Skip to main content

Phylum XVIII. Fibrobacteres Garrity and Holt 2001

  • Chapter
Book cover Bergey’s Manual® of Systematic Bacteriology

Abstract

The phylum Fibrobacteres currently consists of three classes circumscribed on the basis of phylogenetic analysis of 16S rRNA gene sequences, including one cultivated class, Fibrobacteria class. nov. Fibrobacterales is the type order, and contains a single family and genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Garrity, G.M. and J.G. Holt. 2001. The Road Map to the Manual. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria (edited by Boone, Castenholz and Garrity). Springer, New York, pp. 119–166.

    Google Scholar 

  • Griffiths, E. and R.S. Gupta. 2001. The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the CytophagaFlavobacteriumBacteroides division. Microbiology 147: 2611–2622.

    PubMed  CAS  Google Scholar 

  • Gupta, R.S. 2004. The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit. Rev. Microbiol. 30: 123–143.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, R.S. and E. Lorenzini. 2007. Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol. Biol. 7: 71.

    Article  PubMed  Google Scholar 

  • Hongoh, Y., P. Deevong, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, C. Vongkaluang, N. Noparatnaraporn and T. Kudo. 2005. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71: 6590–6599.

    Article  PubMed  CAS  Google Scholar 

  • Hongoh, Y., P. Deevong, S. Hattori, T. Inoue, S. Noda, N. Noparatnaraporn, T. Kudo and M. Ohkuma. 2006a. Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Appl. Environ. Microbiol. 72: 6780–6788.

    Article  PubMed  CAS  Google Scholar 

  • Hongoh, Y., L. Ekpornprasit, T. Inoue, S. Moriya, S. Trakulnaleamsai, M. Ohkuma, N. Noparatnaraporn and T. Kudo. 2006b. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol. Ecol. 15: 505–516.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, L., B. Flesher and D. Stahl. 1988. Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int. J. Syst. Bacteriol. 38: 430435.

    Article  Google Scholar 

  • Amann, R.I., C. Lin, R. Key, L. Montgomery and D.A. Stahl. 1992. Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol. 15: 23–31.

    Article  Google Scholar 

  • Bera-Maillet, C., V. Broussolle, P. Pristas, J.P. Girardeau, G. Gaudet and E. Forano. 2000. Characterisation of endoglucanases EGB and EGC from Fibrobacter succinogenes. Biochim. Biophys. Acta 1476: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Bera-Maillet, C., Y. Ribot and E. Forano. 2004. Fiber-degrading systems of different strains of the genus Fibrobacter. Appl. Environ. Microbiol. 70: 2172–2179.

    Article  PubMed  CAS  Google Scholar 

  • Bourquin, L.D. and G.C. Fahey, Jr. 1994. Ruminal digestion and glycosyl linkage patterns of cell wall components from leaf and stem fractions of alfalfa, orchardgrass, and wheat straw. J. Anim. Sci. 72: 1362–1374.

    PubMed  CAS  Google Scholar 

  • Broussolle, V., E. Forano, G. Gaudet and Y. Ribot. 1994. Gene sequence and analysis of protein domains of EGB, a novel family E endoglucanase from Fibrobacter succinogenes S85. FEMS Microbiol. Lett. 124: 439–447.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M.P. and R.N. Doetsch. 1954. A study of actively cellulolytic rod-shaped bacteria of the bovine rumen. J. Dairy Sci. 37: 1176–1183.

    Article  CAS  Google Scholar 

  • Cheng, K.J., C.S. Stewart, D. Dinsdale and J.W. Costerton. 1983. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10: 93–120.

    Article  Google Scholar 

  • Dehority, B.A. and P.A. Tirabasso. 1998. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose. J. Anim. Sci. 76: 2905–2911.

    PubMed  CAS  Google Scholar 

  • Doi, R.H. and A. Kosugi. 2004. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol. 2: 541–551.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, C.W., E. Forano and A. Chesson. 2000. Microbial adherence to plant cell wall and enzymatic hydrolysis. In Ruminant Physiology Digestion, Metabolism, Growth and Reproduction (edited by Cronje). CABI Publishing, Wallingford, pp. 79–98.

    Chapter  Google Scholar 

  • Gardner, P.T., T.J. Wood, A. Chesson and T. Stuchbury. 1999. Effect of degradation on the porosity and surface area of forage cell walls of differing lignin content. J. Sci. Food Agric. 79 11–18.

    Article  CAS  Google Scholar 

  • Gong, J. and C.W. Forsberg. 1989. Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl. Environ. Microbiol. 55: 3039–3044.

    PubMed  CAS  Google Scholar 

  • Huang, L., C.W. Forsberg and D.Y. Thomas. 1988. Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85. J. Bacteriol. 170: 2923–2932.

    PubMed  CAS  Google Scholar 

  • Hungate, R.E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14: 1–49.

    PubMed  CAS  Google Scholar 

  • Iyo, A.H. and C.W. Forsberg. 1994. Features of the cellodextrinase gene from Fibrobacter succinogenes S85. Can. J. Microbiol. 40: 592–596.

    Article  PubMed  CAS  Google Scholar 

  • Iyo, A.H. and C.W. Forsberg. 1996. Endoglucanase G from Fibrobacter succinogenes S85 belongs to a class of enzymes characterized by a basic C-terminal domain. Can. J. Microbiol. 42: 934–943.

    Article  PubMed  CAS  Google Scholar 

  • Jun, H.S., J.K. Ha, L.M. Malburg, Jr, G.A. Verrinder and C.W. Forsberg. 2003. Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85. Can. J. Microbiol. 49: 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Jun, H.S., M. Qi, J. Gong, E.E. Egbosimba and C.W. Forsberg. 2007. Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J. Bacteriol. 189 6806–6815.

    Article  PubMed  CAS  Google Scholar 

  • Kam, D.K., H.S. Jun, J.K. Ha, G.D. Inglis and C.W. Forsberg. 2005. Characteristics of adjacent family 6 acetylxylan esterases from Fibrobacter succinogenes and the interaction with the Xyn10E xylanase in hydrolysis of acetylated xylan. Can. J. Microbiol. 51: 821–832.

    Article  PubMed  CAS  Google Scholar 

  • Koike, S., J. Pan, T. Suzuki, T. Takano, C. Oshima, Y. Kobayashi and K. Tanaka. 2004. Ruminal distribution of the cellulolytic bacterium Fibrobacter succinogenes in relation to its phylogenetic grouping. Anim. Sci. J. 75: 417–422.

    Article  CAS  Google Scholar 

  • Kudo, H., K.J. Cheng and J.W. Costerton. 1987. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33: 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C.Z. and D.A. Stahl. 1995. Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61: 1348–1351.

    PubMed  CAS  Google Scholar 

  • Lin, C.Z., B. Flesher, W.C. Capman, R.I. Amann and D.A. Stahl. 1994. Taxon specific hybridization probes for fiber-digesting bacteria suggest novel gut-associated Fibrobacter. Syst. Appl. Microbiol. 17: 418–424.

    Article  CAS  Google Scholar 

  • Lynd, L.R., P.J. Weimer, W.H. van Zyl and I.S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.

    Article  PubMed  CAS  Google Scholar 

  • Maas, L.K. and T.L. Glass. 1991. Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes. Can. J. Microbiol. 37: 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Macy, J.M., J.R. Farrand and L. Montgomery. 1982. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts Appl. Environ. Microbiol. 44: 1428–1434.

    CAS  Google Scholar 

  • Maglione, G., J.B. Russell and D.B. Wilson. 1997. Kinetics of cellulose digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 63: 665–669.

    PubMed  CAS  Google Scholar 

  • Malburg, L.M.J., A.H. Iyo and C.W. Forsberg. 1996. A novel family 9 endoglucanase gene (celD), whose product cleaves substrates mainly to glucose, and its adjacent upstream homolog (celE) from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 62: 898–906.

    PubMed  CAS  Google Scholar 

  • Malburg, S.R., L.M. Malburg, T. Liu, A.Y. Iyo, C. Forsberg. 1997. Catalytic properties of the cellulose-binding endoglucanase F from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 63: 2449–2453.

    PubMed  CAS  Google Scholar 

  • Matte, A. and C.W. Forsberg. 1992. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 58: 157–168.

    PubMed  CAS  Google Scholar 

  • Matte, A., C.W. Forsberg and A.M. Verrinder Gibbins. 1992. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85. Can. J. Microbiol. 38: 370–376.

    Article  PubMed  CAS  Google Scholar 

  • Matulova, M., R. Nouaille, P. Capek, M. Pean, E. Forano and A.M. Delort. 2005. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study. Appl. Environ. Microbiol. 71: 1247–1253.

    Article  PubMed  CAS  Google Scholar 

  • McDermid, K.P., C.W. Forsberg and C.R. MacKenzie. 1990a. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 56: 3805–3810.

    PubMed  CAS  Google Scholar 

  • McDermid, K.P., C.R. MacKenzie and C.W. Forsberg. 1990b. Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl. Environ. Microbiol. 56: 127–132.

    PubMed  CAS  Google Scholar 

  • McGavin, M. and C.W. Forsberg. 1988. Isolation and characterization of endoglucanases 1 and 2 from Bacteroides succinogenes S85. J. Bacteriol. 170: 2914–2922.

    PubMed  CAS  Google Scholar 

  • McGavin, M.J., C.W. Forsberg, B. Crosby, A.W. Bell, D. Dignard and D.Y. Thomas. 1989. Structure of the cel-3 gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. J. Bacteriol. 171: 5587–5595.

    PubMed  CAS  Google Scholar 

  • Miron, J. and C.W. Forsberg. 1998. Features of Fibrobacter intestinalis DR7 mutant which is impaired with its ability to adhere to cellulose. Anaerobe 4: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, L. and J.M. Macy. 1982. Characterization of rat cecum cellulolytic bacteria. Appl. Environ. Microbiol. 44: 1435–1443.

    PubMed  CAS  Google Scholar 

  • Montgomery, L., B. Flesher and D. Stahl. 1988. Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis sp. nov. Int. J. Syst. Bacteriol. 38: 430–435.

    Article  Google Scholar 

  • Morrison, M., K. Nelson, I. Cann, C. Forsberg, R.I. Mackie, J.B. Russell, B.A. White, D.B. Wilson, K. Amya, B. Cheng, S. Qi, H.S. Jun, S. Mulligan, K. Tran, H. Carty, H. Khouri, W. Nelson, S. Daugherty and C. Fraser. 2003. The Fibrobacter succinogenes strain S85 sequencing project. 3rd ASM-TIGR, Microbial Genome Meeting, New Orleans.

    Google Scholar 

  • Paradis, F.W., H. Zhu, P.J. Krell, J.P. Phillips and C.W. Forsberg. 1993. The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains. J. Bacteriol. 175: 7666–7672.

    PubMed  CAS  Google Scholar 

  • Pegden, R.S., M.A. Larson, R.J. Grant and M. Morrison. 1998. Adherence of the Gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulose-binding protein which belongs to the pil family of proteins. J. Bacteriol. 180: 5921–5927.

    PubMed  CAS  Google Scholar 

  • Prévot, A.R. 1966. Manual for the Classification and Determination of the Anaerobic Bacteria. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Qi, M., K.E. Nelson, S.C. Daugherty, W.C. Nelson, I.R. Hance, M. Morrison and C.W. Forsberg. 2005. Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J. Bacteriol. 187: 3739–3751.

    Article  PubMed  CAS  Google Scholar 

  • Qi, M., H.S. Jun and C.W. Forsberg. 2007. Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases. Appl. Environ. Microbiol. 73: 6098–6105.

    Article  PubMed  CAS  Google Scholar 

  • Qi, M., H.S. Jun and C.W. Forsberg. 2008a. Cel9D, an atypical 1,4-β-d-glucan glucohydrolase from Fibrobacter succinogenes: characteristics, catalytic residues, and synergistic interactions with other cellulases. J. Bacteriol. 190: 1976–1984.

    Article  PubMed  CAS  Google Scholar 

  • Qi, M., K.E. Nelson, S.C. Daugherty, W.C. Nelson, I.R. Hance, M. Morrison and C.W. Forsberg. 2008b. Genomic differences between Fibrobacter succinogenes S85 and Fibrobacter intestinalis DR7 identified by suppression subtractive hybridization. Appl. Environ. Microbiol. 74: 987–993.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.C. and C.W. Forsberg. 1991. α-Glucuronidase and other hemicellulase activities of Fibrobacter succinogenes S85 grown on crystalline cellulose or ball-milled barley straw. Appl. Environ. Microbiol. 57: 3552–3557.

    PubMed  CAS  Google Scholar 

  • Stewart, C.S., C. Paniagua, D. Dinsdale, K-J. Cheng and S.H. Garrow. 1981. Selective isolation and characteristics of Bacteriodes succinogenes from the rumen of a cow. Appl. Environ. Microbiol. 41: 504–510.

    PubMed  CAS  Google Scholar 

  • Teather, R.M. and J.D. Erfle. 1990. DNA sequence of a Fibrobacter succinogenes mixed-linkage beta-glucanase (1,3–1,4-β-d-glucan 4-glucanohydrolase) gene. J. Bacteriol. 172: 3837–3841.

    PubMed  CAS  Google Scholar 

  • Wells, J.E., J.B. Russell, Y. Shi and P.J. Weimer. 1995. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Appl. Environ. Microbiol. 61: 1757–1762.

    PubMed  CAS  Google Scholar 

  • Wen, T.N., J.L. Chen, S.H. Lee, N.S. Yang and L.F. Shyur. 2005. A truncated Fibrobacter succinogenes 1,3–1,4-β-d-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44: 9197–9205.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., F.W. Paradis, P.J. Krell, J.P. Phillips and C.W. Forsberg. 1994. Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J. Bacteriol. 176: 3885–3894.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Spain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Bergey’s Manual Trust

About this chapter

Cite this chapter

Spain, A.M., Forsberg, C.W., Krumholz, L.R. (2010). Phylum XVIII. Fibrobacteres Garrity and Holt 2001. In: Krieg, N.R., et al. Bergey’s Manual® of Systematic Bacteriology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68572-4_7

Download citation

Publish with us

Policies and ethics