frank JF and Brackett RE (2003) Evaluation of antibodies for immunomagnetic separation combined with flow cytometry detection of Listeria monocytogenes. J. Food Prot. 66:1283–1287

    Google Scholar 

  • Kane MM and Banks JN (2000) Raising antibodies. In: Goosling J (ed) Immunoassays: a practical approach. Oxford University Press, location?

    Google Scholar 

  • Kendall PA, Hillers VV and Medeiros LC (2006) Food safety guidance for older adults. Clin. Infect. Dis. 42:1298–1304

    Google Scholar 

  • Khuebachova M, Verzillo V, Skrabana R, Ovecka M, Vaccaro P, Panni S, Bradbury A and Novak M (2002) Mapping the c terminal epitope of the Alzheimer’s disease specific antibody MN423. J. Immunol. Methods 262: 205–215

    Google Scholar 

  • Kim S-H, Park M-K, Kim J-Y, Chuong PD, Lee Y-S, Yoon B-S, Hwang K-K and Lim Y-K (2005) Development of a sandwich ELISA for the detection of Listeria spp. using specific flagella antibodies. J. Vet. Sci. 6:41–6

    Google Scholar 

  • Kishen A, John MS, Lim CS and Asundi A (2003) A fiber optic biosensor (FOBS) to monitor mutants of streptococci in human saliva. Biosens. Bioelectron. 18:1371–1378

    Google Scholar 

  • Kovacs-Nolan J, Marshall P and Mine Y (2005) Advances in the value of egg and egg components for human health., J. Agric. Food Chem. 53: 8421–8431

    Google Scholar 

  • Kramer MF and Lim DV (2004) A rapid and automated fiber optic-based biosensor assay for the detection of Salmonella in spent irrigation water used in the sprouting of sprout seeds. J. Food Prot. 67:46–52

    Google Scholar 

  • Lathrop AA (2005) Development of Listeria monocytogenes specific antibodies using a proteomics/genomics approach and expression of antibody-specific antigens inlB and actA under different environments. Food Science. Purdue University, West Lafayette

    Google Scholar 

  • Lathrop AA, Banada PP and Bhunia AK (2008) Differential expression of InlB and ActA in Listeria monocytogenes in selective and nonselective enrichment broths J. Appl. Microbiol. 104:627–639

    Google Scholar 

  • Lathrop AA, Huff K and Bhunia AK (2006) Prevalence of antibodies reactive to pathogenic and nonpathogenic bacteria in preimmune serum of New Zealand white rabbits. J. Immunoass. Immunochem. 27:351–361

    Google Scholar 

  • Lathrop AA, Jaradat ZW, Haley T and Bhunia AK (2003) Characterization and application of a Listeria monocytogenes reactive monoclonal antibody C11E9 in a resonant mirror biosensor. J. Immun. Methods 281:119–128

    Google Scholar 

  • Lemes-Marques EG and Yano T (2004) Influence of environmental conditions on the expression of virulence factors by Listeria monocytogenes and their use in species identification. FEMS Microbiol. Lett. 239:63–70

    Google Scholar 

  • Leonard P, Hearty S, Wyatt G, Quinn J and O’Kennedy R (2005) Development of a surface plasmon resonance - based immunoassay for Listeria monocytogenes. J. Food Prot. 68: 728–735

    Google Scholar 

  • Leung WK, Ng EKW, Chan FKL, Chung SCS and Sung JJY (1999) Evaluation of three commercial enzyme-linked immunosorbent assay kits for diagnosis of Helicobacter pylori in Chinese patients. Diag. Microbiol. Infect. Dis. 34: 13–17

    Google Scholar 

  • Li XM, Boudjellab N and Zhao X (2000) Combined PCR and slot blot assay for detection of Salmonella and Listeria monocytogenes. Int. J. Food Microbiol. 56:167–177

    Google Scholar 

  • Li YB and Su XL (2006) Microfluidics-based optical biosensing method for rapid detection of Escherichia coli O157: H7. J. Rapid Methods Automat. Microbiol. 14:96–109

    Google Scholar 

  • Liddell E (2005) Antibodies. In: Wild D (ed) The Immunoassay Handbook, 3rd ed. Elsevier Ltd., New York

    Google Scholar 

  • Lim CT and Y Zhang (2007) Bead-based microfluidic immunoassays: The next generation. Biosens. Bioelectron. 22:1197–1204

    Google Scholar 

  • Lim DV (2003) Detection of microorganisms and toxins with evanescent wave fiber-optic biosensors. Proc. IEEE. 91: 902–907

    Google Scholar 

  • Lim DV, Simpson JM, Kearns EA and Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin. Microbiol. Rev. 18: 583–607

    Google Scholar 

  • Lin FYH, Sabri M, Alirezaie J, Li DQ and Sherman PM (2005) Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms. Clin. Diagn. Lab. Immunol. 12: 418–425

    Google Scholar 

  • Lin M, Todoric D, Mallory M, Luo BS, Trottier E and Dan HH (2006) Monoclonal antibodies binding to the cell surface of Listeria monocytogenes serotype 4b. J. Med. Microbiol. 55: 291–299

    Google Scholar 

  • Lindstrom M and Korkeala H (2006) Laboratory diagnosis of botulism. Clin. Microbiol. Rev. 19: 298–314

    Google Scholar 

  • Liu YC, Ye JM and Li YB (2003) Rapid detection of Escherichia coli O157: H7 inoculated in ground beef, chicken carcass, and lettuce samples with an immunomagnetic chemiluminescence fiber-optic biosensor. J. Food Prot. 66: 512–517

    Google Scholar 

  • Lu D, Shen JQ, Vil MD, Zhang HF, Jimenez X, Bohlen P, Witte L and Zhu ZP (2003) Tailoring in vitro selection for a picomolar affinity human antibody directed against vascular endothelial growth factor receptor 2 for enhanced neutralizing activity. J. Biol. Chem. 278: 43496–43507

    Google Scholar 

  • Macario AJL and De Macario EC (1988) Monoclonal-antibodies against bacteria. Biotechnol. Adv. 6:135–150

    Google Scholar 

  • Madonna AJ, Basile F, Furlong E and Voorhees KJ (2001) Detection of bacteria from biological mixtures using immunomagnetic separation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 15: 1068–1074

    Google Scholar 

  • Madonna AJ, Van Cuyk S and Voorhees KJ (2003) Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.17: 257–263

    Google Scholar 

  • Marr AK, Josephj B, Mertins S, Ecke R, Muller-Altrock S and Goebel W (2006) Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J. Bacteriol. 188: 3887–3901

    Google Scholar 

  • Maruta T, Oshima M, Deitiker PR, Ohtani M and Atassi MZ (2006). Use of alum and inactive Bordetella pertussis for generation of antibodies against synthetic peptides in mice. Immunol. Invest. 35: 137–148

    Google Scholar 

  • McCafferty J, Griffiths AD, Winter G and Chiswell DJ (1990) Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 348:552–4

    Google Scholar 

  • Meeusen CA, Alocilja EC and Osburn WN (2005) Detection of E. coli O157:H7 using a miniaturized surface plasmon resonance biosensor. Trans ASAE 48, 2409–2416

    Google Scholar 

  • Mercanoglu B and Griffiths MW (2005) Combination of immunomagnetic separation with real-time pcr for rapid detection of Salmonella in milk, ground beef, and alfalfa sprouts. J. Food Prot. 68: 557–561

    Google Scholar 

  • Milohanic E, Glaser P, Coppee JY, Frangeul L, Vega Y, Vazquez-Boland JA, Kunst F, Cossart P and Buchrieser C 2003. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by prfA. Mol. Microbiol. 47:1613–1625

    Google Scholar 

  • Miwa K, Fukuyama M, Sakai R, Shimizu S, Ida N, Endo M and Igarashi H (2000) Sensitive enzyme-linked immunosorbent assays for the detection of bacterial superantigens and antibodies against them in human plasma. Microbiol. Immunol. 44:519–523

    Google Scholar 

  • Morhard F, Pipper J, Dahint R and Grunze M (2000) Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensor Actuat. B-Chem. 70:232–242

