Skip to main content
Book cover

Photobiology pp 591–615Cite as

Bioluminescence

  • Chapter
  • 2650 Accesses

Abstract

Three kinds of light emission from organisms take place: bioluminescence in a narrow sense from some animals, dinoflagellates, fungi, and bacteria; delayed light emission from photosynthetic cells; and ultraweak light emission from all kinds of cells. All these phenomena are treated in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barros, M.P. and Bechara, E.J.H. (2000) Luciferase and urate may act as antioxidant defeneses in larval Pyrearinus termitilluminans (Elateridae: Coleoptera) during natural development and upon 20-hydroxyecdysone treatment. Photochem. Photobiol. 71, 648–654.

    Article  CAS  Google Scholar 

  • Bassot, J.M. and Nicolas, M.T. (1995) Bioluminescence in scale-worm photosomes: the photoprotein polyoidin is specific for the detection of superoxide radicals. Histochem. Cell Biol. 104, 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Bermudes, D., Petersen, R.H. and Nealson, K.H. (1992) Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 84, 799–802.

    Article  Google Scholar 

  • Björn, L.O. (1971) Far-red induced, long-lived afterglow from photosynthetic cells. Size of afterglow unit and paths of energy accumulation and dissipation. Photochem. Photobiol. 13, 5–20.

    Google Scholar 

  • Björn, L.O. and Forsberg, A.S. (1979) Imaging by delayed light emission (phytoluminography) as a method for detecting damage to the photosynthetic system. Physiol. Plant. 47, 215–222.

    Article  Google Scholar 

  • Blinks, J.R. (1989) Use of calcium-regulated photoproteins as intracellular Ca2+ indicators. Meth. Enzymol. 172, 164–203.

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker, J.K., Dartnall, H.J.A. and Herring, P.J. (1988) Longwave-sensitive visual pigments in some deep-sea fishes: Segregation of paired rhodopsins and porphyropsins. J. Comp. Physiol. A163, 685–698.

    Article  Google Scholar 

  • Branham, M.A. and Greenfield, M.D. (1996) Flashing males win mate success. Nature 381, 745–746.

    Article  CAS  Google Scholar 

  • Buck, J. and Buck, E. (1976) Synchronous fireflies. Sci. Am. 234, 74–85.

    PubMed  CAS  Google Scholar 

  • Buck, J. (1988) Synchronous rhythmic flashing of fireflies. II. Quart. Rev. Biol. 63, 265–289.

    Article  PubMed  CAS  Google Scholar 

  • Buskey, E.J. and Swift, E. (1983) Behavioural responses of the coastal copepod Acartia hudsonica to simulated dinoflagellate bioluminescence. J. Exp. Biol. Ecol. 72, 43–58.

    Article  Google Scholar 

  • Campbell, A.K. (1988) Chemiluminescence: Principles and applications in biology and medicine, pp. 608. Ellis Horwood, Chichester. ISBN 3-527-26342-X

    Google Scholar 

  • Cen, Y.-P. and Björn, L.O. (1994) Action spectra for enhancement of ultraweak luminescence by ultraviolet radiation (270-340 nm) in leaves of Brassica napus. J. Photochem. Photobiol. B: Biol. 22, 125–129.

    Article  Google Scholar 

  • Cody, C.W., Prasher, D.C.. Westler, W.M., Prendergast, F.G. and Ward, W.W. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea gfreen-fluorescent protein. Biochemistry 32, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  • Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A. and Tsien, R.Y. (1995a) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.

    Article  CAS  Google Scholar 

  • Cubitt, A.B., Firtel, R.A., Fischer, G., Jaffe, L.F. and Miller, A.L. (1995b) Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaqueorin. Development 121, 2291–2301.

    Google Scholar 

  • Czyz, A., Wrobel, B. and Wegrzyn, G. (2000) Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146, 283–288.

    PubMed  CAS  Google Scholar 

  • Denton, E.J. Gilpin-Brown, J.B. and Wright, P.G. (1972) The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc. R. Soc. Lond. B 182, 145–158.

    Article  Google Scholar 

  • Denton, E.J., Herring, P.J., Widder, E.A., Latz, M.F. and Case, J.F. (1985) The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc. R. Soc. Lond. B 225, 63–97.

    Google Scholar 

  • Deo, S.K. and Daunert, S. (2001) Luminescent proteins from Aequorea victoria: applications in drug discovery and in hight throughput analysis. Fresenius J. Anal. Chem. 369, 258–266.

    Article  PubMed  CAS  Google Scholar 

  • DeVault, D., Govindjee and Arnold, D. (1983) Energetics of photosynthetic glow peaks. Proc. Natl Acad. Sci. USA 80, 983–987.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M., Mullineaux, C.W Tauber, P.H. and Hynninen, P.H. (1998) Dragon fish see using chlorophyll. Nature 393, 425.

    Article  Google Scholar 

  • Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M., Mullineaux, C.W and Hynninen, P.H. (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminiscence. Vision Res. 39, 2817–2832.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R.H., Mullineaux, C.W. and Partridge, J.C. 2000. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Phil. Trans. R. Soc. Lond. B 355, 1269–1272.

    Article  CAS  Google Scholar 

  • Eckstein, J., Cho, K.W., Colepicolo, P., Ghisla, S., Hastings, J.W. and Wilson, T. 1990. A time-dependent bacterial luminescence emission spectrum in an in vitro singel turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. Proc. Natl. Acad. Sci. USA 87, 1466–1470.

    Article  PubMed  CAS  Google Scholar 

  • Esaias, W.E. and Curl, H.C. (1972) Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnol. Oceanogr. 17, 901–906.

    Article  Google Scholar 

  • Esaias, W.E., Curl, H.C., Jr and Seliger, H.H. (1973) Action spectrum for a low intensity rapid photoinhibition of mechanically stimulable bioluminescence in the marine dinoflagellates Gonyaulax catenella, Gonyaulax acatenella and Gonyaulax tamarensis. J. Cell Physiol. 82, 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Fleisher, K.J. and Case, J.F. (1995) Cephalopod predation facilitated by dinoflagellate luminescence. Biol. Bull. 189, 263–271.

    Article  Google Scholar 

  • Ghiradella, H. (1998) The anatomy of light production: The fine structure of the firefly lantern. In: F.W. Harrison and M. Locke (Eds.), Microscopic anatomy of invertebrates, vol. 5 Insecta, pp. 363–381. Wiley-Liss, New York.

    Google Scholar 

  • Ghiradella, H. and Schmidt, J.T. (2004) Fireflies at one hundred plus: a new look at flash control. Integr. Comp. Biol. 44, 203–212.

    Article  CAS  Google Scholar 

  • Gonzales-Flecha, B. and Demple, B. (1994) Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J. Bact. 176, 2293–2299.

    Google Scholar 

  • Harvey, E.N. (1952) Bioluminescence. Academic Press, New York.

    Google Scholar 

  • Hastings, J.W. (1978) Bacterial and dinoflagellate luminescent systems. In: P.J. Herring (Ed.), Bioluminescence in Action, pp. 129–170. Academic Press, London.

    Google Scholar 

  • Hastings, J.W. (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J. Mol. Evol. 19, 309–321.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, J.W. (1996) Chemistries and colors of bioluminescent reactions: a review. Gene, 173, 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Hastings, J.W. and Tu, D. (eds) (1995) Symposium-in-print: Molecular mechanisms in bioluminescence. Photochem. Photobiol. 62, 597–673.

    Google Scholar 

  • Heath, M.C. (2000) Advances in imaging the cell biology of plant-microbe interactions. Annu. Rev. Phytopath. 443–459.

    Google Scholar 

  • Heim, R., Cubitt, A.B. and Tsien, R.Y. (1995) Improved green fluorescence. Nature 373, 663–664.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, A.A., Hastings, J.W. and Morin, J.G. (1974) Bioluminescence in cell-free extracts of scale-worm Hamrmothoe (Annelida: Polynoidae). Biol. Bull. 147, 480–481.

    Google Scholar 

  • Herring, P.J. (1982) Aspects of the bioluminescence of fishes. Oceanogr. Mar. Biol. Ann. Rev. 20, 415–470.

    Google Scholar 

  • Herring, P. (2002) The biology of the deep ocean. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Hosseini, P. and Nealson, K.H. (1995) Symbiotic luminous soil bacteria: Unusual regulations for an unusual niche. Photochem. Photobiol. 62, 633–640.

    CAS  Google Scholar 

  • Inouye, S., Watanabe, K, Nakamura, H. and Shimomura, O. (2000) Secretional luciferase of the luminour shrimp Opiophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett. 481, 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Isobe, M., Uyakul, D. and Goto. T. (1987) Lampteromyces bioluminescence—1. Identification of riboflavin as the light emitter in the mushroom L. japonicus. J. Biolum. Chemilum. 1, 181–188.

    Article  CAS  Google Scholar 

  • Jezowska-Trzebiatowska, B., Kochel, B., Slawinski, J. and Strek, W. (Eds.) (1990) Biological luminescence. World Scientific, Singapore.

    Google Scholar 

  • Katsev, A.M., Wegrzyn, G. and Sziplewska, H. (2004) Effects of hydrogen peroxide on light emission by various strains of marine luminescent bacteria. J. Basic Microbiol. 44, 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. (1991) Transgenic plant aequorin reports the effects of touch and cold-schock and elicitors on cytoplasmic calcium. Nature 352, 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Knight, M.R., Read, N.D., Campbell, A.K. and Trewavas, A.J. (1993) Imaging dynamics in living plants using semisynthetic recombinandt aequorins. J. Cell Biol. 121, 83-90.

    Article  PubMed  CAS  Google Scholar 

  • Kozakiewicz, J., Gajewska, M., Lyzen, R., Czyz A. and Wegrzyn, G. (2005) Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol. Lett. 250, 105–110

    Article  PubMed  CAS  Google Scholar 

  • Lavorel, J. (1975) Luminescence. In: Govindjee (Ed.), Bioenergetics of photosynthesis, pp. 223–317. Academic Press, New York.

    Google Scholar 

  • Lee, J., Matheson, I.B.C., Müller, F., O’Cane, D.J., Vervoort, J. and Visser, A.J.W.G. (1991) The mechanism of bacterial bioluminescence. In: F.Muller (Ed.), Chemistry and biochemistry of rlavins and flavoenzymes, pp. 109–151. CRC Press, Orlando, FL.

    Google Scholar 

  • Li, Y., Swift, E. and Buskey, E.J. (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (Pyrrophyta). J. Phycol. 32, 974–982.

    Article  Google Scholar 

  • Lloyd, J.E. (1980) Male Photuris mimic sexual signals of their females’ prey. Science 210, 669–671.

    Article  PubMed  Google Scholar 

  • Lloyd, J.E. (1984a) On deception, a way of all flesh, and firefly signaling and systematics. Oxford Surveys Evol. Biol. 1, 49–84.

    Google Scholar 

  • Lloyd, J.E. (1984b) Evolution of a firefly flash code. Florida Entomologist 67, 368–376.

    Article  Google Scholar 

  • Lloyd, J.E. and Wing, S.R. (1993) Nocturnal aerial predation of fireflies by light-seeking firefles. Science 222, 634–635.

    Article  Google Scholar 

  • Lyzen, R. and Wegrzyn, G. (2005) Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species. Arch. Microbiol. 183, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • McFall-Ngai, M. and Morin, J.G. (1991) Camouflage by disruptive illumination in leiognathids, a family of shallow-water, bioluminescent fishes. J. Exp. Biol. 158, 119–137.

    Google Scholar 

  • McElroy, W.D. and Seliger, H.H. (1962) Origin and evolution of bioluminescence. In: M. Kasha and B. Pullman (Eds.), Horizons in biochemistry, pp. 91–101. Academic Press, New York.

    Google Scholar 

  • Mensinger, A.F. and Case, J.F. (1992) Dinoflagellate luminescence increases the susceptibility of zooplankton to teleost predation. Mar. Biol. 112, 207–210.

    Article  Google Scholar 

  • Moiseff, A. and Copeland, J. (2000) A new type of synchronied flashing in a North American firefly. J. Insect Behav. 13, 597–612.

    Article  Google Scholar 

  • Nakamura, H., Kishi, Y., Shimomura, O., Morse, D. and Hastings, J.W. (1989) Structure of dinoflagellate luciferin and its enzymatic and non-enzymatic air-oxidation products. J. Am. Chem. Soc. 111, 7607–7611.

    Article  CAS  Google Scholar 

  • O’Kane, D.J., Lingle, W.L., Porter, D. and Wambler, J.E. (1990a) Localization of bioluminescent tissues during basidiocarp development in Panellus stypticus. Mycologia 82, 595–606

    Google Scholar 

  • O’Kane, D.J., Lingle, W.L., Porter, D. and Wambler, J.E. (1990b) Spectral analysis of bioluminescence of Panellus stypticus. Mycologia 82, 607–616.

    Google Scholar 

  • Partridge, J.C. and Douglas, R.H. (1995) Far-red sensitivity of dragon fish. Nature 375, 21–22.

    Article  CAS  Google Scholar 

  • Pèrez-Bueno, M.L., Ciscato, M., vandeVen, M., Garcìa-Luque, I., Valcke, R. and Baròn, M. (2006) Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynthesis Res. 90, 111–123.

    Article  CAS  Google Scholar 

  • Rees, J.-F., De Wergifosse, B., Noiset, O., Dubuisson, M., Janssens, B. and Thompson, E.M. (1998) The origins of marine bioluminescence: Turning oxygen defence mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221.

    PubMed  CAS  Google Scholar 

  • Seliger, H.H. and McElroy, W.D. (1965) Light: Physical and biological action. Academic Press, New York.

    Google Scholar 

  • Shimomura, O. (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett. 1054, 220–222.

    Article  Google Scholar 

  • Shimomura, O. (1980) Chlorophyll-derived bile pigment in bioluminescent euphausiids. FEBS Lett. 116, 203–206.

    Article  CAS  Google Scholar 

  • Shimomura, O. (1989) Chemiluminescence of panal (a sesquiterpene) isolated from the luminous fungus Panellus stipticus. Photochem. Photobiol. 49, 355–360.

    CAS  Google Scholar 

  • Shimomura, O. (1992) The role of superoxide dismutase in regulating the light emission of luminescent fungi. J. Exp. Bot. 43, 1519–1525.

    Article  CAS  Google Scholar 

  • Strehler, B. and Arnold, W. (1951) Light production in green plants. J. Gen. Physiol. 34, 809–820.

    Article  PubMed  CAS  Google Scholar 

  • Sundbom, E. and Björn, L.O. (1977) Phytoluminography: Imaging plants by delayed light emission. Physiol. Plant. 40, 39–41.

    Article  CAS  Google Scholar 

  • Swift, S., Throup, J., Bycroft, B., Williams, P. and Stewart, G. (1998) Quorum sensing: bacterial cell-cell signaling from bioluminescence to pathogenicity. In: S.J.W. Busby, C.M. Thomas, and N.L. Brown (Eds.), Molecular microbiology, pp. 185–207. Springer, Berlin.

    Google Scholar 

  • Szpilewska, H., Czyz, A. and Wegrzyn, G. (2003) experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress. Curr. Microbiol. 47, 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Tett, P.B. and Kelly, M.G. (1973) Marine bioluminescence. Oceanogr. Mar. Ann. Rev. 11, 89–173.

    Google Scholar 

  • Trimmer, B.A., Aprille, J.R., Dudzinski, D.M., Lagace, C.J., Lewis, S.M., Michel. T., Qazi, S. and Zayas, R.M. (2001) Nitric oxide and the control of firefly flashing. Science 292, 2486–2488.

    Article  PubMed  CAS  Google Scholar 

  • Tyystjärvi, E. and Vass, I. (2004) Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence. In: G.C. Papageorgiou and Govindjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis. Advances in photosynthesis and respiration (Govindjee, series and vol. Ed.), vol. 19, pp. 363–388. Springer, Dordrecht.

    Google Scholar 

  • Ulitzur, S. and Dunlap, P.V. (1995) Regulatory circuitry controlling luminescence autoinduction in Vibrio fischeri. Photochem. Photobiol. 62, 625–632.

    CAS  Google Scholar 

  • Underwood, T.J., Tallamy, D.W., and Pesek, J.D. (1997) Bioluminescence in firefly larvae: A test of the aposematic display hypothesis (Coleoptera:Lampyridae). J. Insect Behavior 10, 365–370.

    Article  Google Scholar 

  • Vencl, F.V., Blasko, B.J. and Carlson, A.D. (1994) Flash behavior of female Photuris versicolor fireflies (Coleoptera: Lampyridae) in simulated courtship and preadatory dialogs. J. Insect Behav. 7, 843–858.

    Article  Google Scholar 

  • Vencl, F.V. and Carlson, A.D. (1998) Proximate mechanisms of sexual selection in the firefly Photinus pyralis (Coleoptera: Lampyridae). J. Insect Behav. 11, 191–207.

    Article  Google Scholar 

  • Viviani, V.R. and Bechara, E.J.H. (1997) Bioluminescence and biological aspects of Brazilian railroad worms (Coleoptera: Phengodidae). Ann. Entomol. Soc. Am. 90, 389–398.

    Google Scholar 

  • Viviani, V.R. and Ohmiya, Y. (2000) Bioluminescence and color determinants of Phrixothrix railroad worm luciferases: Chimeric luciferases, site-directed mutagenesis of Arg 215 and guanidine effect. Photochem. Photobiol. 72, 267–271.

    Article  PubMed  CAS  Google Scholar 

  • Walker, E., Bose, J.L. and Stabb, E.V. (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl. Environm. Microbiol. 72, 6600–6606.

    Article  CAS  Google Scholar 

  • Widder, E.A., Latz, M.I., Herring, P.J. and Case, J.F. (1984) Far red bioluminescence from two deep-sea fishes. Science 225, 512–513.

    Article  PubMed  Google Scholar 

  • Wilson, T. and Hastings, J.W. (1998) Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230.

    Article  PubMed  CAS  Google Scholar 

  • Wood, N.T., Allan, A.C., Haley, A., Viri-Moussaid, M. and Trewavas, A.J. (2000) The characteristics of differential calcium signalling in tobacco guard cells. Plant J. 24, 335–344.

    Article  PubMed  CAS  Google Scholar 

  • Wood, N.T. Haley, A., Viri-Moussaid, M., Johnson, C.H., van der Luit, A.H. and Trewavas, A.J. (2001) The calcium rhythms of different cell types oscillate with different circadian phases. Plant Physiol. 125, 787–796

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Björn, L.O., Ghiradella, H. (2008). Bioluminescence. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_23

Download citation

Publish with us

Policies and ethics