Skip to main content

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Amplified detection of DNA is a central research topic in modern bioanalytical science. Electronic or optical transduction of DNA recognition events provides readout signals for DNA biosensors. Amplification of the DNA analysis is accomplished by the coupling of nucleic acid-functionalized enzymes or nucleic acid-functionalized nanoparticles (NP) as labels for the DNA duplex formation. This chapter discusses the amplified amperometric analysis of DNA by redox enzymes, the amplified optical sensing of DNA by enzymes or DNAzymes, and the amplified voltammetric, optical, or microgravimetric analysis of DNA using metallic or semiconductor nanoparticles. Further approaches to amplify DNA detection involve the use of micro-carriers of redox compounds as labels for DNA complex formation on electrodes, or the use of micro-objects such as liposomes, that label the resulting DNA complexes on electrodes and alter the interfacial properties of the electrodes. Finally, DNA machines are used for the optical detection of DNA, and the systems are suggested as future analytical procedures that could substitute the polymerase chain reaction (PCR) process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amine, A., Mohammadi, H., Bourais, I. and Palleschi, G. (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 21:1405–1423.

    CAS  Google Scholar 

  2. Rodriguez-Mozaz, S., de Alda, M.J.L. and Barcelo, D. (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal. Bioanal. Chem. 386:1025–1041.

    CAS  Google Scholar 

  3. Sadik, O.A., Land, W.H. and Wang, J. (2003) Targeting chemical and biological warfare agents at the molecular level. Electroanalysis 15:1149–1159.

    CAS  Google Scholar 

  4. Caminade, A.M., Padie, C., Laurent, R., Maraval, A. and Majoral, J.P. (2006) Uses of den-drimers for DNA microarrays. Sensors 6:901–914.

    CAS  Google Scholar 

  5. Epstein, J.R., Biran, I. and Walt, D.R. (2002) Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469:3–36.

    CAS  Google Scholar 

  6. Sapsford, K.E., Pons, T., Medintz, I.L. and Mattoussi, H. (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953.

    CAS  Google Scholar 

  7. Katz, E. and Willner, I. (2003) Probing biomolecular interactions at conductive and semicon-ductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNAsensors, and enzyme biosensors. Electroanalysis 15:913–947.

    CAS  Google Scholar 

  8. Gooding, J.J. (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14: 1149–1156.

    CAS  Google Scholar 

  9. Drummond, T.G., Hill, M.G. and Barton, J.K. (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21:1192–1199.

    CAS  Google Scholar 

  10. Duman, M., Saber, R. and Piskin, E. (2003) A new approach for immobilization of oligonu-cleotides onto piezoelectric quartz crystal for preparation of a nucleic acid sensor for following hybridization. Biosens. Bioelectron. 18:1355–1363.

    CAS  Google Scholar 

  11. Mulvaney, P. (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800.

    CAS  Google Scholar 

  12. Alvarez, M.M., Khoury, J.T., Schaaff, T.G., Shafigullin, M.N., Vezmar, I. and Whetten, R.L. (1997) Optical absorption spectra of nanocrystal gold molecules J. Phys. Chem. B 101: 3706–3712.

    CAS  Google Scholar 

  13. Hutter, E. and Fendler, J.H. (2004) Exploitation of localized surface plasmon resonance. Adv. Mater. 16:1685–1706.

    CAS  Google Scholar 

  14. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. and Storhoff, J.J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature (Lond.) 382:607–609.

    CAS  Google Scholar 

  15. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. and Mirkin, C.A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081.

    CAS  Google Scholar 

  16. Storhoff, J.J., Elghanian, R., Mucic, R.C., Mirkin, C.A. and Letsinger, R.L. (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120:1959–1964.

    CAS  Google Scholar 

  17. Reynolds, R.A., Mirkin, C.A. and Letsinger, R.L. (2000) Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122:3795–3796.

    CAS  Google Scholar 

  18. Souza, G.R. and Miller, J.H. (2001) Oligonucleotide detection using angle-dependent light scattering and fractal dimension analysis of gold-DNA aggregates. J. Am. Chem. Soc. 123:6734–6735.

    CAS  Google Scholar 

  19. Jin, R.C., Wu, G., Li, Z., Mirkin, C.A. and Schatz, G.C. (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 125:643–654.

    Google Scholar 

  20. Miao, W. and Bard, A.J. (2003) Electrogenerated chemiluminescence. 72. Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2′-bipyridyl) ruthenium(II) labels. Anal. Chem. 75:5825–5834.

    CAS  Google Scholar 

  21. Palecek, E. (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature (Lond.) 188:656–657.

    CAS  Google Scholar 

  22. Hashimoto, K., Ito, K. and Ishimori, Y. (1994) Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem. 66:3830–3833.

    CAS  Google Scholar 

  23. Jelen, F., Erdem A. and Palecek, E. (2002) Cyclic voltammetry of echinomycin and its interaction with double-stranded and single-stranded DNA adsorbed at the electrode. Bioelectrochemistry 55:165–167.

    CAS  Google Scholar 

  24. Takenaka, S., Yamashita, K., Takagi, M., Uto Y. and Kondo H. (2000) DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand. Anal. Chem. 72:1334–1341.

    CAS  Google Scholar 

  25. Fan, C., Plaxco, K.W. and Heeger, A.J. (2003) Electrochemical interrogation of conforma-tional changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl. Acad. Sci. USA 100:9134–9137.

    CAS  Google Scholar 

  26. Shin, J.K., Kim, D.S., Park, H.J. and Lim, G. (2004) Detection of DNA and protein molecules using an FET-type biosensor with gold as a gate metal. Electroanalysis 16:1912–1918.

    CAS  Google Scholar 

  27. Nicolini, C., Erokhin, V., Facci, P., Guerzoni, S., Ross, A. and Pashkevitch, P. (1997) Quartz balance DNA sensor. Biosens. Bioelectron. 12:613–618.

    CAS  Google Scholar 

  28. De Lumley-Woodyear, T., Campbell, C.N. and Heller, A. (1996) Direct enzyme-amplified electrical recognition of a 30-base model oligonucleotide. J. Am. Chem. Soc. 118:5504–5505.

    Google Scholar 

  29. Caruana, D.J. and Heller, A. (1999) Enzyme-amplified amperometric detection of hybridization and of a single base pair mutation in an 18-base oligonucleotide on a 7-μm-diameter microelectrode. J. Am. Chem. Soc. 121:769–774.

    CAS  Google Scholar 

  30. Ikebukuro, K., Kohiki, Y. and Sode, K. (2002) Amperometric DNA sensor using the pyrroquinoline quinone glucose dehydrogenase-avidin conjugate. Biosens. Bioelectron. 17: 1075–1080.

    CAS  Google Scholar 

  31. Patolsky, F., Weizmann Y. and Willner, I. (2002) Redox-active nucleic-acid replica for the amplified bioelectrocatalytic detection of viral DNA. J. Am. Chem. Soc. 124:770–772.

    CAS  Google Scholar 

  32. Carpini, G., Lucarelli, F., Marrazza, G. and Mascini, M. (2004) Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 20:167–175.

    CAS  Google Scholar 

  33. Patolsky, F., Lichtenstein, A. and Willner, I. (2003) Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes. Chem. Eur. J. 9:1137–1145.

    CAS  Google Scholar 

  34. Patolsky, F., Lichtenstein, A., Kotler, M. and Willner, I. (2001) Electronic transduction of polymerase or reverse transcriptase induced replication processes on surfaces: highly sensitive and specific detection of viral genomes. Angew. Chem. Int. Ed. 40:2261–2265.

    CAS  Google Scholar 

  35. Patolsky, F., Zayats, M., Katz, E. and Willner, I. (1999) Precipitation of an insoluble product on enzyme-monolayer-electrodes for biosensor applications: characterization by Faradaic impedance spectroscopy, cyclic voltammetry and microgravimetric quartz-crystal-microbal-ance analyses. Anal. Chem. 71:3171–3180.

    CAS  Google Scholar 

  36. Patolsky, F., Lichtenstein A. and Willner I. (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19:253–257.

    CAS  Google Scholar 

  37. Crowther, J.R. (1995) ELISA: theory and practice. Humana, Totowa, NJ.

    Google Scholar 

  38. Douillard, J.Y. and Hoffmann, T. (1983) Enzyme-linked immunosorbent-assay for screening monoclonal-antibody production using enzyme-labeled second antibody. Methods Enzymol. 92E:168–174.

    Google Scholar 

  39. Shlyahovsky, B., Pavlov, V., Kaganovsky, L. and Willner, I. (2006) Biocatalytic evolution of a biocatalyst marker: towards the ultrasensitive detection of immunocomplexes and DNA analysis. Angew. Chem. Int. Ed. 45:4815–4819.

    CAS  Google Scholar 

  40. Pavlov, V., Shlyahovsky, B. and Willner, I. (2005) Fluorescence detection of DNA by the catalytic activation of an aptamer/thrombin complex. J. Am. Chem. Soc. 127:6522–6523.

    CAS  Google Scholar 

  41. Patolsky, F., Katz, E. and Willner, I. (2002) Amplified DNA detection by electrogenerated bio-chemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. Angew. Chem. Int. Ed. 41:3398–3402.

    CAS  Google Scholar 

  42. Breaker, R.R. (2002) Engineered allosteric ribozymes as biosensor components. Curr. Opin. Biotechnol. 13:31–39.

    CAS  Google Scholar 

  43. Ellington, A.D. and Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature (Lond.) 346:818–822.

    CAS  Google Scholar 

  44. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment-RNA ligands to bacteriophage-T4 DNA polymerase. Science 249:505–510.

    CAS  Google Scholar 

  45. Travascio, P., Li, Y.F. and Sen, D. (1998) DNA-enhanced peroxidase activity of a DNA aptamer—hemin complex. Chem. Biol. 5:505–517.

    CAS  Google Scholar 

  46. Travascio, P., Bennet, A.J., Wang, D.Y. and Sen, D. (1999) A ribozyme and a catalytic DNA with peroxidase activity: active sites versus cofactor-binding sites. Chem. Biol. 6:779–787.

    CAS  Google Scholar 

  47. Xiao, Y., Pavlov, V., Niazov, T., Dishon, A., Kotler, M. and Willner, I. (2004) Catalytic beacons for the detection of DNA and telomerase activity. J. Am. Chem. Soc. 126:7430–7431.

    CAS  Google Scholar 

  48. Pavlov, V., Xiao, Y., Gill, R., Dishon, A., Kotler, M. and Willner, I. (2004) Amplified chemi-luminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal. Chem. 76:2152–2156.

    CAS  Google Scholar 

  49. Niazov, T., Pavlov, V., Xiao, Y., Gill, R. and Willner, I. (2004) DNAzyme-functionalized Au nan-oparticles for the amplified detection of DNA or telomerase activity. Nano Lett. 4:1683–1687.

    CAS  Google Scholar 

  50. Fu A.H., Gu, W.W., Larabell, C. and Alivisatos, A.P. (2005) Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 15:568–575.

    CAS  Google Scholar 

  51. Medintz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi, H. (2005) Quantum dot bioconju-gates for imaging, labelling and sensing. Nat. Mater. 4:435–446.

    CAS  Google Scholar 

  52. Hoshino, A., Fujioka, K., Manabe, N. and Yamaya, S. (2005) Simultaneous multicolor detection system of the single-molecular microbial antigen with total internal reflection fluorescence microscopy. Microbiol. Immunol. 49:461–470.

    CAS  Google Scholar 

  53. Patolsky, F., Gill., R., Weizmann, Y., Mokari, T., Banin, U. and Willner, I. (2003) Lighting-up the dynamics of telomerization and DNA replication by CdSe—ZnS quantum dots. J. Am. Chem. Soc. 125:13918–13919.

    CAS  Google Scholar 

  54. Polsky, R., Gill, R., Kaganovsky, L. and Willner, I. (2006) Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules. Anal. Chem. 78:2268–2271.

    CAS  Google Scholar 

  55. Gill, R., Polsky, R. and Willner, I. (2006) Pt nanoparticles functionalized with nucleic acid act as catalytic labels for the chemiluminescent detection of DNA and proteins. Small 2: 1037–1041.

    CAS  Google Scholar 

  56. Wang, J. (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1:1036–1043.

    CAS  Google Scholar 

  57. Park, S.J., Taton, T.A. and Mirkin, C.A., (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506.

    CAS  Google Scholar 

  58. Möller, R., Csáki, A., Köhler, J.M. and Fritzsche, W. (2001) Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 17:5426–5430.

    Google Scholar 

  59. Urban, M., Möller R. and Fritzsche, W. (2003) A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array. Rev. Sci. Instrum. 74:1077–1081.

    CAS  Google Scholar 

  60. Moreno-Hagelsieb, L., Lobert, P.E., Pampin, R., Bourgeois, D., Remacle J. and Flandre, D. (2004) Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes. Sens. Actuat. B 98:269–274.

    Google Scholar 

  61. Li, D., Yan, Y., Wieckowska, A. and Willner, I. (2008) Amplified electrochemical detection of DNA through the aggregation of Au nanoparticles on electrodes and the incorporation of methylene blue into the DNA-crosslinked structure. Chem. Commun. 3544–3546.

    Google Scholar 

  62. Taton, T.A., Mirkin, C.A. and Letsinger, R.L. (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760.

    CAS  Google Scholar 

  63. Taton, T.A., Lu, G.L. and Mirkin, C.A. (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc. 123:5164–5165.

    CAS  Google Scholar 

  64. Storhoff, J.J., Marla, S.S., Bao, P., Hagenow, S., Mehta, H., Lucas, A., Garimella, V., Patno, T., Buckingham, W., Cork, W. and Muller, U.R. (2004) Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens. Bioelectron. 19:875–883.

    CAS  Google Scholar 

  65. Bao, P., Huber, M., Wei, T.-F., Marla, S.S., Storhoff, J.J. and Müller, U.R. (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res. 33:e15.

    Google Scholar 

  66. Nam, J.-M., Stoeva, S.I. and Mirkin, C.A. (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. Am. Chem. Soc. 126:5932–5933.

    CAS  Google Scholar 

  67. Stoeva, S.I., Lee, J.-S., Thaxton, C.S. and Mirkin, C.A. (2006) Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew. Chem. Int. Ed. 45:3303–3306.

    CAS  Google Scholar 

  68. Cai, H., Xu, Y., Zhu, N., He, P. and Fang, Y. (2002) An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. Analyst 127:803–809.

    CAS  Google Scholar 

  69. Wang, J., Xu, D., Kawde, A.-N. and Polsky, R. (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 73:5576–5581.

    CAS  Google Scholar 

  70. Wang, J., Liu, G. and Zhu, Q. (2003) Indium microrod tags for electrochemical detection of DNA hybridization. Anal. Chem. 75:6218–6222.

    CAS  Google Scholar 

  71. Martin, C.R. (1995) Template synthesis of electronically conductive polymer nanostructures. Acc. Chem. Res. 28:61–68.

    CAS  Google Scholar 

  72. Zhu, N., Zhang, A., Wang, Q., He, P. and Fang, Y. (2004) Lead sulfide nanoparticle as oligonu-cleotides labels for electrochemical stripping detection of DNA hybridization. Electroanalysis 16:577–582.

    CAS  Google Scholar 

  73. Wang, J., Liu, G., Polsky, R. and Merkoçi, A. (2002) Electrochemical stripping detection of DNA hybridization based on cadmium sulfide nanoparticle tags. Electrochem. Commun. 4:722–726.

    CAS  Google Scholar 

  74. Wang, J., Liu, G. and Merkoçi, A. (2003) Electrochemical coding technology for simultaneous detection of multiple DNA targets. J. Am. Chem. Soc. 125:3214–3215.

    CAS  Google Scholar 

  75. Kerman, K., Saito, M., Morita, Y., Takamura, Y., Ozsoz, M. and Tamiya, E. (2004) Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal. Chem. 76:1877–1884.

    CAS  Google Scholar 

  76. Liu, G., Lee, T.M.H. and Wang, J. (2005) Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms, J. Am. Chem. Soc. 127:38–39.

    CAS  Google Scholar 

  77. Wang, J., Xu, D.K., Kawde, A.N. and Polsky, R. (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal. Chem. 73:5576–5581.

    CAS  Google Scholar 

  78. Wang, J., Polsky, R. and Xu, D.K. (2001) Silver-enhanced colloidal gold electrochemical stripping detection of DNA hybridization. Langmuir 17:5739–5741.

    CAS  Google Scholar 

  79. Buttry, D.A. and Ward, M.D. (1992) Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92:1355–1379.

    CAS  Google Scholar 

  80. Zhou, X.C., O'Shea, S.J. and Li, S.F.Y. (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem. Commun. 11:953–954.

    Google Scholar 

  81. Patolsky, F., Ranjit, K.T., Lichtenstein, A. and Willner, I. (2000) Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem. Commun. 1025–1026.

    Google Scholar 

  82. Liu, T., Tang, J. and Jiang, L. (2004) The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity. Biochem. Biophys. Res. Commun. 313:3–7.

    CAS  Google Scholar 

  83. Han, S., Lin, J., Satjapipat, M., Baca, A.J. and Zhou, F. (2001) A three-dimensional heterogeneous DNA sensing surface formed by attaching oligodeoxynucleotide-capped gold nanoparticles onto a gold-coated quartz crystal. Chem. Commun. 609–610.

    Google Scholar 

  84. Willner, I., Patolsky, F., Weizmann, Y. and Willner, B. (2002) Amplified detection of singlebase mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta 56:847–856.

    CAS  Google Scholar 

  85. Weizmann, Y., Patolsky, F. and Willner, I. (2001) Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst 126:1502–1504.

    CAS  Google Scholar 

  86. Wang, J., Polsky, R., Merkoçi, A. and Turner, K.L. (2003) “Electroactive beads” for ultrasensitive DNA detection. Langmuir 19:989–991.

    CAS  Google Scholar 

  87. Kawde, A.-N. and Wang, J. (2004) Amplified electrical transduction of DNA hybridization based on polymeric beads loaded with multiple gold nanoparticle tags. Electroanalysis 16:101–107.

    Google Scholar 

  88. Wang, J., Liu, G., Jan, M.R. and Zhu, Q. (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem. Commun. 5: 1000–1004.

    CAS  Google Scholar 

  89. Patolsky, F., Lichtenstein, A. and Willner, I. (2001) Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J. Am. Chem. Soc. 123:5194–5205.

    CAS  Google Scholar 

  90. Xu, Y., Cai, H., He, P.-G. and Fang, Y.-Z. (2004) Probing DNA hybridization by impedance measurement based on CdS-oligonucleotides. Electroanalysis 16:150–155.

    CAS  Google Scholar 

  91. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C. and Neumann, J.L. (2000) A DNA-fuelled molecular machine made of DNA. Nature (Lond.) 406:605–608.

    CAS  Google Scholar 

  92. Bath, J., Green, S.J. and Turberfield, A.J. (2005) A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44:4358–4361.

    CAS  Google Scholar 

  93. Tian, Y. and Mao, C. (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126:11410–11411.

    CAS  Google Scholar 

  94. Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303–308.

    CAS  Google Scholar 

  95. Beyer, S. and Simmel, F.C. (2006) A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Res. 34:1581–1587.

    CAS  Google Scholar 

  96. Beissenhirtz, M. and Willner, I. (2006) DNA-based machines. Org. Biomol. Chem. 4: 3392–3401.

    CAS  Google Scholar 

  97. Bath, J., Andrew, J. and Turberfield, J. (2007) DNA nanomachines. Nature (Lond.) 2: 275–284.

    CAS  Google Scholar 

  98. Liedl, T., Sobey, T.L. and Simmel, F.C. (2007) DNA-based nanodevices. Nanotoday 2: 36–41.

    Google Scholar 

  99. Weizmann, Y., Beissenhirtz, M., Cheglakov, Z., Nowarski, R., Kotler, M. and Willner, I. (2006) A virus spotlighted by an autonomous DNA machine. Angew. Chem. Int. Ed. 45:7384–7388.

    CAS  Google Scholar 

  100. Beissenhirtz, M., Elnathan, R., Weizmann, Y. and Willner, I. (2007) The aggregation of Au nanoparticles by an autonomous DNA machine detects viruses. Small 3:375–379.

    CAS  Google Scholar 

  101. Cheglakov, Z., Weizmann, Y., Basnar, B., Willner, I. (2007) Diagnosing viruses by the rolling-circle amplified synthesis of DNAzymes. Org. Biomol. Chem. 5:223–225.

    CAS  Google Scholar 

  102. Tian, Y., He, Y. and Mao, C.D. (2006) Cascade signal amplification for DNA detection. ChemBioChem 7:1862–1864.

    CAS  Google Scholar 

  103. Weizmann, Y., Cheglakov, Z., Pavlov, V. and Willner, I. (2006) Autonomous fueled mechanical replication of nucleic acid templates for the amplified optical detection of DNA. Angew. Chem. Int. Ed. 45:2238–2242.

    CAS  Google Scholar 

  104. Weizmann, Y., Cheglakov, Z., Pavlov, V. and Willner, I. (2006) An autonomous fueled machine that replicates catalytic nucleic acid templates for the amplified optical analysis of DNA. Nat. Protocols 1:554–558.

    CAS  Google Scholar 

  105. Gerion, D., Chen, F., Kannan, B., Fu, A., Parak, W.J., Chen, D.J., Majumdar, A. and Alivisatos, A.P. (2003) Room-temperature single-nucleotide polymorphism and multial-lele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75: 4766–4772.

    CAS  Google Scholar 

  106. Pathak, S., Choi, S.K., Arnheim, N. and Thompson, M.E. (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123:4103–4104.

    CAS  Google Scholar 

  107. Xiao, Y. and Barker, P.E. (2004) Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32:e28.

    Google Scholar 

  108. Kamat, P.V. (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111:2834–2860.

    CAS  Google Scholar 

  109. Adams, D.M., Brus, L., Chidsey, C.E.D., Creager, S., Creutz, C., Kagan, C.R., Kamat, P.V., Lieberman, M., Lindsay, S., Marcus, R.A., Metzger, R.M., Michel-Beyerle, M.E., Miller, J.R., Newton, M.D., Rolison, D.R., Sankey, O., Schanze, K.S., Yardley, J. and Zhu, X.Y. (2003) Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107:6668–6697.

    CAS  Google Scholar 

  110. Willner, I., Patolsky, F. and Wasserman, J. (2001) Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew. Chem. Int. Ed. 40:1861–1864.

    CAS  Google Scholar 

  111. Gill, R., Patolsky, F., Katz, E. and Willner, I. (2005) Electrochemical control of the photo-current direction in intercalated DNA/CdS nanoparticle systems. Angew. Chem. Int. Ed. 44:4554–4557.

    CAS  Google Scholar 

Download references

Acknowledgments

Our research on amplified DNA analyses is supported by the Israel Ministry of Science and Technology, and by the Johnson & Johnson Corporation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willner, I., Shlyahovsky, B., Willner, B., Zayats, M. (2009). Amplified DNA Biosensors. In: Yingfu, L., Yi, L. (eds) Functional Nucleic Acids for Analytical Applications. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73711-9_8

Download citation

Publish with us

Policies and ethics