    Google Scholar 

  • Muhle C, Schulz-Drost S, Khrenov AV, Saenko EL, Klinge J and Schneider H (2004) Epitope mapping of polyclonal clotting factor VIII-inhibitory antibodies using phage display. Thromb. Haemostasis. 91: 619–625

    Google Scholar 

  • Nanduri V, Kim G, Morgan MT, Ess D, Hahm BK, Kothapalli A, Valadez A, Geng T and Bhunia AK (2006) Antibody immobilization on waveguides using a flow-through system shows improved Listeria monocytogenes detection in an automated fiber optic biosensor: RAPTOR™. Sensors 6: 808–822

    Google Scholar 

  • Nanduri V, Bhunia AK, Tu S-I, Paoli GC and Brewster JD (2007a) SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosens. Bioelectron. 23:248–252.

    Google Scholar 

  • Nanduri V, Sorokulova IB, Somoylov AM, Simonian AL, Petrenko VA and Vodyanoy V (2007b) Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22: 986–992.

    Google Scholar 

  • Nannapaneni R, Story R, Bhunia AK and Johnson MG (1998a) Reactivities of genus-specific monoclonal antibody EM-6E11 against Listeria species and serotypes of Listeria monocytogenes grown in nonselectvie and selective enrichment broth media. J. Food Prot. 61:1195–1198.

    Google Scholar 

  • Nannapaneni R, Story R, Bhunia AK and Johnson MG (1998b) Unstable expression and thermal instability of a species-specific cell surface epitope associated with a 66-kilodalton antigen recognized by monoclonal antibody EM-7G1 within serotypes of Listeria monocytogenes grown in nonselective and selective broths. Appl. Environ. Microbiol. 64:3070–3074.

    Google Scholar 

  • Nataro JP and Kaper JB (1998) Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142–201

    Google Scholar 

  • Nedelkov D and Nelson RW (2003) Detection of staphylococcal enterotoxin B via biomolecular interaction analysis mass spectrometry. Appl. Environ. Microbiol. 69: 5212–5215

    Google Scholar 

  • Nijdam AJ, Ming-Cheng Cheng M, Geho DH, Fedele R, Herrmann P, Killian K, Espina V, Petricoin EF 3rd, Liotta LA and Ferrari M (2007) Physicochemically modified silicon as a substrate for protein microarrays. Biomaterials 28:550–8

    Google Scholar 

  • Olsen SJ, Pruckler J, Bibb W, Thanh NTM, Trinh TM, Minh NT, Sivapalasingam S, Gupta A, Phuong PT, Chinh NT, Chau NV, Cam PD and Mintz ED (2004) Evaluation of rapid diagnostic tests for typhoid fever. J. Clin. Microbiol. 42: 1885–1889

    Google Scholar 

  • On SLW (1996) Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9:405–

    Google Scholar 

  • Orlandi R, Gussow DH, Jones PT and Winter G (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain-reaction. Proc. Nat. Acad. Sci. USA 86:3833–3837

    Google Scholar 

  • Padhye NV and Doyle MP (1991) Rapid procedure for detecting enterohemorrhagic Escherichia coli O157:H7 in food. Appl. Environ. Microbiol. 57:2693–2698

    Google Scholar 

  • Pan K, Wang H, Zhang H-B, Liu H-W, Lei H-T, Huang L and Sun Y-M (2006) Production and characterization of single chain Fv directed against beta 2-agonist clenbuterol. J. Agric. Food Chem. 54: 6654–9

    Google Scholar 

  • Paoli GC, Chen CY and Brewster JD (2004) Single-chain Fv antibody with specificity for Listeria monocytogenes. J. Immunol. Methods 289:147–155

    Google Scholar 

  • Park CE, Akhtar M and Rayman MK (1994) Evaluation of a commercial enzyme-immunoassay kit (RIDASCREEN) for detection of staphylococcal enterotoxins A, B, C, D and E in foods. Appl. Environ. Microbiol. 60: 677–681

    Google Scholar 

  • Park CH, Vandel NM and Hixon DL (1996) Rapid immunoassay for detection of Escherichia coli O157 directly from stool specimens. J. Clin. Microbiol. 34:988–990

    Google Scholar 

  • Pavlickova P, Schneider EM and Hug H (2004) Advances in recombinant antibody microarrays. Clinica. Chimica. Acta. 343:17–35

    Google Scholar 

  • Perkins MD, Conde MB, Martins A and Kritski AL (2003) Serologic diagnosis of tuberculosis using a simple commercial multiantigen assay. Chest 123: 107–112

    Google Scholar 

  • Peruski AH, Johnson LH and Peruski LF (2002) Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J. Immunol. Methods 263: 35–41

    Google Scholar 

  • Peruski AH and Peruski LF (2003) Immunological methods for detection and identification of infectious disease and biological warfare agents. Clin. Diagn. Lab. Immun. 10: 506–513

    Google Scholar 

  • Petrenko VA and Vodyanoy VJ (2003) Phage display for detection of biological threat agents. J. Microbiol. Methods 53, 253–262

    Google Scholar 

  • Posner B, Lee I, Itoh T, Pyati J, Graff R, Thorton GB, Lapolla R and Benkovic SJ (1993) A revised strategy for cloning antibody gene fragments in bacteria. Gene. 128:111–117

    Google Scholar 

  • Rasooly A and Herold KE (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. J. AOAC Int. 89: 873–883

    Google Scholar 

  • Ray B and Bhunia AK (2008) Fundamental Food Microbiology, Chapter 41. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Reinders RD, Barna A, Lipman LJA and Bijker PGH (2002) Comparison of the sensitivity of manual and automated immunomagnetic separation methods for detection of shiga toxin-producing Escherichia coli O157: H7 in milk. J. Appl. Microbiol. 92:1015–1020

    Google Scholar 

  • Rich RL and Myszka DG (2006) Survey of the year 2005 commercial optical biosensor literature. J. Mol. Recognit. 19:478–534

    Google Scholar 

  • Sakamoto C, Yamaguchi N and Nasu M (2005) Rapid and simple quantification of bacterial cells by using a microfluidic device. Appl. Environ. Microbiol. 71:1117–1121

    Google Scholar 

  • Schotte U, Langfeldt N, Peruski AH and Meyer H (2002) Detection of staphylococcal enterotoxin B (SEB) by enzyme-linked immunosorbent assay and by a rapid hand-held assay. Clin. Lab. 48:395–400

    Google Scholar 

  • Shetron-Rama LM, Mueller K, Bravo JM, Bouwer HGA, Way SS and Freitag NE (2003) Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol. Microbiol. 48: 1537–1551

    Google Scholar 

  • Shin JH, Roe IH and Kim HG (2004) Production of anti-helicobacter pylori urease-specific immunoglobulin in egg yolk using an antigenic epitope of H. pylori urease. J. Med. Microbiol. 53: 31–34

    Google Scholar 

  • Simpson JM and Lim DV (2005) Rapid PCR confirmation of E. coli O157: H7 after evanescent wave fiber optic biosensor detection. Biosens. Bioelectron. 21:881–887

    Google Scholar 

  • Smith GP and Petrenko VA (1997) Phage display. Chem. Rev. 97: 391–410

    Google Scholar 

  • Sokolovic Z, Schuller S, Bohne J, Baur A, Rdest U, Dickneite C, Nichterlein T and Goebel, W (1996) Differences in virulence and in expression of prfA and prfA-regulated virulence genes of Listeria monocytogenes strains belonging to serogroup 4. Infect. Immun. 64: 4008–4019

    Google Scholar 

  • Sommerhauser J and Failing K (2006) Detection of Salmonella in faecal, tissue, and feed samples by conventional culture methods and VIDAS Salmonella test. Berl. Munch. Tierarztl. Wochenschr. 119:22–7

    Google Scholar 

  • Splettstoesser WD, Grunow R, Rahalison L, Brooks TJ, Chanteau S and Neubauer H (2003) Serodiagnosis of human plague by a combination of immunomagnetic separation and flow cytometry. Cytometry A. 53:88–96

