Skip to main content

Nonenzymic Metabolites of Arachidonate and Docosahexaenoate in Brain

  • Chapter
Glycerophospholipids in the Brain
  • 420 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaishi T., Nakazawa K., Sato K., Ohno Y., and Ito Y. (2004). 4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in-vitro. Neurosci. Lett. 370:155–159.

    PubMed  CAS  Google Scholar 

  • Allen R. G. and Tresini M. (2000). Oxidative stress and gene regulation. Free Radic. Biol. Med. 28:463–499.

    PubMed  CAS  Google Scholar 

  • Bacot S., Bernoud-Hubac N., Baddas N., Chantegrel B., Deshayes C., Doutheau A., Lagarde M., and Guichardant M. (2003). Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J.-Lipid Res. 44:917–926.

    PubMed  CAS  Google Scholar 

  • Barrera G., Pizzimenti S., and Dianzani M. U. (2004). 4-Hydroxynonenal and regulation of cell cycle: effects on the pRb/E2F pathway. Free Radic. Biol. Med. 37:597–606.

    PubMed  CAS  Google Scholar 

  • Basu S. (2004). Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic. Res. 38:105–122.

    PubMed  CAS  Google Scholar 

  • Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J.-Biol. Chem. 272:20313–20316.

    PubMed  CAS  Google Scholar 

  • Bernoud-Hubac N., Davies S. S., Boutaud O., Montine T. J., and Roberts L. J., II (2001). Formation of highly reactive gamma-ketoaldehydes (Neuroketals) as products of the neuroprostane pathway. J.-Biol. Chem. 276:30964–30970.

    PubMed  CAS  Google Scholar 

  • Buisson A., Lakhmeche N., Verrecchia C., Plotkine M., and Boulu R. G. (1993). Nitric oxide: an endogenous anticonvulsant substance. NeuroReport 4:444–446.

    PubMed  CAS  Google Scholar 

  • Camandola S., Poli G., and Mattson M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J.-Neurochem. 74:159–168.

    PubMed  CAS  Google Scholar 

  • Castegna A., Lauderback C. M., Mohmmad-Abdul H., and Butterfield D. A. (2004). Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res. 1004:193–197.

    PubMed  CAS  Google Scholar 

  • Chen J.-J., Bertrand H., and Yu B. P. (1995). Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic. Biol. Med. 19:583–590.

    PubMed  CAS  Google Scholar 

  • Chiarpotto E., Domenicotti C., Paola D., Vitali A., Nitti M., Pronzato M. A., Biasi F., Cottalasso D., Marinari U. M., Dragonetti A., Cesaro P., Isidoro C., and Poli G. (1999). Regulation of rat hepatocyte protein kinase C beta isoenzymes by the lipid peroxidation product 4-hydroxy-2,3-nonenal: a signaling pathway to modulate vesicular transport of glycoproteins. Hepatology 29:1565–1572.

    PubMed  CAS  Google Scholar 

  • Choe M., Jackson C., and Yu B. P. (1995). Lipid peroxidation contributes to age-related membrane rigidity. Free Radic. Biol. Med. 18:977–984.

    PubMed  CAS  Google Scholar 

  • Cleland L. G. and James M. J.-(1997). Rheumatoid arthritis and the balance of dietary n-6 and n-3 essential fatty acids. Br. J Rheumatol. 36:513–514.

    PubMed  CAS  Google Scholar 

  • Cracowski J.-L. (2004). Isoprostanes: an emerging role in vascular physiology and disease? Chem. Phys. Lipids 128:75–83.

    PubMed  CAS  Google Scholar 

  • Davies S. S., Amarnath V., and Roberts L. J., II (2004). Isoketals: highly reactive gamma-ketoaldehydes formed from the H-2-isoprostane pathway. Chem. Phys. Lipids 128:85–99.

    PubMed  CAS  Google Scholar 

  • Dean R. T., Fu S., Stocker R., and Davies M. J.-(1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J.-324:1–18.

    PubMed  CAS  Google Scholar 

  • Del Corso A., Dal Monte M., Vilardo P. G., Cecconi I., Moschini R., Banditelli S., Cappiello M., Tsai L., and Mura U. (1998). Site-specific inactivation of aldose reductase by 4-hydroxynonenal. Arch. Biochem. Biophys. 350:245–248.

    PubMed  CAS  Google Scholar 

  • Dickinson D. A., Iles K. E., Watanabe N., Iwamoto T., Zhang H., Krzywanski D. M., and Forman H. J.-(2002). 4-Hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radic. Biol. Med. 33:974–987.

    PubMed  CAS  Google Scholar 

  • Duffy S., So A., and Murphy T. H. (1998). Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J.-Neurochem. 71:69–77.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H., Schaur R. J., and Zollner H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11:81–128.

    PubMed  CAS  Google Scholar 

  • Fam S. S. and Morrow J.-D. (2003). The isoprostanes: unique products of arachidonic acid oxidation – a review. Curr. Med. Chem. 10:1723–1740.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.

    CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    PubMed  CAS  Google Scholar 

  • Fernstrom J.-D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.

    PubMed  CAS  Google Scholar 

  • Fessel J.-P., Porter N. A., Moore K. P., Sheller J.-R., and Roberts L. J., II (2002). Discovery of lipid peroxidation products formed in-vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl Acad. Sci. USA 99:16713–16718.

    PubMed  CAS  Google Scholar 

  • Fiez J.-A. (1996). Cerebellar contributions to cognition. Neuron 16:13–15.

    PubMed  CAS  Google Scholar 

  • Fisher A. B., Dodia C., Manevich Y., Chen J.-W., and Feinstein S. I. (1999). Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J.-Biol. Chem. 274:21326–21334.

    PubMed  CAS  Google Scholar 

  • Friguet B., Stadtman E. R., and Szweda L. I. (1994). Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. J.-Biol. Chem. 269:21639–21643.

    PubMed  CAS  Google Scholar 

  • Fukunaga M., Makita N., Roberts L. J., Morrow J.-D., Takahashi K., and Badr K. F. (1993). Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am. J.-Physiol. 264:C1619–C1624.

    PubMed  CAS  Google Scholar 

  • Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure–function relationships. Curr. Pharm. Des. 10:915–921.

    PubMed  CAS  Google Scholar 

  • Guichardant M., Bernoud-Hubac N., Chantegrel B., Deshayes C., and Lagarde M. (2002). Aldehydes from n-6 fatty acid peroxidation. Effects on aminophospholipids. Prostaglandins Leukot. Essent. Fatty Acids 67:147–149.

    PubMed  CAS  Google Scholar 

  • Habib A. and Badr K. F. (2004). Molecular pharmacology of isoprostanes in vascular smooth muscle. Chem. Phys. Lipids 128:69–73.

    PubMed  CAS  Google Scholar 

  • Halliwell B. (1994). Free radicals and antioxidants: a personal view. Nutr. Rev. 52:253–265.

    Article  PubMed  CAS  Google Scholar 

  • Harrison K. A. and Murphy R. C. (1995). Isoleukotrienes are biologically active free radical products of lipid peroxidation. J.-Biol. Chem. 270:17273–17278.

    PubMed  CAS  Google Scholar 

  • Heinle H., Gugeler N., Felde R., Okech D., and Spiteller G. (2000). Oxidation of plasmalogens produces highly effective modulators of macrophage function. Z. Naturforsch. [C] 55:115–120.

    CAS  Google Scholar 

  • Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.

    PubMed  CAS  Google Scholar 

  • Jenkinson A. M., Collins A. R., Duthie S. J., Wahle K. W. J., and Duthie G. G. (1999). The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes. FASEB J.-13:2138–2142.

    PubMed  CAS  Google Scholar 

  • Ji C., Amarnath V., Pietenpol J.-A., and Marnett L. J.-(2001). 4-Hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release. Chem. Res. Toxicol. 14:1090–1096.

    PubMed  CAS  Google Scholar 

  • Kadoya A., Miyake H., and Ohyashiki T. (2003). Contribution of lipid dynamics on the inhibition of bovine brain synaptosomal Na+–K+-ATPase activity induced by 4-hydroxy-2-nonenal. Biol. Pharm. Bull. 26:787–793.

    PubMed  CAS  Google Scholar 

  • Kehrer J.-P. and Biswal S. S. (2000). The molecular effects of acrolein. Toxicol. Sci. 57:6–15.

    PubMed  CAS  Google Scholar 

  • Keller J.-N. and Mattson M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev. Neurosci. 9:105–116.

    PubMed  CAS  Google Scholar 

  • Keller J.-N., Mark R. J., Bruce A. J., Blanc E., Rothstein J.-D., Uchida K., Wäg G., and Mattson M. P. (1997). 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696.

    PubMed  CAS  Google Scholar 

  • Kristal B. S., Park B. K., and Yu B. P. (1996). 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J.-Biol. Chem. 271:6033–6038.

    PubMed  CAS  Google Scholar 

  • Kruman I., Bruce-Keller A. J., Bredesen D., Wäg G., and Mattson M. P. (1997). Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J.-Neurosci. 17:5089–5100.

    PubMed  CAS  Google Scholar 

  • Lahaie I., Hardy P., Hou X., Hassessian H., Asselin P., Lachapelle P., Almazan G., Varma D. R., Morrow J.-D., Roberts L. J., II, and Chemtob S. (1998). A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F2α on retinal vessels. Am. J.-Physiol. 274:R1406–R1416.

    PubMed  CAS  Google Scholar 

  • Lauderback C. M., Hackett J.-M., Huang F. F., Keller J.-N., Szweda L. I., Markesbery W. R., and Butterfield D. A. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1–42. J.-Neurochem. 78:413–416.

    PubMed  CAS  Google Scholar 

  • Lee H., Shi W., Tontonoz P., Wang S., Subbanagounder G., Hedrick C. C., Hama S., Borromeo C., Evans R. M., Berliner J.-A., and Nagy L. (2000a). Role for peroxisome proliferator-activated receptor α in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ. Res. 87:516–521.

    PubMed  CAS  Google Scholar 

  • Lee S. H., Rindgen D., Bible R. H., Jr., Hajdu E., and Blair I. A. (2000b). Characterization of 2′-deoxyadenosine adducts derived from 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem. Res. Toxicol. 13:565–574.

    PubMed  CAS  Google Scholar 

  • Lee J.-Y., Je J.-H., Jung K. J., Yu B. P., and Chung H. Y. (2004a). Induction of endothelial iNOS by 4-hydroxyhexenal through NF-κB activation. Free Radic. Biol. Med. 37:539–548.

    PubMed  CAS  Google Scholar 

  • Lee J.-Y., Je J.-H., Kim D. H., Chung S. W., Zou Y., Kim N. D., Yoo M. A., Baik H. S., Yu B. P., and Chung H. Y. (2004b). Induction of endothelial apoptosis by 4-hydroxyhexenal. Eur. J.-Biochem. 271:1339–1347.

    PubMed  CAS  Google Scholar 

  • Leitinger N. (2003). Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14:421–430.

    PubMed  CAS  Google Scholar 

  • Leitinger N. (2005). Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol. Nutr. Food Res. 49:1063–1071.

    PubMed  CAS  Google Scholar 

  • Leitinger N., Watson A. D., Faull K. F., Fogelman A. M., and Berliner J.-A. (1997). Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv. Exp. Med. Biol. 433:379–382.

    PubMed  CAS  Google Scholar 

  • Leonard S. S., Harris G. K., and Shi X. (2004). Metal-induced oxidative stress and signal transduction. Free Radic. Biol. Med. 37:1921–1942.

    PubMed  CAS  Google Scholar 

  • Lin D., Lee H. G., Liu Q., Perry G., Smith M. A., and Sayre L. M. (2005). 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1219–1231.

    PubMed  CAS  Google Scholar 

  • Lovell M. A., Xie C., and Markesbery W. R. (2000). Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic. Biol. Med. 29:714–720.

    PubMed  CAS  Google Scholar 

  • Lu C., Chan S. L., Haughey N., Lee W. T., and Mattson M. P. (2001). Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J.-Neurochem. 78:577–589.

    PubMed  CAS  Google Scholar 

  • Luo H. and Shi R. Y. (2004). Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue. Neurochem. Int. 44:475–486.

    PubMed  CAS  Google Scholar 

  • Lyberg A. M., Fasoli E., and Adlercreutz P. (2005). Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids 40:969–979.

    PubMed  CAS  Google Scholar 

  • Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.

    PubMed  CAS  Google Scholar 

  • Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J.-Neurochem. 68:255–264.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre T. M., Zimmerman G. A., and Prescott S. M. (1999). Biologically active oxidized phospholipids. J.-Biol. Chem. 274:25189–25192.

    PubMed  CAS  Google Scholar 

  • McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.

    PubMed  CAS  Google Scholar 

  • Mertsch K., Blasig I., and Grune T. (2001). 4-Hydroxynonenal impairs the permeability of an in-vitro rat blood–brain barrier. Neurosci. Lett. 314:135–138.

    PubMed  CAS  Google Scholar 

  • Milatovic D., Zaja-Milatovic S., Montine K. S., Horner P. J., and Montine T. J.-(2003). Pharmacologic suppression of neuronal oxidative damage and dendritic degeneration following direct activation of glial innate immunity in mouse cerebrum. J.-Neurochem. 87:1518–1526.

    Article  PubMed  CAS  Google Scholar 

  • Montine T. J., Milatovic D., Gupta R. C., Valyi-Nagy T., Morrow J.-D., and Breyer R. M. (2002). Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J.-Neurochem. 83:463–470.

    PubMed  CAS  Google Scholar 

  • Morrow J.-D., Harris T. M., and Roberts L. J., II (1990). Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal. Biochem. 184:1–10.

    PubMed  CAS  Google Scholar 

  • Morrow J.-D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., and Roberts L. J.-(1991). Formation of unique biologically active prostaglandins in-vivo by a non-cyclooxygenase free radical catalyzed mechanism. Adv. Prostaglandin Thromboxane Leukot. Res. 21A:125–128.

    PubMed  CAS  Google Scholar 

  • Morrow J.-D., Awad J.-A., Boss H. J., Blair I. A., and Roberts L. J., II (1992). Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in-situ on phospholipids. Proc. Natl Acad. Sci. USA 89:10721–10725.

    PubMed  CAS  Google Scholar 

  • Morrow J.-D., Awad J.-A., Wu A., Zackert W. E., Daniel V. C., and Roberts L. J., II (1996). Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in-vivo. J.-Biol. Chem. 271:23185–23190.

    PubMed  CAS  Google Scholar 

  • Morrow J.-D., Tapper A. R., Zackert W. E., Yang J., Sanchez S. C., Montine T. J., and Roberts L. J., II (1999). Formation of novel isoprostane-like compounds from docosahexaenoic acid. Adv. Exp. Med. Biol. 469:343–347.

    PubMed  CAS  Google Scholar 

  • Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.

    PubMed  CAS  Google Scholar 

  • Musiek E. S., Milne G. L., McLaughlin B., and Morrow J.-D. (2005). Cyclopentenone eicosanoids as mediators of neurodegeneration: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol. 15:149–158.

    Article  PubMed  CAS  Google Scholar 

  • Natarajan V., Scribner W. M., and Taher M. M. (1993). 4-Hydroxynonenal, a metabolite of lipid peroxidation, activates phospholipase D in vascular endothelial cells. Free Radic. Biol. Med. 15:365–375.

    PubMed  CAS  Google Scholar 

  • Neely M. D., Sidell K. R., Graham D. G., and Montine T. J.-(1999). The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J.-Neurochem. 72:2323–2333.

    PubMed  CAS  Google Scholar 

  • Nourooz-Zadeh J., Halliwell B., and ÄnggÃ¥rd E. E. (1997). Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 236:467–472.

    CAS  Google Scholar 

  • Nourooz-Zadeh J., Liu E. H. C., Yhlen B., ÄnggÃ¥rd E. E., and Halliwell B. (1999). F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J.-Neurochem. 72:734–740.

    PubMed  CAS  Google Scholar 

  • Numazawa S., Ishikawa M., Yoshida A., Tanaka S., and Yoshida T. (2003). Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am. J.-Physiol. Cell Physiol. 285:C334–C342.

    PubMed  CAS  Google Scholar 

  • Ong W. Y., Hu C. Y., Hjelle O. P., Ottersen O. P., and Halliwell B. (2000). Changes in glutathione in the hippocampus of rats injected with kainate: depletion in neurons and upregulation in glia. Exp. Brain Res. 132:510–516.

    PubMed  CAS  Google Scholar 

  • Opere C. A., Zheng W. D., Huang J.-F., Adewale A., Kruglet M., and Ohia S. E. (2005). Dual effect of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: role of arachidonic acid metabolites. Neurochem. Res. 30:129–137.

    PubMed  CAS  Google Scholar 

  • Page S., Fischer C., Baumgartner B., Haas M., Kreusel U., Loidl G., Hayn M., Ziegler-Heitbrock H. W., Neumeier D., and Brand K. (1999). 4-Hydroxynonenal prevents NF-κB activation and tumor necrosis factor expression by inhibiting IκB phosphorylation and subsequent proteolysis. J.-Biol. Chem. 274:11611–11618.

    PubMed  CAS  Google Scholar 

  • Paradisi L., Panagini C., Parola M., Barrera G., and Dianzani M. U. (1985). Effects of 4-hydroxynonenal on adenylate cyclase and 5′-nucleotidase activities in rat liver plasma membranes. Chem. Biol. Interact. 53:209–217.

    PubMed  CAS  Google Scholar 

  • Picklo M. J.-and Montine T. J.-(2001). Acrolein inhibits respiration in isolated brain mitochondria. Biochim. Biophys. Acta 1535:145–152.

    PubMed  CAS  Google Scholar 

  • Picklo M. J., Amarnath V., McIntyre J.-O., Graham D. G., and Montine T. J.-(1999). 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J.-Neurochem. 72:1617–1624.

    PubMed  CAS  Google Scholar 

  • Picklo M. J., Olson S. J., Markesbery W. R., and Montine T. J.-(2001). Expression and activities of aldo–keto oxidoreductases in Alzheimer disease. J.-Neuropathol. Exp. Neurol. 60:686–695.

    PubMed  CAS  Google Scholar 

  • Pocernich C. B., Cardin A. L., Racine C. L., Lauderback C. M., and Butterfield D. A. (2001). Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem. Int. 39:141–149.

    PubMed  CAS  Google Scholar 

  • Pratico D., Rokach J., Lawson J., and FitzGerald G. A. (2004). F-2-isoprostanes as indices of lipid peroxidation in inflammatory diseases. Chem. Phys. Lipids 128:165–171.

    PubMed  CAS  Google Scholar 

  • Ray P., Ray R., Broomfield C. A., and Berman J.-D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.

    PubMed  CAS  Google Scholar 

  • Reich E. E., Markesbery W. R., Roberts L. J., II, Swift L. L., Morrow J.-D., and Montine T. J.-(2001). Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Am. J.-Pathol. 158:293–297.

    PubMed  CAS  Google Scholar 

  • Roberts L. J., II and Fessel J.-P. (2004). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids 128:173–186.

    PubMed  CAS  Google Scholar 

  • Roberts L. J., II, Montine T. J., Markesbery W. R., Tapper A. R., Hardy P., Chemtob S., Dettbarn W. D., and Morrow J.-D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in-vivo from docosahexaenoic acid. J.-Biol. Chem. 273:13605–13612.

    PubMed  CAS  Google Scholar 

  • Roberts L. J., II, Fessel J.-P., and Davies S. S. (2005). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Brain Pathol. 15:143–148.

    Article  PubMed  CAS  Google Scholar 

  • Rossi M. A., Di Mauro C., and Dianzani M. U. (1993). Action of lipid peroxidation products on phosphoinositide specific phospholipase C. Mol. Aspects Med. 14:273–279.

    PubMed  CAS  Google Scholar 

  • Schneider C., Porter N. A., and Brash A. R. (2004). Autoxidative transformation of chiral ω6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-nonenal. Chem. Res. Toxicol. 17:937–941.

    PubMed  CAS  Google Scholar 

  • Selley M. L., Close D. R., and Stern S. E. (2002). The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and-cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging 23:383–388.

    PubMed  CAS  Google Scholar 

  • Stillwell W. and Wassall S. R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids 126:1–27.

    PubMed  CAS  Google Scholar 

  • Subramaniam R., Roediger F., Jordan B., Mattson M. P., Keller J.-N., Wäg G., and Butterfield D. A. (1997). The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J.-Neurochem. 69:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J.-D., Roberts L. J., Hoover R. L., and Badr K. F. (1992). Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2α, in the rat. Evidence for interaction with thromboxane A2 receptors. J.-Clin. Invest. 90:136–141.

    PubMed  CAS  Google Scholar 

  • Tamagno E., Robino G., Obbili A., Bardini P., Aragno M., Parola M., and Danni O. (2003). H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180:144–155.

    PubMed  CAS  Google Scholar 

  • Uchida K. (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42:318–343.

    PubMed  CAS  Google Scholar 

  • Valko M., Morris H., and Cronin M. T. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem. 12:1161–1208.

    PubMed  CAS  Google Scholar 

  • van Kuijk F. J.-G. M., Sevanian A., Handelman G. J., and Dratz E. A. (1987). A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12:31–34.

    Google Scholar 

  • West J.-D. and Marnett L. J.-(2005). Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1642–1653.

    PubMed  CAS  Google Scholar 

  • West J.-D., Ji C., Duncan S. T., Amarnath V., Schneider C., Rizzo C. J., Brash A. R., and Marnett L. J.-(2004). Induction of apoptosis in colorectal carcinoma cells treated with 4-hydroxy-2-nonenal and structurally related aldehydic products of lipid peroxidation. Chem. Res. Toxicol. 17:453–462.

    PubMed  CAS  Google Scholar 

  • Yeh M., Leitinger N., de Martin R., Onai N., Matsushima K., Vora D. K., Berliner J.-A., and Reddy S. T. (2001). Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF-alpha and oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 21:1585–1591.

    PubMed  CAS  Google Scholar 

  • Yin H. Y., Musiek E. S., Gao L., Porter N. A., and Morrow J.-D. (2005). Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in-vitro and in-vivo. J.-Biol. Chem. 280:26600–26611.

    PubMed  CAS  Google Scholar 

  • Yura T., Fukunaga M., Khan R., Nassar G. N., Badr K. F., and Montero A. (1999). Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. Kidney Int. 56:471–478.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Nonenzymic Metabolites of Arachidonate and Docosahexaenoate in Brain. In: Glycerophospholipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49931-4_7

Download citation

Publish with us

Policies and ethics