Skip to main content

Recovery of Function in the Avian Auditory System After Ototrauma

  • Chapter
Hair Cell Regeneration, Repair, and Protection

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 33))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Buylla A, Ling CY, Yu WS (1994) Contribution of neurons born during embryonic, juvenile, and adult life to the brain of adult canaries: regional specificity and delayed birth of neurons in the song-control nuclei. J Comp Neurol 347:233–248.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57:751–758.

    Article  PubMed  Google Scholar 

  • Askew CH, Bateman K, Saunders JC, Gratton MA (2006) Ultrastuctural analysis of the tegmentum vasculosum after intense sound. Abs Assoc Res Otolaryngol 29:14.

    Google Scholar 

  • Brix J, Manley GA (1994) Mechanical and electromechanical properties of the stereovillar bundles of isolated and cultured hair cells of the chicken. Hear Res 76:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Brown AM, McDowell B, Forge A (1989) Acoustic distortion products can be used to monitor the effects of chronic gentamicin treatment. Hear Res 42:143–156.

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11:82–92.

    Article  PubMed  CAS  Google Scholar 

  • Burkard R, Salvi R, Chen L (1996) 2f1–f2 distortion product otoacoustic emissions in White Leghorn chickens (Gallus domesticus): effects of frequency ratio and relative level. Audiol Neurootol 1:197–213.

    PubMed  CAS  Google Scholar 

  • Chen L, Salvi RJ, Hashino E (1993) Recovery of CAP threshold and amplitude in chickens following kanamycin ototoxicity. Hear Res 69:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Salvi R, Shero M (1994) Cochlear frequency-place map in adult chickens: intracellular biocytin labeling. Hear Res 81:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Trautwein PG, Miller K, Salvi RJ (1995) Effects of kanamycin ototoxicity and hair cell regeneration on the DC endocochlear potential in adult chickens. Hear Res 89:28–34.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Trautwein PG, Shero M, Salvi RJ (1996) Tuning, spontaneous activity and tonotopic map in chicken cochlear ganglion neurons following sound-induced hair cell loss and regeneration. Hear Res 98:152–164.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Trautwein PG, Powers N, Salvi RJ (1997) Two-tone rate suppression boundaries of cochlear ganglion neurons in chickens following acoustic trauma. J Acoust Soc Am 102:2245–2254.

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Sun W, Salvi RJ (2001) Electrically evoked otoacoustic emissions from the chicken ear. Hear Res 161:54–64.

    Article  PubMed  CAS  Google Scholar 

  • Cohen YE, Saunders JC (1993) The effects of sound overexposure on the spectral response patterns of nucleus magnocellularis in the neonatal chick. Exp Brain Res 95:202–212.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA (1987a) Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear Res 30:181–196.

    Google Scholar 

  • Cotanche DA (1987b) Regeneration of the tectorial membrane in the chick cochlea following severe acoustic trauma. Hear Res 30:197–206.

    Google Scholar 

  • Cotanche DA (1997) Hair cell regeneration in the avian cochlea. Ann Otol Rhinol Laryngol Suppl 168:9–15.

    PubMed  CAS  Google Scholar 

  • Cotanche DA (1999) Structural recovery from sound and aminoglycoside damage in the avian cochlea. Audiol Neurootol 4:271–285.

    Article  PubMed  CAS  Google Scholar 

  • Cotanche DA, Lee KH, Stone JS, Picard DA (1994) Hair cell regeneration in the bird cochlea following noise damage or ototoxic drug damage. Anat Embryol 189:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379.

    PubMed  CAS  Google Scholar 

  • Crumling MA, Saunders JC (2007) Tonotopic distribution of short-term adaptation properties in the cochlear nerve of normal and acoustically overexposed chicks. J Assoc Res Otolaryngol 8:54–68.

    Article  PubMed  Google Scholar 

  • Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111.

    Article  PubMed  CAS  Google Scholar 

  • Duckert LG, Rubel EW (1993) Morphological correlates of functional recovery in the chicken inner ear after gentamycin treatment. J Comp Neurol 331:75–96.

    Article  PubMed  CAS  Google Scholar 

  • Durham D, Park DL, Girod DA (2000) Central nervous system plasticity during hair cell loss and regeneration. Hear Res 147:145–159.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164.

    Article  PubMed  CAS  Google Scholar 

  • Fischer FP (1994) Quantitative analysis of the innervation of the chicken basilar papilla. Hear Res 61:167–178.

    Article  Google Scholar 

  • Fischer FP, Miltz C, Singer I, Manley GA (1992) Morphological gradients in the starling basilar papilla. J Morphol 213:225–240.

    Article  Google Scholar 

  • Forge A (1996) Sensory cell regeneration and functional recovery: a review. In Axelsson A, Borchgrevink H, Hamernik RP, Hellstrom P-A, Henderson D, Salvi RJ (eds) Scientific Basis of Noise-Induced Hearing Loss. New York: Thieme, pp. 3–32.

    Google Scholar 

  • Froymovich O, Rebala V, Salvi RJ, Rassael H (1995) Long-term effect of acoustic trauma on distortion product otoacoustic emissions in chickens. J Acoust Soc Am 97:3021–3029.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs PA, Nagai T, Evans MG (1988) Electrical tuning in hair cells isolated from the chick cochlea. J Neurosci 8:2460–2467.

    PubMed  CAS  Google Scholar 

  • Furman AC, Avissar M, Saunders JC (2006) Phase locking in cochlear nerve units of the chick (Gallus domesticus) exposed to intense sound. Eur J Neurosci 24:2003–2010.

    Article  PubMed  Google Scholar 

  • Girod DA, Tucci DL, Rubel EW (1991) Anatomical correlates of functional recovery in the avian inner ear following aminoglycoside ototoxicity. Laryngoscope 101:1139–1149.

    Article  PubMed  CAS  Google Scholar 

  • Gray L, Rubel EW (1985) Development of absolute threshold in chickens. J Acoust Soc Am 77:1162–1172.

    Article  PubMed  CAS  Google Scholar 

  • Gummer AW, Smolders JW, Klinke R (1987) Basilar membrane motion in the pigeon measured with the Mössbauer technique. Hear Res 29:63–92.

    Article  PubMed  CAS  Google Scholar 

  • Hara J, Plymale DR, Shepard DL, Hara H, Garry RF, Yoshihara T, Zenner HP, Bolton M, Kalkeri R, Fermin CD (2002) Avian dark cells. Eur Arch Otorhinolaryngol 259:121–141.

    Article  PubMed  CAS  Google Scholar 

  • He DZ, Beisel KW, Chen L, Ding DL, Jia S, Fritzsch B, Salvi R (2003) Chick hair cells do not exhibit voltage-dependent somatic motility. J Physiol 546:511–520.

    Article  PubMed  CAS  Google Scholar 

  • Hennig AK, Cotanche DA (1998) Regeneration of cochlear efferent nerve terminals after gentamycin damage. J Neurosci 18:3282–3296.

    PubMed  CAS  Google Scholar 

  • Henry WR, Mulroy MJ (1995) Afferent synaptic changes in auditory hair cells during noise-induced temporary threshold shift. Hear Res. 84, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter P, Ding D, Powers N, Salvi RJ (1997) Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas. Hear Res 112:199–215.

    Article  PubMed  CAS  Google Scholar 

  • Husmann KR, Morgan AS, Girod DA, Durham D (1998) Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells. Hear Res 125:109–119.

    Article  PubMed  CAS  Google Scholar 

  • Ipakchi R, Kyin T, Saunders JC (2005) Loss and recovery of sound evoked otoacoustic emissions in young chick following acoustic trauma. Audiol Neurootol 10:209–219.

    Article  PubMed  Google Scholar 

  • Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci USA 97:13336–13341.

    Article  PubMed  CAS  Google Scholar 

  • Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143.

    Article  PubMed  Google Scholar 

  • Köppl C, Forge A, Manley GA (2004) Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility. J Comp Neurol 479:149–155.

    Article  PubMed  Google Scholar 

  • Lifshitz J, Furman AC, Altman KW, Saunders JC (2004) Spatial tuning curves along the chick basilar papilla in normal and sound-exposed ears. J Assoc Res Otolaryngol 5:171–184.

    PubMed  CAS  Google Scholar 

  • Lippe WR (1991) Reduction and recovery of neuronal size in the cochlear nucleus of the chicken following aminoglycoside intoxication. Hear Res 51:193–202.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (2001) Evidence for an active process and a cochlear amplifier in non mammals. J Neurophysiol 86:541–549.

    PubMed  CAS  Google Scholar 

  • Manley GA, Schulze M, Oeckinghaus H (1987) Otoacoustic emissions in a song bird. Hear Res 26:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA, Gleich O, Kaiser A, Brix J (1989) Functional differentiation of sensory cells in the avian auditory periphery. J Comp Physiol A 164:289–296.

    Article  Google Scholar 

  • Manley GA, Kirk DL, Köppl C, Yates GK (2001) In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards. Proc Natl Acad Sci USA 98:2826–2831.

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Hudspeth AJ (1995) Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct 24:59–83.

    Article  PubMed  CAS  Google Scholar 

  • McFadden EA, Saunders JC (1989) Recovery of auditory function following intense sound exposure in the neonatal chick. Hear Res 41:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Smolders JW (1998) Hair cell regeneration after local application of gentamicin at the round window of the cochlea in the pigeon. Hear Res 120:25–36.

    Article  PubMed  Google Scholar 

  • Müller M, Smolders JW (1999) Responses of auditory nerve fibers innervating regenerated hair cells after local application of gentamicin at the round window of the cochlea in the pigeon. Hear Res 131:153–169.

    Article  PubMed  Google Scholar 

  • Müller M, Smolders JW, Ding-Pfennigdorff D, Klinke R (1996) Regeneration after tall hair cell damage following severe acoustic trauma in adult pigeons: correlation between cochlear morphology, compound action potential responses and single fiber properties in single animals. Hear Res 102:133–154.

    Article  PubMed  Google Scholar 

  • Müller M, Smolders J, Ding-Pfennigdorff D, Klink R (1997) Discharge properties of pigeon single auditory nerve fibers after recovery from severe acoustic trauma. Int J Dev Neurosci 15:401–416.

    Article  PubMed  Google Scholar 

  • Norton SJ, Rubel EW (1990) Active and passive ADP components in mammalian and avian ears. In Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 219–226.

    Google Scholar 

  • Nuttall AL, Ren T (1995) Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Hear Res 92:170–177.

    Article  PubMed  CAS  Google Scholar 

  • Ofsie MS, Cotanche DA (1996) Distribution of nerve fibers in the basilar papilla of normal and sound-damaged chick cochleae. J Comp Neurol 370:281–294.

    Article  PubMed  CAS  Google Scholar 

  • Ofsie MS, Hennig AK, Messana EP, Cotanche DA (1997) Sound damage and gentamicin treatment produce different patterns of damage to the efferent innervation of the chick cochlea. Hear Res 113:207–223.

    Article  PubMed  CAS  Google Scholar 

  • Park DL, Girod DA, Durham D (1998) Evidence for loss and recovery of chick brainstem auditory neurons during gentamicin-induced cochlear damage and regeneration. Hear Res 126:84–98.

    Article  PubMed  CAS  Google Scholar 

  • Park DL, Girod DA, Durham D (2002) Avian brainstem neurogenesis is stimulated during cochlear hair cell regeneration. Brain Res 949:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Plontke SK, Lifshitz J, Saunders J.C (1999) Distribution of rate-intensity function types in chick cochlear nerve after exposure to intense sound. Brain Res 842:262–274.

    Article  PubMed  CAS  Google Scholar 

  • Poje CP, Sewell DA, Saunders JC (1995) The effects of exposure to intense sounds on the DC endocochlear potential in the chick. Hear Res 82:197–204.

    Article  PubMed  CAS  Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    Article  PubMed  CAS  Google Scholar 

  • Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann NY Acad Sci 884:249–254.

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishna R, Kurian R, Saunders JC, Gratton MA (2004) Recovery of the tegmentum vasculosum in the noise exposed chick. Abstr Assoc Res Otolaryngol 27:65.

    Google Scholar 

  • Reng D, Müller M, Smolders JW (2001) Functional recovery of hearing following ampa-induced reversible disruption of hair cell afferent synapses in the avian inner ear. Audiol Neurootol 6:66–78.

    Article  PubMed  CAS  Google Scholar 

  • Reyes S, Ding D, Sun W, Salvi R (2001) Effect of inner and outer hair cell lesions on electrically evoked otoacoustic emissions. Hear Res 158:139–150.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142.

    PubMed  CAS  Google Scholar 

  • Rubel EW, Hyson RL, Durham D (1990) Afferent regulation of neurons in the brain stem auditory system. J Neurobiol 21:169–196.

    Article  PubMed  CAS  Google Scholar 

  • Ryals BM, Dooling RJ (1996) Changes in innervation and auditory sensitivity following acoustic trauma and hair cell regeneration in birds. In Salvi RJ, Henderson D, Fiorino F, Colletti V (eds) Auditory Plasticity and Regeneration: Basic Science and Clinical Implications. New York: Thieme, pp. 84–99.

    Google Scholar 

  • Ryals BM, Ten Eyck B, Westbrook EW (1989) Ganglion cell loss continues during hair cell regeneration. Hear Res 43:81–90.

    Article  PubMed  CAS  Google Scholar 

  • Ryals BM, Stalford MD, Lambert PR, Westbrook EW (1995) Recovery of noise-induced changes in the dark cells of the quail tegmentum vasculosum. Hear Res 83:51–61.

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Parks TN (2003) Primary innervation of the avian and mammalian cochlear nucleus. Brain Res Bull 60:435–456.

    Article  PubMed  Google Scholar 

  • Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991.

    Article  PubMed  CAS  Google Scholar 

  • Salvi RJ, Saunders SS, Hashino E, Chen L (1994) Discharge patterns of chicken cochlear ganglion neurons following kanamycin-induced hair cell loss and regeneration. J Comp Physiol A 174:351–369.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Doan DE, Poje CP, Fisher, KA (1996a) Cochlear nerve activity after intense sound exposure in neonatal chicks. J Neurophysiol 76:770–787.

    Google Scholar 

  • Saunders JC, Doan DE, Cohen YE, Adler HJ, Poje CP (1996b) Recent observations on the recovery of structure and function in the sound damaged chick ear. In Salvi RJ, Henderson D, Fiorino F, Colletti V (eds) Auditory Plasticity and Regeneration: Basic Science and Clinical Implications. New York: Thieme, pp. 62–83.

    Google Scholar 

  • Saunders JC, Adler HJ, Cohen YE, Smullen S, Kazahaya K (1998) Morphometric changes in the chick nucleus magnocellularis following acoustic overstimulation. J Comp Neurol 390:412–426.

    Article  PubMed  CAS  Google Scholar 

  • Saunders JC, Ventetuolo CE, Plontke SK, Weiss BA (2002) Coding of sound intensity in the chick cochlear nerve. J Neurophysiol 88:2887–2898.

    Article  PubMed  Google Scholar 

  • Shero M, Salvi RJ, Chen L, Hashino E (1998) Excitotoxic effect of kainic acid on chicken cochlear afferent neurons. Neurosci Lett 257:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Smith CA (1985) Inner ear. In King A, MacLeland J (eds) Form and Function in Birds. New York: Academic Press, pp. 273–310.

    Google Scholar 

  • Smolders JWT (1999) Functional recovery in the avian ear after hair cell regeneration. Audiol Neurootol 4:286–302.

    Article  PubMed  CAS  Google Scholar 

  • Smolders JWT, Ding-Pfenningdorff D, Klinke R (1995) A functional map of the pigeon basilar papilla: correlation of the properties of single auditory nerve fibers and their peripheral origin. Hear Res 92:151–169.

    Article  PubMed  CAS  Google Scholar 

  • Spassova MA, Avissar M, Furman AC, Crumling MA, Saunders JC, Parsons TD (2004) Evidence that rapid vesicle replenishment of the synaptic ribbon mediates recovery from short-term adaptation at the hair cell afferent synapse. J Assoc Res Otolaryngol 5:376–90.

    Article  PubMed  Google Scholar 

  • Sterkers O, Ferrary E, Amiel C (1988) Production of inner ear fluids. Physiol Rev 68:1083–1128.

    PubMed  CAS  Google Scholar 

  • Stone JS, Rubel EW (2000) Cellular studies of auditory hair cell regeneration in birds. Proc Natl Acad Sci USA 97:11714–11721.

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Salvi RJ, Ding, DL, Hashino DE, Shero M, Zheng, XY (2000) Excitotoxic effect of kainic acid on chicken otoacoustic emissions and cochlear potentials. J Acoust Soc Amer 107:36–2142.

    Google Scholar 

  • Sun H, Hashino E, Ding DL, Salvi RJ (2001) Reversible and irreversible damage to cochlear afferent neurons by kainic acid excitotoxicity. J Comp Neurol 430:172–181.

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Chen L, Salvi RJ (2002) Acoustic modulation of electrically evoked otoacoustic emission in chickens. Audiol Neurootol 7:206–213.

    Article  PubMed  Google Scholar 

  • Trautwein P, Salvi RJ, Miller K, Shero M, Hashino E (1996) Incomplete recovery of chicken distortion product otoacoustic emissions following acoustic overstimulation. Audiol Neurootol 1:86–103.

    Article  PubMed  CAS  Google Scholar 

  • Trautwein PG, Chen L, Salvi RJ (1997) Steady state EP is not responsible for hearing loss in adult chickens following acoustic trauma. Hear Res 110:266–270.

    Article  PubMed  CAS  Google Scholar 

  • Tucci DL, Rubel EW (1990) Physiologic status of regenerated hair cells in the avian inner ear following aminoglycoside ototoxicity. Otolaryngol Head Neck Surg 103:443–50.

    PubMed  CAS  Google Scholar 

  • von Békésy G (1952) Gross localization of the place of origin of the cochlear microphonics. J Acoust Soc Am 24:399–409.

    Article  Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: John Wiley & Sons.

    Google Scholar 

  • Vossieck T, Schermuly L, Klinke R (1991) The influence of DC-polarization of the endocochlear potential on single fibre activity in the pigeon cochlear nerve. Hear Res 56:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Powers NL, Hofstetter P, Trautwein P, Ding D, Salvi R (1997) Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hear Res 107:67–82.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol A 166:721–734.

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Madison LD, Oliver D, Fakler B, Dallos P (2002) Prestin, the motor protein of outer hair cells. Audiol Neurootol 7:9–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Saunders, J.C., Salvi, R.J. (2008). Recovery of Function in the Avian Auditory System After Ototrauma. In: Salvi, R.J., Popper, A.N., Fay, R.R. (eds) Hair Cell Regeneration, Repair, and Protection. Springer Handbook of Auditory Research, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73364-7_3

Download citation

Publish with us

Policies and ethics