    Google Scholar 

  • Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN and Slonczewski JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184:4246–4258

    Google Scholar 

  • Steller S, Angenendt P, Cahill DJ, Heuberger S, Lehrach H and Kreutzberger J (2005) Bacterial protein microarrays for identification of new potential diagnostic markers for Neisseria meningitidis infections. Proteomics 5:2048–2055

    Google Scholar 

  • Stokes DL, Griffin GD and Tuan VD (2001) Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresen. J. Anal. Chem. 369: 295–301

    Google Scholar 

  • Strachan NJC, John PG and Millar IG (1997) Application of a rapid automated immunosensor for the detection of Staphylococcus aureus enterotoxin B in cream. Int. J. Food Microbiol. 35: 293–297

    Google Scholar 

  • Straub TM, Dockendorff BP, Quinonez-Diaz MD, Valdez CO, Shutthanandan J I, Tarasevich BJ, Grate JW and Bruckner-Lea CJ (2005) Automated methods for multiplexed pathogen detection. J. Microbiol. Methods 62: 303–316

    Google Scholar 

  • Su X-L and Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal. Chem. 76: 4806–10

    Google Scholar 

  • Sue D, Fink D, Wiedmann M and Boor KJ (2004) SigmaB-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology-UK 150:3843–3855

    Google Scholar 

  • Taitt CR, Anderson GP and Ligler S (2005) Evanescent wave fluorescence biosensors. Biosens. Bioelectron. 20: 2470–2487

    Google Scholar 

  • Thanh NTK and Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal. Chem. 74: 1624–1628

    Google Scholar 

  • Thirumalapura NR, Morton RJ, Ramachandran A and Malayer JR (2005) Lipopolysaccharide microarrays for the detection of antibodies. J. Immunol. Methods 298: 73–81

    Google Scholar 

  • Thomas E, Bouma A, van Eerden E,Landman WJM, van Knapen F, Stegeman A and Bergwerff AA (2006) Detection of egg yolk antibodies reflecting salmonella enteritidis infections using a surface plasmon resonance biosensor. J. Immunol. Methods 315: 68–74

    Google Scholar 

  • Tsurumi Y, Hayakawa M, Shibata Y and Abiko Y (2003) Production of antibody against a synthetic peptide of Porphyromonas gingivalis 40-kDa outer membrane protein. J. Oral Sci. 45:111–116

    Google Scholar 

  • Tu S-I, Golden M, Andreotti P, Irwin P (2002) The use of time-resolved fluoroimmunoassay to simultaneously detect Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Enteriditis in foods. J. Rapid Methods Automat. Microbiol. 10:37–48

    Google Scholar 

  • Tu S-I,Golden M, Paoli G, Gore M and Gehring A (2004) Time-resolved fluorescence detection of shiga-like toxins produced by Escherichia coli O157 and non-O157 in ground beef. J. Rapid Methods Automat. Microbiol. 12: 247–258

    Google Scholar 

  • Tully E, Hearty S, Leonard P and O’Kennedy R (2006) The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int. J. Biol. Macromol. 39: 127–134

    Google Scholar 

  • Ueda S, Maruyama T and Kuwabara Y (2006) Detection of Listeria monocytogenes from food samples by PCR after IMS-plating. Biocontrol Sci. 11:129–34

    Google Scholar 

  • Uyttendaele M. Van Hoorde I and Debevere J (2000) The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 54: 205–212

    Google Scholar 

  • Uyttendaele M, Vanwildemeersch K and Debevere J (2003) Evaluation of real-time PCR vs automated ELISA and a conventional culture method using a semi-solid medium for detection of Salmonella. Lett. Appl. Microbiol. 37: 386–391

    Google Scholar 

  • Vanmaele RP and Armstrong GD (1997) Effect of carbon source on localized adherence of enteropathogenic Escherichia coli. Infect. Immun. 65: 1408–1413

    Google Scholar 

  • Varshney M,Yang L, Su X-L and Li Y (2005) Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J. Food Prot. 68:1804–11

    Google Scholar 

  • Veling J, van Zijderveld FG, Bemmel A, Schukken YH and Barkema HW (2001) Evaluation of two enzyme-linked immunosorbent assays for detecting salmonella enterica subsp enterica serovar dublin antibodies in bulk milk. Clin. Diagn. Lab. Immunol. 8:1049–1055

    Google Scholar 

  • Vernozy-Rozand C, Mazuy-Cruchaudet C, Bavai C and Richard Y (2004) Comparison of three immunological methods for detecting staphylococcal enterotoxins from food. Lett. Appl. Microbiol. 39: 490–494

    Google Scholar 

  • Visvanathan K, Charles A, Bannan J, Pugach P, Kashfi K and Zabriskie JB (2001) Inhibition of bacterial superantigens by peptides and antibodies. Infect. Immun. 69:875–884

    Google Scholar 

  • Vytrasova J, Zachova I, Cervenka L, Stepankova J and Pejchalova M (2005) Non-specific reactions during immunomagnetic separation of Listeria. Food Technol. Biotechnol. 43:397–401

    Google Scholar 

  • Warschkau H and Kiderlen AF (1999) A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J. Immunol. 163: 3409–3416

    Google Scholar 

  • Warsinke A, Benkert A and Scheller FW (2000) Electrochemical immunoassays. Fresenius J. Anal. Chem. 366:622–634

    Google Scholar 

  • Watanabe K, Arakawa H and Maeda M (2002) Simultaneous detection of two verotoxin genes using dual-label time-resolved fluorescence immunoassay with duplex PCR. Luminescence 17:123–129

    Google Scholar 

  • Williams DD, Benedek O and Turnbough Jr. CL (2003) Species-specific peptide ligands for the detection of Bacillus anthracis spores. Appl. Environ. Microbiol. 69:6288–6293

    Google Scholar 

  • Wu MH, Guina T, Brittnacher M, Nguyen H, Eng J and Miller SI (2005) The Pseudomonas aeruginosa proteome during anaerobic growth. J. Bacteriol. 187: 8185–8190

    Google Scholar 

  • Yang LJ, Banada PP, Chatni MR, Lim KS, Bhunia AK, Ladisch M and Bashir R (2006) A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. Lab Chip. 6:896–905

    Google Scholar 

  • Yang LJ and Li YB (2005) Quantum dots as fluorescent labels for quantitative detection of Salmonella Typhimurium in chicken carcass wash water. J. Food Prot. 68:1241–1245

    Google Scholar 

  • Yazdankhah SP, Solverod L, Simonsen S and Olsen E (1999) Development and evaluation of an immunomagnetic separation-ELISA for the detection of Staphylococcus aureus thermostable nuclease in composite milk. Vet. Microbiol. 67:113–125

    Google Scholar 

  • Yeh KS, Tsai CE, Chen SP and Liao CW (2002) Comparison between VIDAS automatic enzyme-linked fluorescent immunoassay and culture method for Salmonella recovery from pork carcass sponge samples. J. Food Prot. 65:1656–1659

    Google Scholar 

  • Yu KY, Noh Y, Chung MS, Park HJ, Lee N, Youn M, Jung BY and Youn BS (2004) Use of monoclonal antibodies that recognize p60 for identification of Listeria monocytogenes. Clin. Diagn. Lab. Immunol. 11:446–451

    Google Scholar 

  • Yu LSL, Reed SA and Golden MH (2002) Time-resolved fluorescence immunoassay (TRFIA) for the detection of Escherichia coli O157: H7 in apple cider. J. Microbiol. Methods 49:63–68

    Google Scholar 

  • Zamora BM and Hartung M (2002) Chemiluminescent immunoassay as a microtiter system for the detection of Salmonella antibodies in the meat juice of slaughter pigs. J. Vet. Med. B. 49: 338–345

    Google Scholar 

  • Zhao ZJ and Liu XM (2005) Preparation of monoclonal antibody and development of enzyme-linked immunosorbent assay specific for Escherichia coli O157 in foods. Biomed. Environ. Sci. 18:254–259

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Banada, P.P., Bhunia, A.K. (2008). Antibodies and Immunoassays for Detection of Bacterial Pathogens. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics