Skip to main content

Microbial Genetic Analysis Based on Field Effect Transistors

  • Chapter
  • 4865 Accesses

Abstract

In this chapter, potentiometric detection methods for microbial DNA involved recognition events by use of genetic field effect devices will be described. Fundamental principles of field effect devices and the technical background with their ongoing applications in the field of bio-sensor technologies, termed bio-FET, will be first introduced. Then concept of genetic field effect transistor will be described with emphasis on their fabrication, characteristics, and recent applications to microbial Single Nucleotide Polymorphysms (SNPs) Analysis as well as DNA sequencing. By comparing to other conventional methods, technical significance and future perspective of the genetic field effect transistor will also be discussed in detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beattie WG, Meng L, Turner SL, Varma RS, Dao DD and Beattie KL (1995) Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol. Biotechnol. 4:213–225

    Article  Google Scholar 

  • Boger DL, Fink BE, Brunette SR, Tse WC and Hedrick MP (2001) A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity. J. Am. Chem. Soc. 123:5878–5891

    Article  Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris M. S and Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    Article  Google Scholar 

  • Chrisey LA, Lee GU and O’Ferrall CE (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucl. Acids. Res. 24:3031–3039

    Article  Google Scholar 

  • Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C and Klenerman D (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat. Biotechnol. 19:833–837

    Article  Google Scholar 

  • Crumbliss AL, Perine SC, Stonehuerner J, Tubergen KR, Zuhao J, Henkens RW and O’Daly JP (1992) Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol. Bioeng. 40:483–490

    Article  Google Scholar 

  • Dengler WA, Schulte J, Berger DP, Mertelsmann R and Fiebig HH (1995) Development of a propidium iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs 6:522–532

    Article  Google Scholar 

  • Disley DM, Cullen DC, You H-X and Lowe CR (1998) Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial-recognition layer of a surface plasmon resonance immunosensor. Biosens, Bioelectron. 13:1213–1225

    Article  Google Scholar 

  • Duschl C, Sevin-Landais AF and Vogel H (1996) Surface engineering: optimization of antigen presentation in self-assembled monolayers. Biophys. J. 70:1985–1995

    Google Scholar 

  • Eggers M, Hogan M, Reich RK, Lamture J, Ehrlich D, Hollis M, Kosicki B, Powdrill T, Beattie K and Smith S (1994) A microchip for quantitative detection of molecules utilizing luminescent and radioisotope reporter groups. Biotechniques 17:516–525

    Google Scholar 

  • Fritz J, Cooper EB, Gaudet S, Sorger PK and Manails SR (2002) Proceedings of the. National Academy of Science, USA 99:14142–14146

    Article  Google Scholar 

  • Gilles PN, Wu DJ, Foster CB, Dillon PJ and Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchip. Nat. Biotechnol. 17:365–370

    Article  Google Scholar 

  • Guo Z, Guilfoyle RA, Thiel AJ, Wang R and Smith LM (1994) Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res. 22:5456–5465

    Article  Google Scholar 

  • Guo Z, Gatterman MS, Hood L, Hansen JA and Petersdorf EW (2001) Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res. 12:447–457

    Google Scholar 

  • Haff L and Smirnov IP (1997) Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res. 7:378:388

    Google Scholar 

  • Hiller M, Kranz C, Huber J, Baeuerle P and Schuhmann W (1996) Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Adv. Mater 8:219–222

    Article  Google Scholar 

  • Howell WM, Jobs M, Gyllensten U and Brookes AJ (1999) Dynamic allele-specific hybridization. Nat. Biotechnol. 17:87–88

    Article  Google Scholar 

  • Huang E, Satjapipat M, Han S and Zhou F (2001) Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 17:1215–1224

    Article  Google Scholar 

  • Jobs M, Howell WM, Stromqvist L, Mayr T and Brookes AJ (2003) DASH-2: Flexible, Low-Cost, and High-Throughput SNP Genotyping by Dynamic Allele-Specific Hybridization on Membrane Arrays. Genome Res. 13:916–924

    Article  Google Scholar 

  • Kajiyama T, Miyahara Y, Kricka LJ, Wilding P, Graves DJ, Surrey S and Fortina P (2003) Genotyping on a thermal gradient DNA chip. Genome Res. 13:467–475

    Article  Google Scholar 

  • Kallury KMR, Krull UJ and Thompson M (1998) X-ray photoelectron spectroscopy of silica surfaces treated with polyfunctional silanes. Anl. Chem. 60:169–172

    Article  Google Scholar 

  • Kim D-S, Jeong Y-T, Park H-J, Shin J-K, Choi P, Lee J-H and Lim G (2004) An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosensors and Bioelectronics 20:69–74

    Article  Google Scholar 

  • Kumar A, Larsson O, Parodi D and Liang Z (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucl. Acids. Res. 28:e71

    Article  Google Scholar 

  • Landegren U, Kaiser R, Sanders J and Hood L (1988) A ligase-mediated detection technique. Science 241:1077–1080

    Article  Google Scholar 

  • Landegren U, Nilsson M and Kwok P-Y (1998) Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 8:769–776

    Google Scholar 

  • Livak KJ, Marmaro J and Todd JA (1995) Towards full automated genome-wide polymorphism screening. Nat. Genet. 9:341–342

    Article  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H and Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14:1675–1680

    Article  Google Scholar 

  • Lu B, Xie J, Lu C, Wu C and Wei Y (1995) Oriented immobilization of Fab’ fragments on silica surfaces. Anal. Chem. 67:83–87

    Article  Google Scholar 

  • Manz A, Miyahara Y, Miura J, Watanabe Y, Miyagi H and Sato K (1990) Design of an open-tubular column liquid chromatograph using silicon chip technology. Sensors and Actuators B 1:249–255

    Article  Google Scholar 

  • Miyahara Y, Moriizumi T and Ichimura K (1985) Integrated enzyme FETs for simultaneous detections of urea and glucose. Sensors and Actuators 7:1–10

    Article  Google Scholar 

  • Miyahara Y, Tsukada K and Miyagi H (1988) Field-effect transistor using a solid electrolyte as a new oxygen sensor. J. Appl. Phys. 63:2431–2434

    Article  Google Scholar 

  • Miyahara Y, Tsukada K, Miyagi H and Simon W (1991) Urea sensor based on an ammonium ion-sensitive field effect transistor. Sensors and Actuators B 3:287–293

    Article  Google Scholar 

  • Miyahara Y and Simon W (1991) Comparative studies between ion-selective field effect transistors and ion-selective electrodes with polymeric membranes. Electroanalysis 3:287–291

    Article  Google Scholar 

  • Miyahara Y, Tsukada K, Shibata Y and Watanabe Y (1994) Long-life planar oxygen sensor. Sensors and Actuators B 20:89–94

    Article  Google Scholar 

  • Mrksich M, Chen CS, Xia Y, Dike LE, Ingber DE and Whitesides GM (1996) Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold. Proceedings of the National Academy of Science 93:10775–10778

    Article  Google Scholar 

  • Nakajima H, Esashi M and Matsuo T (1980) The pH-response of organic gate ISFETs and the influence of macro-molecule adsorption. Nippon Kagaku Kaishi No. 10:1499–1508

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K and Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Science 86:2766–2770

    Article  Google Scholar 

  • Parker M, Patel N, Davies MC, Roberts CJ, Tendler SJB and Williams PM (1996) A novel organic solvent-based coupling method for the preparation of covalently immobilized proteins on gold. Protein Sci. 5:2329–2332

    Google Scholar 

  • Parsons BL and Heflich RH (1997) Genotypic selection methods for the direct analysis of point mutations. Mutat. Res. 387:97–121

    Article  Google Scholar 

  • Pastinen T, Partanen J and Syvanen AC (1996) Multiplex fluorescent, solid-phase minisequencing for efficient screening of DNA sequence variation. Clin. Chem. 42:1391–1397

    Google Scholar 

  • Pastinen T, Kurg A, Metspalu A, Peltonen L and Syvanen AC (1997) A specific tool for DNA analysis and diagnostics on oligonucleotide assays. Genome Res. 7:606–614

    Google Scholar 

  • Pastinen T, Raitio M, Lindroos K, Tainola P, Peltonen L and Syvanen A-C (2000) A system for specific, high-throughput genotyping by allele-specific primer extension on microarray. Genome Res. 10:1031–1042

    Article  Google Scholar 

  • Pirrung MC (2002) How to make a DNA chip. Angew. Chem. Int. Ed. 41:1276–1289

    Article  Google Scholar 

  • Pouthas F, Gentil,C, Cote D and Bockelmann U (2004) DNA detection on transistor arrays following mutation-specific enzymatic amplification. Appl. Phys. Let. 84:1594–1596

    Article  Google Scholar 

  • Qian J, Liu Y, Liu H, Yu T and Deng J (1997) Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H2O2 sensor. Biosens, Bioelectron 12:1213–1218

    Article  Google Scholar 

  • Rickert J, Weiss T and Gopel W (1996) Self-assembled monolayers for chemical sensors: molecular recognition by immobilized supramolecular structure. Sens. Actuators B 31:45–50

    Article  Google Scholar 

  • Ronagi M, Uhlen M and Nyren P (1998) A sequence method based on real-time pyrophosphate detection. Science 281:363–365

    Article  Google Scholar 

  • Rye HS, Yue S, Quesada MA, Haugland RP, Mathies RA and Glazer AN (1993) Picogram detection of stable dye-DNA intercalation complexes with two-color laser-excited confocal fluorescence gel scanner. Methods Enzymol. 217:414–431

    Article  Google Scholar 

  • Saiki RK, Walsh RS, Levenson CH and Erlich HA (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Nat. Acad. Sci. USA 86:6230–6234

    Article  Google Scholar 

  • Sakahara H and Saga T (1999) Avidin–biotin system for delivery of diagnostic agents. Adv. Drug Delivery Rev. 37:89–101

    Article  Google Scholar 

  • Sakata T and Miyahara Y (2005a) Detection of DNA recognition events using multi-well field effect devices. Biosensors and Bioelectronics 21:827–832

    Article  Google Scholar 

  • Sakata T and Miyahara Y (2005b) Potentiometric detection of single nucleotide polymorphism by using a genetic field-effect transistor. ChemBioChem 6:703–710

    Article  Google Scholar 

  • Sakata T and Miyahara Y (2006) DNA sequencing based on intrinsic molecular charges. Angewandte Chemie International Edition 45:2225–2228

    Article  Google Scholar 

  • Sauer S, Lechner D, Berlin K, Lehrach H, Escary J-L, Fox N and Gut IG (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucl. Acids. Res. 28:e13

    Article  Google Scholar 

  • Schene M, Shalon D, Davis RW and Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  Google Scholar 

  • Shlyakhtenko LS, Gall AA, Weimer JJ, Hawn DD and Lyubchenko YL (1999) Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate. Biophys. J. 77:568–576

    Article  Google Scholar 

  • Silberzan P, Leger L, Ausserre D and Bennattar JJ (1991) Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir 7:1647–1651

    Article  Google Scholar 

  • Sirkar K and Pishko MV (1998) Amperometric biosensors based on oxidoreductases immobilized in photopolymerized poly(ethylene glycol) redox polymer hydrogels. Anal. Chem. 70:2888–2894

    Article  Google Scholar 

  • Souteyrand E, Cloarec JP, Martin JR, Wilson C, Lawrence I, Mikkelsen S and Lawrence MF (1997) Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect. J. Phys. Chem. B 101:2980–2985

    Article  Google Scholar 

  • Sriram M, van der Marel GA, Roelen HLPF, van Boom JH and Wang AH-J (1992) Structural consequences of a carcinogenic alkylation lesion on DNA: effect of O6-ethylguanine on the molecular structure of the d(CGC[e6G]AATTCGCG) -netropsin complex. Biochemistry 31:11823–11834

    Article  Google Scholar 

  • Steel AB, Herne TM and Tarlov MJ (1998) Electrochemical quantitation of DNA immobilized on gold. Anal. Chem. 70:4670–4677

    Article  Google Scholar 

  • Strother T, Cai W, Zhao X, Hamers RJ and Smith LM (2000) Synthesis and characterization of DNA-modified silicon (111) surfaces. J. Am. Chem. Soc. 122:1205–1209

    Article  Google Scholar 

  • Strother T, Hamers RJ and Smith LM (2000) Covalent attachment of oligodeoxyribonucleotides to amine-modified Si (001) surfaces. Nucleic Acids Res. 28:3535–3541

    Article  Google Scholar 

  • Syvanen A-C (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2:930–942

    Article  Google Scholar 

  • Thiel AJ, Frutos AG, Jordan CE, Corn RM and Smith LM (1997) In situ surface plasmon resonance imaging detection of DNA hybridization to oligonucleotide arrays on gold surfaces. Anal. Chem. 69:4948–4956

    Article  Google Scholar 

  • Tiefenauer L and Ros R (2002) Biointerface analysis on a molecular level new tools for biosensor research. Colloids and Surfaces B 23: 95–114

    Article  Google Scholar 

  • Tsukada K, Miyahara Y, Shibata Y and Miyagi H (1990) An integrated chemical sensor with multiple ion and gas sensors. Sensors and Actuators B 2:291–295

    Article  Google Scholar 

  • Tyagi S, Bratu DP and Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16:49–53

    Article  Google Scholar 

  • Tyagi S, Marras SAE and Kramer FR (2000) Wavelength-shifting molecular beacons. Nat. Biotechnol. 18:1191–1196

    Article  Google Scholar 

  • Uslu F, Ingebrandt S, Mayer D, Böcker-Meffert S, Odenthal M and Offenhäusser A (2004) Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device. Biosensors and Bioelectronics 19:1723–1731

    Article  Google Scholar 

  • Vandenberg E, Elwing H, Askendal A and Lundstrom I (1991) Structure of 3-aminopropyl triethoxy silane on silicon oxide. J. Colloids Interface Sci. 147:103–118

    Article  Google Scholar 

  • Wikstrom P, Mandenium CF and Larsson P (1988) Phase Silylation, a rapid method for preparation of high-performance liquid chromatography supports. J. Chromatogr. 455:105–117

    Article  Google Scholar 

  • Wilson WD, Tanious FA, Barton HJ, Strekowski L and Boykin DW (1989) Binding of 4’,6-diamidino-2-phenylindole (DAPI) to GC and mixed sequences in DNA: intercalation of a classical groove-binding molecule. J. Am. Chem. Soc. 111:5008–5010

    Article  Google Scholar 

  • Yon-Hin B, Smolander M, Crompton T and Lowe CR (1993) Covalent electropolymerization of glucose oxidase in polypyrrole. Evaluation of methods of pyrrole attachment to glucose oxidase on the performance of electropolymerized glucose sensors. Anal. Chem. 65: 2067–2071

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miyahara, Y., Sakata, T., Matsumoto, A. (2008). Microbial Genetic Analysis Based on Field Effect Transistors. In: Zourob, M., Elwary, S., Turner, A. (eds) Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75113-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-75113-9_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-75112-2

  • Online ISBN: 978-0-387-75113-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics