Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 12))

  • 718 Accesses

Abstract

Photodynamic therapy (PDT) has been in routine clinical use since the 1970s. During this period, there has been significant development in light source design, sensitizer chemistry, and clinical protocols. These advances have been paralleled by a continuous improvement in dosimetry, driven by increasing understanding of the underlying physical processes responsible for PDT-mediated tissue damage. A comprehensive dosimetry model must account for patient geometry, tissue optical properties, photosensitizer distribution, and tissue oxygenation. This paper summarizes the developments in PDT dosimetry designed to measure and account for individual variations among patients in these parameters. In each case, we present the results of measurements made during a Phase I clinical trial of PDT for recurrent prostate adenocarcinoma conducted at the University of Pennsylvania.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. C. Wilson and M. S. Patterson, “The physics of photodynamic therapy,” Phys Med Biol 31, 327–360 (1986).

    Article  Google Scholar 

  2. K. Verigos, D. C. Stripp, R. Mick, T. C. Zhu, R. Whittington, D. Smith, A. Dimofte, J. Finlay, T. M. Busch, Z. A. Tochner, S. Malkowicz, E. Glatstein, and S. M. Hahn, “Updated results of a phase I trial of motexafin lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer,” J Environ Pathol Toxicol Oncol 25, 373–388 (2006).

    Google Scholar 

  3. D. Stripp, R. Mick, T. C. Zhu, R. Whittington, D. Smith, A. Dimofte, J. C. Finlay, J. Miles, T. M. Busch, D. Shin, A. Kachur, Z. Tochner, S. B. Malkowicz, E. Glatstein, and S. M. Hahn, “Phase I trial of Motexfin Lutetium-mediated interstitial photodynamic therapy in patients with locally recurrent prostate cancer,” Proc SPIE 5315, 88–99 (2004).

    Article  Google Scholar 

  4. W. Star, “The relationship between integrating sphere and diffusion theory calculations of fluence rate at the wall of a spherical cavity,” Phys Med Biol 40, 1–8 (1995).

    Article  Google Scholar 

  5. H. J. van Staveren, M. Keijzer, T. Keesmaat, H. Jansen, W. J. Kirkel, J. F. Beek, and W. M. Star, “Integrating sphere effect in whole-bladder-wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties,” Phys Med Biol 41, 579–590 (1996).

    Article  Google Scholar 

  6. S. L. Jacques, “Simple optical theory for light dosimetry during PDT,” Proc SPIE 1645, 155– 165 (1992).

    Article  Google Scholar 

  7. W. M. Star, “Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry,” SPIE Institute Series IS5, 46– 54 (1989).

    Google Scholar 

  8. T. G. Vulcan, T. C. Zhu, C. E. Rodriguez, A. Hsi, D. L. Fraker, P. Baas, L. H. Murrer, W. M. Star, E. Glatstein, A. G. Yodh, and S. M. Hahn, “Comparison between isotropic and nonisotropic dosimetry systems during intraperitoneal photodynamic therapy,” Laser Surg Med 26, 292–301 (2000).

    Article  Google Scholar 

  9. J. P. Marijnissen and W. M. Star, “Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media,” Phys Med Biol 47, 2049–2058 (2002).

    Article  Google Scholar 

  10. J. P. Marijnissen and W. M. Star, “Calibration of isotropic light dosimetry probes based on scattering bulbs in clear media,” Phys Med Biol 41, 1191–1208 (1996).

    Article  Google Scholar 

  11. T. C. Zhu, A. Dimofte, J. C. Finlay, E. Glatstein, and S. M. Hahn, “Detector calibration factor for interstitial in vivo light dosimetry using isotropic detectors with scattering tip,” Proc SPIE 5689, 174–185 (2005).

    Article  Google Scholar 

  12. A. Ishimaru, Wave propagation and scattering in random media. (IEEE Press, New York, 1997).

    MATH  Google Scholar 

  13. M. Solonenko, R. Cheung, T. M. Busch, A. Kachur, G. M. Griffin, T. Vulcan, T. C. Zhu, H.-W. Wang, S. M. Hahn, and A. G. Yodh, “In vivo reflectance measurements of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates,” Phys Med Biol 47, 857–873 (2002).

    Google Scholar 

  14. H. W. Wang, T. C. Zhu, M. E. Putt, M. Solonenko, J. Metz, A. Dimofte, J. Miles, D. L. Fraker, E. Glatstein, S. M. Hahn, and A. G. Yodh, “Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy,” J Biomed Opt 10, 14004 (2005).

    Google Scholar 

  15. X. Zhou, B. W. Pogue, B. Chen, E. Demidenko, R. Joshi, J. Hoopes, and T. Hasan, “Pre-treatment photosensitizer dosimetry reduces variation in treatment response,” Int. J. Radiation Oncology Biol. Phys. 64, 1211–1220 (2006).

    Article  Google Scholar 

  16. M. S. Patterson, B. C. Wilson, and R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocy-anine,” Photochem Photobiol 51, 343–349 (1990).

    Article  Google Scholar 

  17. K. W. Woodburn, Q. Fan, D. Kessel, Y. Lou, and S. W. Young, “Photodynamic therapy of B16F10 murine melanoma with lutetium texaphyrin,” J Invest Dermatol 110, 746–751 (1998).

    Article  Google Scholar 

  18. T. C. Zhu, A. Dimofte, J. C. Finlay, D. Stripp, T. Busch, J. Miles, R. Whittington, S. B. Malkowicz, Z. Tochner, E. Glatstein, and S. M. Hahn, “Optical properties of human prostate at 732 nm measured in vivo during Motexafin Lutetium—mediated photodynamic therapy,” Photochem Photobiol 81, 96–105 (2005).

    Article  Google Scholar 

  19. J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, R. Whittington, J. Miles, E. Glatstein, and S. M. Hahn, “In vivo determination of the absorption and scattering spectra of the human prostate during photodynamic therapy,” Proc SPIE 5315, 132–142 (2004).

    Article  Google Scholar 

  20. K. R. Diamond, M. S. Patterson, and T. J. Farrell, “Quantification of fluorophore concentration in tissue-simulating media by fluorescence measurements with a single optical fiber,” Appl Optics 42, 2436–2442 (2003).

    Article  Google Scholar 

  21. J. C. Finlay, T. C. Zhu, A. Dimofte, D. Stripp, S. B. Malkowicz, T. M. Busch, and S. M. Hahn, “Interstitial fluorescence spectroscopy in the human prostate during motexafin lutetium-mediated photodynamic therapy,” Photochem Photobiol 82, 1270–1278 (2006).

    Article  Google Scholar 

  22. S. Andersson-Engels, J. Johansson, and K. Svanberg, “Fluorescence imaging and point measurements of tissue: Applications to the demarcation of malignanat tumors and ather-sclerotic lesions from normal tissue,” Photochem Photobiol 53, 807–814 (1991).

    Google Scholar 

  23. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu Rev Phys Chem 47, 555–606 (1996).

    Article  Google Scholar 

  24. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, and W. M. Star, “Protoporphyrin IX fluorescence photobleaching during ALA-mediated photodynamic therapy of UVB-induced tumors in hairless mouse skin,” Photochem Photobiol 69, 61–70 (1999).

    Article  Google Scholar 

  25. D. J. Robinson, H. S. de Bruijn, N. van der Veen, M. R. Stringer, S. B. Brown, and W. M. Star, “Fluorescence photobleaching of ALA-induced protoporphyrin IX during photodynamic therapy of normal hairless mouse skin: The effect of light dose and irradiance and the resulting biological effect,” Photochem Photobiol 67, 140–149 (1998).

    Article  Google Scholar 

  26. J. C. Finlay, D. L. Conover, E. L. Hull, and T. H. Foster, “Porphyrin bleaching and PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal rat skin in vivo,” Photochem Photobiol 73, 54–63 (2001).

    Article  Google Scholar 

  27. J. C. Finlay, S. Mitra, and T. H. Foster, “Photobleaching kinetics of Photofrin in vivo and in multicell tumor spheroids indicate multiple simultaneous bleaching mechanisms,” Phys Med Biol 49, 4837–4860 (2004).

    Article  Google Scholar 

  28. R. W. Weersink, M. S. Patterson, K. Diamond, S. Silver, and N. Padgett, “Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique,” Appl Optics 40, 6389–6395 (2001).

    Article  Google Scholar 

  29. J. Wu, M. S. Feld, and R. P. Rava, “Analytical model for extracting intrinsic fluorescence in turbid media,” Appl Optics 32, 3583–3595 (1993).

    Google Scholar 

  30. J. C. Finlay and T. H. Foster, “Recovery of hemoglobin oxygen saturation and intrinsic fluorescence using a forward adjoint model of fluorescence,” Appl Optics 44, 1917–1933 (2005).

    Article  Google Scholar 

  31. T. C. Zhu, J. C. Finlay, and S. M. Hahn, “Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy,” J Photochem Photobiol B 79, 231– 241 (2005).

    Article  Google Scholar 

  32. T. H. Foster, D. F. Hartley, M. G. Nichols, and R. Hilf, “Fluence rate effects in photodynamic therapy of multicell tumor spheroids,” Cancer Res 53, 1249–1254 (1993).

    Google Scholar 

  33. M. G. Nichols and T. H. Foster, “Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids,” Phys Med Biol 39, 2161–2181 (1994).

    Article  Google Scholar 

  34. I. Georgakoudi and T. H. Foster, “Singlet oxygen- versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry,” Photochem Photobiol 67, 612–625 (1998).

    Google Scholar 

  35. I. Georgakoudi, M. G. Nichols, and T. H. Foster, “The mechanism of Photofrin photobleach-ing and its consequences for photodynamic dosimetry,” Photochem Photobiol 65, 135–144 (1997).

    Article  Google Scholar 

  36. K. K. Wang, S. Mitra, and T. H. Foster, “A comprehensive mathematical model of microscopic dose deposition in photodynamic therapy,” Med Phys 34, 282–293 (2007).

    Article  Google Scholar 

  37. T. C. Zhu, J. C. Finlay, X. Zhou, and J. Li, “Macroscopic Modeling of the singlet oxygen production during PDT,” Proc SPIE 6427, 642–708 (2007).

    Google Scholar 

  38. M. D. Altschuler, T. C. Zhu, J. Li, and S. M. Hahn, “Optimized interstitial PDT prostate treatment planning with the Cimmino feasibility algorithm,” Med Phys 32, 3524–3536 (2005).

    Article  Google Scholar 

  39. G. Yu, T. Durduran, C. Zhou, H. W. Wang, M. E. Putt, H. M. Saunders, C. M. Sehgal, E. Glatstein, A. G. Yodh, and T. M. Busch, “Noninvasive monitoring of murine tumor blood flow during and after photodynamic therapy provides early assessment of therapeutic efficacy,” Clin Cancer Res 11, 3543–3552 (2005).

    Article  Google Scholar 

  40. G. Yu, T. Durduran, C. Zhou, T. C. Zhu, J. C. Finlay, T. M. Busch, S. B. Malkowicz, S. M. Hahn, and A. G. Yodh, “Real-time in situ monitoring of human prostate photodynamic therapy with diffuse light,” Photochem Photobiol 82, 1279–1284 (2006).

    Article  Google Scholar 

  41. M. Korbelik and J. Sun, “Photodynamic therapy-generated vaccine for cancer therapy,” Cancer Immunol Immunother 55, 900–909 (2006).

    Article  Google Scholar 

  42. M. Korbelik, “PDT-associated host response and its role in the therapy outcome,” Laser Surg Med 38, 500–508 (2006).

    Article  Google Scholar 

  43. A. Oseroff, “PDT as a cytotoxic agent and biological response modifier: Implications for cancer prevention and treatment in immunosuppressed and immunocompetent patients,” J Invest Dermatol 126, 542–544 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Department of Defense grant DAMD17-03-1-0132 and by National Institutes of Health P01 grant CA87971-01 and R01 grant CA109456.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this paper

Cite this paper

Finlay, J.C., Jun, L., Zhou, X., Zhu, T.C. (2008). Patient-Specific Dosimetry for Photodynamic Therapy. In: Waynant, R., Tata, D.B. (eds) Proceedings of Light-Activated Tissue Regeneration and Therapy Conference. Lecture Notes in Electrical Engineering, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71809-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71809-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71808-8

  • Online ISBN: 978-0-387-71809-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics