Skip to main content

Surrogates for Clinical Development

  • Chapter
Book cover Angiogenesis
  • 2764 Accesses

Unlike cytotoxic drugs, antiangiogenic agents by themselves seldom induce rapid tumor shrinkage over short periods of time. Therefore, traditional clinical endpoints (e.g., complete or partial response) that are used to determine the anti-tumor activity of the former may not necessarily be applicable to the latter. With a myriad of angiogenesis inhibitors undergoing and entering clinical trials for cancer treatment, there is an urgent need to develop and validate novel surrogate biomarkers for defining optimal drug doses and schedules, monitoring drug efficacy, and predicting drug response. This chapter describes the molecular, cellular, and functional imaging candidates currently being explored as potential surrogate pharmacodynamic markers for antiangiogenic therapies. Their advantages and pitfalls are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med, 82: 96–100, 1975.

    PubMed  CAS  Google Scholar 

  2. Folkman, J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 285: 1182–1186, 1971.

    PubMed  CAS  Google Scholar 

  3. Kerbel, R. S. and Kamen, B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer, 4: 423–436, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Emmenegger, U., Man, S., Shaked, Y., Francia, G., Wong, J. W., Hicklin, D. J., and Kerbel, R. S. A comparative analysis of low-dose metronomic cyclophosphamide reveals absent or low-grade toxicity on tissues highly sensitive to the toxic effects of maximum tolerated dose regimens. Cancer Res, 64: 3994–4000, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Browder, T., Butterfield, C. E., Kraling, B. M., Shi, B., Marshall, B., O’Reilly, M. S., and Folkman, J. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res, 60: 1878–1886, 2000.

    PubMed  CAS  Google Scholar 

  6. Bertolini, F., Paul, S., Mancuso, P., Monestiroli, S., Gobbi, A., Shaked, Y., and Kerbel, R. S. Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res, 63: 4342–4346, 2003.

    PubMed  CAS  Google Scholar 

  7. Ng, S. S., Sparreboom, A., Shaked, Y., Lee, C., Man, S., Desai, N., Soon-Shiong, P., Figg, W. D., and Kerbel, R. S. Influence of formulation vehicle on metronomic taxane chemotherapy: albumin-bound versus cremophor EL-based paclitaxel. Clin Cancer Res, 12: 4331–4338, 2006.

    Article  PubMed  CAS  Google Scholar 

  8. Garcia, A. A., Oza, A. M., Hirte, H., Fleming, G., Tsao-Wei, D., Roman, L., Swenson, S., Gandara, D., Scudder, S., and Morgan, R. Interim report of a phase II clinical trial of bevacizumab (Bev) and low dose metronomic oral cyclophosphamide (mCTX) in recurrent ovarian (OC) and primary peritoneal carcinoma: A California Cancer Consortium Trial. Proc Am Soc Clin Oncol, Abstract #5000, 2005.

    Google Scholar 

  9. Colleoni, M., Rocca, A., Sandri, M. T., Zorzino, L., Masci, G., Nole, F., Peruzzotti, G., Robertson, C., Orlando, L., Cinieri, S., de, B. F., Viale, G., and Goldhirsch, A. Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol, 13: 73–80, 2002.

    Article  PubMed  CAS  Google Scholar 

  10. Kieran, M. W., Turner, C. D., Rubin, J. B., Chi, S. N., Zimmerman, M. A., Chordas, C., Klement, G., Laforme, A., Gordon, A., Thomas, A., Neuberg, D., Browder, T., and Folkman, J. A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol, 27: 573–581, 2005.

    Article  PubMed  Google Scholar 

  11. Baguley, B. C., Holdaway, K. M., Thomsen, L. L., Zhuang, L., and Zwi, L. J. Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer, 27: 482–487, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Bocci, G., Nicolaou, K. C., and Kerbel, R. S. Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangiogenic window for various chemotherapeutic drugs. Cancer Res, 62: 6938–6943, 2002.

    PubMed  CAS  Google Scholar 

  13. Bocci, G., Francia, G., Man, S., Lawler, J., and Kerbel, R. S. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA, 100: 12917–12922, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Klement, G., Baruchel, S., Rak, J., Man, S., Clark, K., Hicklin, D. J., Bohlen, P., and Kerbel, R. S. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest, 105: 15–24, 2000.

    Article  Google Scholar 

  15. Shaked, Y., Emmenegger, U., Man, S., Cervi, D., Bertolini, F., Ben David, Y., and Kerbel, R. S. The optimal biological dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood, 106: 3058–3061, 2005.

    Article  PubMed  CAS  Google Scholar 

  16. Gasparini, G. and Harris, A. L. Prognostic significance of tumor vascularity, p. 317–399. Totowa, New Jersey: Human Press, 1999.

    Google Scholar 

  17. Hlatky, L., Hahnfeldt, P., and Folkman, J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst, 94: 883–893, 2002.

    PubMed  Google Scholar 

  18. Kerbel, R. and Folkman, J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer, 2: 727–739, 2002.

    Article  PubMed  CAS  Google Scholar 

  19. Braybrooke, J. P., O’Byrne, K. J., Propper, D. J., Blann, A., Saunders, M., Dobbs, N., Han, C., Woodhull, J., Mitchell, K., Crew, J., Smith, K., Stephens, R., Ganesan, T. S., Talbot, D. C., and Harris, A. L. A phase II study of razoxane, an antiangiogenic topoisomerase II inhibitor, in renal cell cancer with assessment of potential surrogate markers of angiogenesis. Clin Cancer Res, 6: 4697–4704, 2000.

    PubMed  CAS  Google Scholar 

  20. Herbst, R. S., Hess, K. R., Tran, H. T., Tseng, J. E., Mullani, N. A., Charnsangavej, C., Madden, T., Davis, D. W., McConkey, D. J., O’Reilly, M. S., Ellis, L. M., Pluda, J., Hong, W. K., and Abbruzzese, J. L. Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol, 20: 3792–3803, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Kuenen, B. C., Levi, M., Meijers, J. C., van Hinsbergh, V. W., Berkhof, J., Kakkar, A. K., Hoekman, K., and Pinedo, H. M. Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and the angiogenesis inhibitor SU5416. J Clin Oncol, 21: 2192–2198, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Fiedler, W., Serve, H., Dohner, H., Schwittay, M., Ottmann, O. G., O’Farrell, A. M., Bello, C. L., Allred, R., Manning, W. C., Cherrington, J. M., Louie, S. G., Hong, W., Brega, N. M., Massimini, G., Scigalla, P., Berdel, W. E., and Hossfeld, D. K. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood, 105: 986–993, 2005.

    Article  PubMed  CAS  Google Scholar 

  23. Dowlati, A., Robertson, K., Radivoyevitch, T., Waas, J., Ziats, N. P., Hartman, P., Abdul-Karim, F. W., Wasman, J. K., Jesberger, J., Lewin, J., McCrae, K., Ivy, P., and Remick, S. C. Novel Phase I dose de-escalation design trial to determine the biological modulatory dose of the antiangiogenic agent SU5416. Clin Cancer Res, 11: 7938–7944, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Drevs, J., Zirrgiebel, U., Schmidt-Gersbach, C. I., Mross, K., Medinger, M., Lee, L., Pinheiro, J., Wood, J., Thomas, A. L., Unger, C., Henry, A., Steward, W. P., Laurent, D., Lebwohl, D., Dugan, M., and Marme, D. Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol, 16: 558–565, 2005.

    Article  PubMed  CAS  Google Scholar 

  25. Levine, A. M., Tulpule, A., Quinn, D. I., Gorospe, G., 3rd, Smith, D. L., Hornor, L., Boswell, W. D., Espina, B. M., Groshen, S. G., Masood, R., and Gill, P. S. Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol, 24: 1712–1719, 2006.

    Article  PubMed  CAS  Google Scholar 

  26. Stempak, D., Gammon, J., Halton, J., Moghrabi, A., Koren, G., and Baruchel, S. A pilot pharmacokinetic and antiangiogenic biomarker study of celecoxib and low-dose metronomic vinblastine or cyclophosphamide in pediatric recurrent solid tumors. J Pediatr Hematol Oncol, 28: 720–728, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Fury, M. G., Zahalsky, A., Wong, R., Venkatraman, E., Lis, E., Hann, L., Aliff, T., Gerald, W., Fleisher, M., and Pfister, D. G. A Phase II study of SU5416 in patients with advanced or recurrent head and neck cancers. Invest New Drugs, 25: 165–172, 2007.

    Article  PubMed  CAS  Google Scholar 

  28. Fine, H. A., Figg, W. D., Jaeckle, K., Wen, P. Y., Kyritsis, A. P., Loeffler, J. S., Levin, V. A., Black, P. M., Kaplan, R., Pluda, J. M., and Yung, W. K. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol, 18: 708–715, 2000.

    PubMed  CAS  Google Scholar 

  29. DeVore, R. F., Hellerqvist, C. G., Wakefield, G. B., Wamil, B. D., Thurman, G. B., Minton, P. A., Sundell, H. W., Yan, H. P., Carter, C. E., Wang, Y. F., York, G. E., Zhang, M. H., and Johnson, D. H. Phase I study of the antineovascularization drug CM101. Clin Cancer Res, 3: 365–372, 1997.

    PubMed  CAS  Google Scholar 

  30. Harris, A. L., Reusch, P., Barleon, B., Hang, C., Dobbs, N., and Marme, D. Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Clin Cancer Res, 7: 1992–1997, 2001.

    PubMed  CAS  Google Scholar 

  31. Chang, Y. S., di Tomaso, E., McDonald, D. M., Jones, R., Jain, R. K., and Munn, L. L. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA, 97: 14608–14613, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N. R., Crystal, R. G., Moore, M. A., Hajjar, K. A., Manova, K., Benezra, R., and Rafii, S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med, 7: 1194–1201, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. Davidoff, A. M., Ng, C. Y., Brown, P., Leary, M. A., Spurbeck, W. W., Zhou, J., Horwitz, E., Vanin, E. F., and Nienhuis, A. W. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res, 7: 2870–2879, 2001.

    PubMed  CAS  Google Scholar 

  34. Peters, B. A., Diaz, L. A., Polyak, K., Meszler, L., Romans, K., Guinan, E. C., Antin, J. H., Myerson, D., Hamilton, S. R., Vogelstein, B., Kinzler, K. W., and Lengauer, C. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med, 11: 261–262, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Duda, D. G., Cohen, K. S., Kozin, S. V., Perentes, J. Y., Fukumura, D., Scadden, D. T., and Jain, R. K. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood, 107: 2774–2776, 2006.

    Article  PubMed  CAS  Google Scholar 

  36. Aghi, M., Cohen, K. S., Klein, R. J., Scadden, D. T., and Chiocca, E. A. Tumor stromal-derived factor-1 recruits vascular progenitors to mitotic neovasculature, where microenvironment influences their differentiated phenotypes. Cancer Res, 66: 9054–9064, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Mancuso, P., Burlini, A., Pruneri, G., Goldhirsch, A., Martinelli, G., and Bertolini, F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood, 97: 3658–3661, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Monestiroli, S., Mancuso, P., Burlini, A., Pruneri, G., Dell’Agnola, C., Gobbi, A., Martinelli, G., and Bertolini, F. Kinetics and viability of circulating endothelial cells as surrogate angiogenesis marker in an animal model of human lymphoma. Cancer Res, 61: 4341–4344, 2001.

    PubMed  CAS  Google Scholar 

  39. Capillo, M., Mancuso, P., Gobbi, A., Monestiroli, S., Pruneri, G., Dell’Agnola, C., Martinelli, G., Shultz, L., and Bertolini, F. Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res, 9: 377–382, 2003.

    PubMed  CAS  Google Scholar 

  40. Bertolini, F., Shaked, Y., Mancuso, P., and Kerbel, R. S. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer, 6: 835–845, 2006.

    Article  PubMed  CAS  Google Scholar 

  41. Furstenberger, G., von Moos, R., Lucas, R., Thurlimann, B., Senn, H. J., Hamacher, J., and Boneberg, E. M. Circulating endothelial cells and angiogenic serum factors during neoadjuvant chemotherapy of primary breast cancer. Br J Cancer, 94: 524–531, 2006.

    Article  PubMed  CAS  Google Scholar 

  42. Beerepoot, L. V., Mehra, N., Vermaat, J. S., Zonnenberg, B. A., Gebbink, M. F., and Voest, E. E. Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann Oncol, 15: 139–145, 2004.

    Article  PubMed  CAS  Google Scholar 

  43. Bertolini, F., Mingrone, W., Alietti, A., Ferrucci, P. F., Cocorocchio, E., Peccatori, F., Cinieri, S., Mancuso, P., Corsini, C., Burlini, A., Zucca, E., and Martinelli, G. Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann Oncol, 12: 987–990, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Willett, C. G., Boucher, Y., di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., Chung, D. C., Sahani, D. V., Kalva, S. P., Kozin, S. V., Mino, M., Cohen, K. S., Scadden, D. T., Hartford, A. C., Fischman, A. J., Clark, J. W., Ryan, D. P., Zhu, A. X., Blaszkowsky, L. S., Chen, H. X., Shellito, P. C., Lauwers, G. Y., and Jain, R. K. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med, 10: 145–147, 2004.

    Article  PubMed  CAS  Google Scholar 

  45. Beaudry, P., Force, J., Naumov, G. N., Wang, A., Baker, C. H., Ryan, A., Soker, S., Johnson, B. E., Folkman, J., and Heymach, J. V. Differential effects of vascular endothelial growth factor receptor-2 inhibitor ZD6474 on circulating endothelial progenitors and mature circulating endothelial cells: implications for use as a surrogate marker of antiangiogenic activity. Clin Cancer Res, 11: 3514–3522, 2005.

    Article  PubMed  CAS  Google Scholar 

  46. Davis, D. W., McConkey, D. J., Abbruzzese, J. L., and Herbst, R. S. Surrogate markers in antiangiogenesis clinical trials. Br J Cancer, 89: 8–14, 2003.

    Article  PubMed  CAS  Google Scholar 

  47. Radema, S. A., Beerepoot, L. V., Witteveen, P. O., Gebbink, M. F., Wheeler, C., and Voest, E. E. Clinical evaluation or the novel-targeting agent, ZD6126: assessment of toxicity and surrogate markers of vascular damage. Proc Am Soc Clin Oncol, 21: 110A, 2002.

    Google Scholar 

  48. Beerepoot, L. V., Radema, S. A., Witteveen, E. O., Thomas, T., Wheeler, C., Kempin, S., and Voest, E. E. Phase I clinical evaluation of weekly administration of the novel vascular-targeting agent, ZD6126, in patients with solid tumors. J Clin Oncol, 24: 1491–1498, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Mancuso, P., Colleoni, M., Calleri, A., Orlando, L., Maisonneuve, P., Pruneri, G., Agliano, A., Goldhirsch, A., Shaked, Y., Kerbel, R. S., and Bertolini, F. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood, 108: 452–459, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Shaked, Y., Bertolini, F., Man, S., Rogers, M. S., Cervi, D., Foutz, T., Rawn, K., Voskas, D., Dumont, D. J., Ben David, Y., Lawler, J., Henkin, J., Huber, J., Hicklin, D. J., D’Amato, R. J., and Kerbel, R. S. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis: Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell, 7: 101–111, 2005.

    PubMed  CAS  Google Scholar 

  51. Munoz, R., Man, S., Shaked, Y., Lee, C. R., Wong, J., Francia, G., and Kerbel, R. S. Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res, 66: 3386–3391, 2006.

    Article  PubMed  CAS  Google Scholar 

  52. Shaked, Y., Ciarrocchi, A., Franco, M., Lee, C. R., Man, S., Cheung, A. M., Hicklin, D. J., Chaplin, D., Foster, F. S., Benezra, R., and Kerbel, R. S. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science, 313: 1785–1787, 2006.

    Article  PubMed  CAS  Google Scholar 

  53. Urbich, C. and Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 95: 343–353, 2004.

    Article  PubMed  CAS  Google Scholar 

  54. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., and Finkel, T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med, 348: 593–600, 2003.

    Article  PubMed  Google Scholar 

  55. Ashworth, T. R. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aus Med J, 14: 146, 1869.

    Google Scholar 

  56. Myerowitz, R. L., Edwards, P. A., and Sartiano, G. P. Carcinocythemia (carcinoma cell leukemia) due to metastatic carcinoma of the breast: report of a case. Cancer, 40: 3107–3111, 1977.

    Article  PubMed  CAS  Google Scholar 

  57. Ross, A. A., Cooper, B. W., Lazarus, H. M., Mackay, W., Moss, T. J., Ciobanu, N., Tallman, M. S., Kennedy, M. J., Davidson, N. E., Sweet, D., and et al. Detection and viability of tumor cells in peripheral blood stem cell collections from breast cancer patients using immunocytochemical and clonogenic assay techniques. Blood, 82: 2605–2610, 1993.

    PubMed  CAS  Google Scholar 

  58. Brugger, W., Bross, K. J., Glatt, M., Weber, F., Mertelsmann, R., and Kanz, L. Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood, 83: 636–640, 1994.

    PubMed  CAS  Google Scholar 

  59. Brandt, B., Junker, R., Griwatz, C., Heidl, S., Brinkmann, O., Semjonow, A., Assmann, G., and Zanker, K. S. Isolation of prostate-derived single cells and cell clusters from human peripheral blood. Cancer Res, 56: 4556–4561, 1996.

    PubMed  CAS  Google Scholar 

  60. Racila, E., Euhus, D., Weiss, A. J., Rao, C., McConnell, J., Terstappen, L. W., and Uhr, J. W. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci USA, 95: 4589–4594, 1998.

    Article  PubMed  CAS  Google Scholar 

  61. Kraeft, S. K., Sutherland, R., Gravelin, L., Hu, G. H., Ferland, L. H., Richardson, P., Elias, A., and Chen, L. B. Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system. Clin Cancer Res, 6: 434–442, 2000.

    PubMed  CAS  Google Scholar 

  62. Fehm, T., Sagalowsky, A., Clifford, E., Beitsch, P., Saboorian, H., Euhus, D., Meng, S., Morrison, L., Tucker, T., Lane, N., Ghadimi, B. M., Heselmeyer-Haddad, K., Ried, T., Rao, C., and Uhr, J. Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res, 8: 2073–2084, 2002.

    PubMed  CAS  Google Scholar 

  63. Allard, W. J., Matera, J., Miller, M. C., Repollet, M., Connelly, M. C., Rao, C., Tibbe, A. G., Uhr, J. W., and Terstappen, L. W. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res, 10: 6897–6904, 2004.

    Article  PubMed  Google Scholar 

  64. Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., Reuben, J. M., Doyle, G. V., Allard, W. J., Terstappen, L. W., and Hayes, D. F. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med, 351: 781–791, 2004.

    Article  PubMed  CAS  Google Scholar 

  65. Cristofanilli, M., Hayes, D. F., Budd, G. T., Ellis, M. J., Stopeck, A., Reuben, J. M., Doyle, G. V., Matera, J., Allard, W. J., Miller, M. C., Fritsche, H. A., Hortobagyi, G. N., and Terstappen, L. W. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol, 23: 1420–1430, 2005.

    Article  PubMed  Google Scholar 

  66. Moreno, J. G., O’Hara, S. M., Gross, S., Doyle, G., Fritsche, H., Gomella, L. G., and Terstappen, L. W. Changes in circulating carcinoma cells in patients with metastatic prostate cancer correlate with disease status. Urology, 58: 386–392, 2001.

    Article  PubMed  CAS  Google Scholar 

  67. Moreno, J. G., Miller, M. C., Gross, S., Allard, W. J., Gomella, L. G., and Terstappen, L. W. Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology, 65: 713–718, 2005.

    Article  PubMed  Google Scholar 

  68. Staritz, P., Kienle, P., Koch, M., Benner, A., von Knebel Doeberitz, M., Rudi, J., and Weitz, J. Detection of disseminated tumour cells as a potential surrogate-marker for monitoring palliative chemotherapy in colorectal cancer patients. J Exp Clin Cancer Res, 23: 633–639, 2004.

    PubMed  CAS  Google Scholar 

  69. Hayes, D. F., Walker, T. M., Singh, B., Vitetta, E. S., Uhr, J. W., Gross, S., Rao, C., Doyle, G. V., and Terstappen, L. W. Monitoring expression of HER-2 on circulating epithelial cells in patients with advanced breast cancer. Int J Oncol, 21: 1111–1117, 2002.

    PubMed  CAS  Google Scholar 

  70. Dahut, W. L., Posadas, E. M., Weu, S., Arlen, P. M., Gulley, J. L., Wright, J., Chen, C. C., Jones, E., and Figg, W. D. Bony metastatic disease responses to sorafenib (BAY43–9006) independent of PSA in patients with metastatic androgen independent prostate cancer. J Clin Oncol ASCO Annual Meeting Proceedings, 24(18S): 4506, 2006.

    Google Scholar 

  71. Herbst, R. S., Mullani, N. A., Davis, D. W., Hess, K. R., McConkey, D. J., Charnsangavej, C., O’Reilly, M. S., Kim, H. W., Baker, C., Roach, J., Ellis, L. M., Rashid, A., Pluda, J., Bucana, C., Madden, T. L., Tran, H. T., and Abbruzzese, J. L. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin. J Clin Oncol, 20: 3804–3814, 2002.

    Article  PubMed  CAS  Google Scholar 

  72. Morgan, B., Thomas, A. L., Drevs, J., Hennig, J., Buchert, M., Jivan, A., Horsfield, M. A., Mross, K., Ball, H. A., Lee, L., Mietlowski, W., Fuxuis, S., Unger, C., O’Byrne, K., Henry, A., Cherryman, G. R., Laurent, D., Dugan, M., Marme, D., and Steward, W. P. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol, 21: 3955–3964, 2003.

    Article  PubMed  CAS  Google Scholar 

  73. Dowlati, A., Robertson, K., Cooney, M., Petros, W. P., Stratford, M., Jesberger, J., Rafie, N., Overmoyer, B., Makkar, V., Stambler, B., Taylor, A., Waas, J., Lewin, J. S., McCrae, K. R., and Remick, S. C. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res, 62: 3408–3416, 2002.

    PubMed  CAS  Google Scholar 

  74. Galbraith, S. M., Maxwell, R. J., Lodge, M. A., Tozer, G. M., Wilson, J., Taylor, N. J., Stirling, J. J., Sena, L., Padhani, A. R., and Rustin, G. J. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol, 21: 2831–2842, 2003.

    Article  PubMed  CAS  Google Scholar 

  75. De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., and Naldini, L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8: 211–226, 2005.

    Article  PubMed  CAS  Google Scholar 

  76. Udagawa, T., Puder, M., Wood, M., Schaefer, B. C., and D’Amato, R. J. Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. Faseb J, 20: 95–102, 2006.

    Article  PubMed  CAS  Google Scholar 

  77. Conejo-Garcia, J. R., Benencia, F., Courreges, M. C., Kang, E., Mohamed-Hadley, A., Buckanovich, R. J., Holtz, D. O., Jenkins, A., Na, H., Zhang, L., Wagner, D. S., Katsaros, D., Caroll, R., and Coukos, G. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med, 10: 950–958, 2004.

    Article  PubMed  CAS  Google Scholar 

  78. Lipidot, T., and Petit, I. Current understanding of stem cell mobilization: the roles of chemokine. Exp Hematol, 20: 973–981, 2002.

    Article  Google Scholar 

  79. Schwartzberg, L. S., Birch, R., Hazelton, B., Tauer, K. W., Lee, P., Altemose, M. D., George, C., Blanco, R., Wittlin, F., Cohen, J., Muscato, J., and West, W. H. Peripheral blood stem cell mobilization by chemotherapy with and without recombinant human granulocyte colony-stimulating factor. J Hematol, 1: 317–327, 1992.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ng, S.S.W., Chi, K.N. (2008). Surrogates for Clinical Development. In: Figg, W.D., Folkman, J. (eds) Angiogenesis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-71518-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-71518-6_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-71517-9

  • Online ISBN: 978-0-387-71518-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics