Skip to main content

Molecular Pathology of Squamous Cell Carcinoma and Its Precursors

  • Chapter
Molecular Pathology of Lung Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 1))

  • 2141 Accesses

Abstract

The normal respiratory mucosal epithelium at birth may undergo histologic changes during life due to exposure to a variety of environmental irritants, including tobacco smoke, radon exposure, and occupational toxins. Long-term carcinogenic insults may result in the development of multiple premalignant or malignant lesions in the respiratory epithelium. There is a wide spectrum of histopathologic changes in the respiratory epithelium, including hyperplastic lesions (basal cell hyperplasia/reserve cell hyperplasia), metaplastic lesions (primarily squamous metaplasia), dysplasia (mild, moderate, and severe), squamous cell carcinoma in situ, and invasive squamous cell carcinoma.1 The precursor lesions are also described as preneoplastic, premalignant, or preinvasive and are defined as epithelial abnormalities that are cytologically neoplastic but do not penetrate the basement membrane.2 These lesions have the capacity to progress to invasive carcinoma, to regress toward normal, or to remain indolent.3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerr KM. Morphology and genetics of preinvasive pulmonary disease. Curr Diagn Pathol 2004;10:259–268.

    Article  Google Scholar 

  2. Travis WD, Colby TV, Corrin B, et al., eds. Histological Typing of Lung and Pleural Tumors. WHO International Histological Classification of Tumours, 3rd ed. Berlin: Springer; 1999.

    Google Scholar 

  3. Rocha AT, McCormack M, Montana G, Schreiber G. Association between lower lobe location and upstaging for earlystage non-small cell lung cancer. Chest 2004;25:1424–1430.

    Article  Google Scholar 

  4. Miller YE. Pathogenesis of lung cancer; 100 year report. Am J Respir Cell Mol Biol 2005;3:216–223.

    Article  CAS  Google Scholar 

  5. Hirsch FR, Franklin WA, Gazdar AF, Bunn Jr PA. Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res 2001;7:5–22.

    CAS  PubMed  Google Scholar 

  6. Braakhuis BJ, Tabor MP, Kummer JA, et al. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res 2003;3:1727–1730.

    Google Scholar 

  7. Yokota J, Takashi K. Molecular footprints of human lung cancer progression. Cancer Sci 2004;95:197–204.

    Article  CAS  PubMed  Google Scholar 

  8. Rom WN, Tchou-Wong KM. Molecular and genetic aspects of lung cancer. Methods Mol Med 2003;75:3–26.

    CAS  PubMed  Google Scholar 

  9. Wistuba II, Gazdar AF. Characteristic genetic alterations in lung cancer. In: Driscoll B, ed. Lung Cancer: Molecular Pathology Methods and Reviews, vol 1. Los Angeles: Humana Press; 2003:3–28.

    Google Scholar 

  10. Forgacs E, Zochbauer-Muller S, Olah E, Minna JD. Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol Oncol Res 2001;7(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  11. Hung J, Kishimoto Y, Sugio K, et al. Allele-specific chromosome 3p deletions occur at an early stage in the pathogenesis of lung carcinoma. JAMA 1995;273:558–563.

    Article  CAS  PubMed  Google Scholar 

  12. Kishimoto Y, Sugio K, Hung JY, et al. Allele-specific loss in chromosome 9p loci in preneoplastic lesions accompanying non-small-cell lung cancers. J Natl Cancer Inst 1995;87:1224–1229.

    Article  CAS  PubMed  Google Scholar 

  13. Chung GTY, Sundaresan V, Hasleton P, et al. Clonal evolution of lung tumors. Cancer Res 1996;56:1609–1614.

    CAS  PubMed  Google Scholar 

  14. Thiberville L, Payne P, Vielkinds J, et al. Evidence of cumulative losses with progression of premalignant epithelial lesions to carcinoma of the bronchus. Cancer Res 1995;55:5133–5139.

    CAS  PubMed  Google Scholar 

  15. Zavorovsky ER, Lerman MI, Minna JD. Chromosome 3 abnormalities in lung cancer. In Pass HI, Carbone DP, Johnson DH, et al, eds. Lung Cancer, 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2005:118–134.

    Google Scholar 

  16. Gazdar AF, Bader S, Hung J, et al. Molecular genetic changes found in human lung cancer and its precursor lesions. Cold Spring Harb Symp Quant Biol 1994;109:565–572.

    Google Scholar 

  17. Vincenzi B, Schiavon G, Silletta M, et al. Cell cycle alterations and lung cancer. Histol Histopathol 2006;21:423–435.

    CAS  PubMed  Google Scholar 

  18. Greenblatt MS, Benett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878.

    CAS  PubMed  Google Scholar 

  19. Franklin WA, Gazdar AF, Haney J, et al. Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest 1997;100:2133–2137.

    Article  CAS  PubMed  Google Scholar 

  20. Harris CC. p53 tumor suppressor gene: from the basic research laboratory to the clinic—an abridged historical perspective. Carcinogenesis 1996;17:1187–1198.

    Article  CAS  PubMed  Google Scholar 

  21. Ramet M, Casten K, Jarvinen K, et al. p53 protein expression is correlated with benzo[a]pyrene-DNA adducts in carcinoma cell lines. Carcinogenesis 1996;16:2117–2124.

    Article  Google Scholar 

  22. Pfeifer GP, Denissenko MF, Olivier M, et al. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene 2002;21:7435–7451.

    Article  CAS  PubMed  Google Scholar 

  23. Bennett WP, Colby TV, Travis WD, et al. p53 protein accumulates frequently in early bronchial neoplasia. Cancer Res 1993;53:4817–4822.

    CAS  PubMed  Google Scholar 

  24. Gorgoulis VG, Zacharatos P, Kotsinas A, et al. Alterations of the p16-pRb pathway and the chromosome locus 9p21–22 in non-small-cell lung carcinomas. Relationship with p53 and MDM2 protein expression. Am J Pathol 1998;153:1749–1765.

    CAS  PubMed  Google Scholar 

  25. Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumour suppressors RB and p53. Nature 1998;395:124–125.

    Article  CAS  PubMed  Google Scholar 

  26. Zochbauer-Muller S, Lam S, Toyooka S, et al. Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. Int J Cancer 2003;107:612–616.

    Article  PubMed  CAS  Google Scholar 

  27. Belinsky SA, Nikula KJ, Palmisano WA, et al. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998;95:11891–11896.

    Article  CAS  PubMed  Google Scholar 

  28. Brambilla E, Moro D, Gazzeri S, Brambilla C. Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance. J Pathol 1999;188:351–360.

    Article  CAS  PubMed  Google Scholar 

  29. Park MJ, Shimizu K, Nakano T, et al. Pathogenetic and biologic significance of TP14ARF alterations in nonsmall cell lung carcinoma. Cancer Genet Cytogenet 2003;141:5–13.

    Article  CAS  PubMed  Google Scholar 

  30. Gazzeri S, Gouyer V, Vour’ch C, et al. Mechanisms of p16INK4A inactivation in non small-cell lung cancers. Oncogene 1998;16:497–504.

    Article  CAS  PubMed  Google Scholar 

  31. Sato M, Horio Y, Sekido Y, et al. The expression of DNA methyltransferases and methyl-CpG-binding proteins is not associated with the methylation status of p14(ARF), p16(INK4a) and RASSF1A in human lung cancer cell lines. Oncogene 2002;21:4822–4829.

    Article  CAS  PubMed  Google Scholar 

  32. Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumour suppressors RB and p53. Nature 1998;395:124–125.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphates gene mutated in human brain, breast, and prostate cancer. Science 1997;275:1943–1947.

    Article  CAS  PubMed  Google Scholar 

  34. Steck PA, Pershouse MA, Jasser SA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997;15:356–362.

    Article  CAS  PubMed  Google Scholar 

  35. Weng L, Brown J, Eng C. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Aktdependent degradation and-independent pathways. Hum Mol Genet 200;10:237–242.

    Article  Google Scholar 

  36. Mamllapalli R, Gavrilova N, Mihaykiva VT, et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol 2001;11:23–27.

    Google Scholar 

  37. Tamura M, Gu J, Matsumoto K, et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 1998;280:1614–1617.

    Article  CAS  PubMed  Google Scholar 

  38. Forgacs E, Biesterveld EJ, Sekido Y, et al. Mutation analysis of the PTEN/MMAC1 gene in lung cancer. Oncogene 1998;17:1557–1565.

    Article  CAS  PubMed  Google Scholar 

  39. Petersen S, Rudolf J, Bockmuhl U, et al. Distinct regions of allelic imbalance on chromosome 10q22–q26 in squamous cell carcinomas of the lung. Oncogene 1998;17:449–454.

    Article  CAS  PubMed  Google Scholar 

  40. Marsit CJ, Zheng S, Aldape K, et al. PTEN expression in non-small cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol 2005;36:768–776.

    Article  CAS  PubMed  Google Scholar 

  41. de Lange T. Activation of telomerase in a human tumor. Proc Natl Acad Sci USA 1994;91:2882–2885.

    Article  PubMed  Google Scholar 

  42. Harley CB, Villeponteau B. Telomere and telomerase in aging and cancer. Curr Opin Genet Dev 1995;5:249–255.

    Article  CAS  PubMed  Google Scholar 

  43. Kiyono T, Foster SA, Koop JI, et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998;396:84–88.

    Article  CAS  PubMed  Google Scholar 

  44. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 1999;97:527–538.

    Article  CAS  PubMed  Google Scholar 

  45. Hiyama K, Hiyama E, Ishioka S, et al. Telomerase activity in small-cell and non-small-cell lung cancers. J Natal Cancer Inst 1995;87:895–902.

    Article  CAS  Google Scholar 

  46. Albanell J, Lonardo F, Rusch V, et al. High telomerase activity in primary lung cancers: association with increased cell proliferation rates and advanced pathologic stage. J Natl Cancer Inst 1997;89:1609–1615.

    Article  CAS  PubMed  Google Scholar 

  47. Yashima K, Litzky LA, Kaiser L, et al. Telomerase expression in respiratory epithelium during the multistage pathogenesis of lung carcinomas. Cancer Res 1997;57:2373–2377.

    CAS  PubMed  Google Scholar 

  48. Lantuejoul S, Soria JC, Morat L, et al. Telemerase shortening and telomerase reverse transcriptase expression in preinvasive bronchial lesions. Clin Cancer Res 2005;11:2074–2082.

    Article  CAS  PubMed  Google Scholar 

  49. Miyazu YM, Miyazawa T, Hiyama K, et al. Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer. Cancer Res 2005;65:9623–9627.

    Article  CAS  PubMed  Google Scholar 

  50. Mills NE, Fishman CL, Rom WN, et al. Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res 1995;55:1444–1447.

    CAS  PubMed  Google Scholar 

  51. Viallet J, Minna J. Dominant oncogenes and tumor suppressor genes in the pathogenesis of human lung cancer. Am J Respir Cell Mol Biol 1990;2:225–232.

    CAS  PubMed  Google Scholar 

  52. Kern JA, Robinson RA, Gazdar AF, et al. Mechanisms of p185HER2 expression in human non-small cell lung cancer cell lines. Am J Respir Cell Mol Biol 1992;6:359–363.

    CAS  PubMed  Google Scholar 

  53. Pazzella F, Turley H, Kuzu I, et al. bcl-2 protein in non-small cell lung carcinoma. N Engl J Med 1993;329:690–694.

    Article  Google Scholar 

  54. Walker C, Robertson L, Myskow M, Dixon G. Expression of the BCL-2 protein in normal and dysplastic bronchial epithelium and in lung carcinomas. Br J Cancer 1995;72:164–169.

    CAS  PubMed  Google Scholar 

  55. Uren AG, Vaux DL. Molecular and clinical aspects of apoptosis. Pharmacol Ther 1996;72:37–50.

    Article  CAS  PubMed  Google Scholar 

  56. Marchetti A, Buttitta F, Pellegrini S, et al. mdm2 gene amplification and overexpression in non-small cell lung carcinomas with accumulation of the p53 protein in the absence of p53 gene mutations. Diagn Mol Pathol 1995;4:93–97.

    Article  CAS  PubMed  Google Scholar 

  57. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992;258:1650–1654.

    Article  CAS  PubMed  Google Scholar 

  58. Eijdems EW, De Haas M, Coco-Martin JM, et al. Mechanisms of MRP overexpression in four human lung cancer cell lines and analysis of the MRP amplicon. Int J Cancer 1995;60:676–684.

    Article  CAS  PubMed  Google Scholar 

  59. Ray ME, Guan XY, Slovak ML, et al. Rapid detection, cloning and molecular cytogenetic characterization of sequences from an MRP-encoding amplicon by chromosome microdissection. Br J Cancer 1994;70:85–90.

    CAS  PubMed  Google Scholar 

  60. Brunn PA Jr, Franklin W. Epidermal growth factor receptor expression, signal pathway, and inhibitors in non-small cell lung cancer. Semin Oncol 2002;29:38–44.

    Google Scholar 

  61. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003;290:2149–2158.

    Article  CAS  PubMed  Google Scholar 

  62. Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339–346.

    CAS  PubMed  Google Scholar 

  63. Cohen MH, Williams GA, Sridhara R, et al. United States Food and Drug Administration drug approval summary: gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res 2004;10:1212–1218.

    Article  CAS  PubMed  Google Scholar 

  64. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. N Engl J Med 2004;350:2129–2139.

    Article  CAS  PubMed  Google Scholar 

  65. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004;304:1497–1500.

    Article  CAS  PubMed  Google Scholar 

  66. Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from “never smokers“ and are associated with sensitivity of tumor to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004;101:13306–13311

    Article  CAS  PubMed  Google Scholar 

  67. Borczuk AC, Gorenstein L, Walter K, et al. Non-small cell lung cancer molecular signatures recapitulate lung developmental pathways. Am J Pathol 2003;163:1949–1960.

    CAS  PubMed  Google Scholar 

  68. Jeon YK, Sung SW, Chung J-H, et al. Clinicopathologic features and prognostic implications of epidermal growth factor receptor (EGFR) gene copy number and protein expression in non-small cell lung cancer. Lung Cancer 2006;54:387–398

    Article  PubMed  Google Scholar 

  69. Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non-small cell lung cancer. N Engl J Med 2005;353:123–132.

    Article  CAS  PubMed  Google Scholar 

  70. Tsao M-S, Sakurada A, Cutz J-C, et al. Erlotinib in lung cancer-molecular and clinical predictors of outcome. N Engl J Med 2005;353:133–144.

    Article  CAS  PubMed  Google Scholar 

  71. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small cell lung cancer. J Natl Cancer Inst 2004;96:1133–1141.

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki S, Igarashi S, Hanawa M, et al. Diversity of epidermal growth factor receptor-mediated activation of downstream molecules in human lung carcinomas. Mod Pathol 2006;28:1–13.

    Google Scholar 

  73. Hirsh F, Scagliotti GV, Langer CJ, et al. Epidermal growth factor family of receptors in preneoplasia and lung cancer: perspectives for targeted therapies. Lung Cancer 2003;41:S29.

    Article  Google Scholar 

  74. Kosaka T, Yatabe Y, Endoh H, et al. Mutations of the epidermal growth factor receptor gene in lung cancer. Biological and clinical implications. Cancer Res 2004;64:8919–8923.

    Article  CAS  PubMed  Google Scholar 

  75. Reissmann PT, Koga H, Figlin RA, et al. Amplification and overexpression of the cyclin D1 and epidermal growth factor receptor genes in non-small cell lung cancer. J Cancer Res Clin Oncol 2004;125:61–70.

    Article  Google Scholar 

  76. Kelly MJ, Linnoila RI, Avis IL, et al. Antitumor activity of a monoclonal antibody directed against gastrin-releasing peptide in patients with small cell lung cancer. Chest 1997;112:256–261.

    Article  Google Scholar 

  77. Aguayo SM, Kane MA, King TE Jr, et al. Increased levels of bombesin-like peptides in the lower respiratory tract of asymptomatic cigarette smokers. J Clin Invest 1989;84:1105–1113.

    Article  CAS  PubMed  Google Scholar 

  78. Aguayo SM, King TE Jr, Kane MA, et al. Urinary levels of bombesin-like peptides in asymptomatic cigarette smoker: a potential risk marker for smoking-related diseases. Cancer Res 1992;52:2727s–2731s.

    CAS  PubMed  Google Scholar 

  79. Chan D, Gera L, Stewart J, et al. Bradykinin antagonist dimer, CU201, inhibits the growth of human lung cancer cell lines by a “biased agonist” mechanism. Proc Natl Acad Sci USA 2002;99:4608–4613

    Article  CAS  PubMed  Google Scholar 

  80. Strieter RM, Belperio JA, Burdick MD, et al. CXC chemokines: angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann NY Acad Sci 2004;1078:351–360.

    Article  CAS  Google Scholar 

  81. Sutedja G. New techniques for early detection of lung cancer. Eur Respir J 2003;21:57s–66s.

    Article  Google Scholar 

  82. Miura N, Nakamura H, Sato R, et al. Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Science 2006;97:1366–1373.

    Article  CAS  PubMed  Google Scholar 

  83. Merrick DT, Kittelson J, Winterhalder R, et al. Analysis of cErbB1/epidermal growth factor receptor and c-ErbB2/HER-2 expression in bronchial dysplasia: evaluation of potential targets for chemoprevention of lung cancer. Clin Cancer Res 2006;12:2281–2288.

    Article  CAS  PubMed  Google Scholar 

  84. Mathur PN, Edell E, Sutedja T, et al. Treatment of early stage non-small cell lung cancer. Chest 2003;123:176–180.

    Article  Google Scholar 

  85. Koike T, Terashima M, Takizawa T, et al. Surgical results for centrally-located early stage lung cancer. Ann Thorac Surg 2000;70:1176–1179.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Jung, SH., Zhao, B., Mao, L., Ro, J.Y. (2008). Molecular Pathology of Squamous Cell Carcinoma and Its Precursors. In: Zander, D.S., Popper, H.H., Jagirdar, J., Haque, A.K., Cagle, P.T., Barrios, R. (eds) Molecular Pathology of Lung Diseases. Molecular Pathology Library, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72430-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72430-0_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-72429-4

  • Online ISBN: 978-0-387-72430-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics