Skip to main content

Abstract

Fluorescence probes represent the most important area of fluorescence spectroscopy. The wavelength and time resolution required of the instruments is determined by the spectral properties of the fluorophores. Furthermore, the information available from the experiments is determined by the properties of the probes. Only probes with non-zero anisotropies can be used to measure rotational diffusion, and the lifetime of the fluorophore must be comparable to the timescale of interest in the experiment. Only probes that are sensitive to pH can be used to measure pH. And only probes with reasonably long excitation and emission wavelengths can be used in tissues, which display autofluorescence at short excitation wavelengths.

Thousands of fluorescent probes are known, and it is not practical to describe them all. This chapter contains an overview of the various types of fluorophores, their spectral properties, and applications. Fluorophores can be broadly divided into two main classes—intrinsic and extrinsic. Intrinsic fluorophores are those that occur naturally. These include the aromatic amino acids, NADH, flavins, derivatives of pyridoxyl, and chlorophyll. Extrinsic fluorophores are added to the sample to provide fluorescence when none exists, or to change the spectral properties of the sample. Extrinsic fluorophores include dansyl, fluorescein, rho-damine, and numerous other substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Demchenko AP. 1981. Ultraviolet spectroscopy of proteins. Springer-Verlag, New York.

    Google Scholar 

  2. Longworth JW. 1971. Luminescence of polypeptides and proteins. In Excited states of proteins and nucleic acids, pp. 319–484. Ed RF Steiner, I Welnryb, Plenum, New York.

    Google Scholar 

  3. Permyakov EA. 1993. Luminescent spectroscopy of proteins. CRC Press, London.

    Google Scholar 

  4. Velick SF. 1958. Fluorescence spectra and polarization of glyceralde-hyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J Biol Chem 233:1455–1467.

    CAS  Google Scholar 

  5. Gafni A, Brand L. 1976. Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase. Biochemistry 15(15):3165–3171.

    Article  CAS  Google Scholar 

  6. Brochon J-C, Wahl P, Monneuse-Doublet M-O, Olomucki A. 1977. Pulse fluorimetry study of octopine dehydrogenase-reduced nicoti-namide adenine dinucleotide complexes. Biochemistry 16(21):4594–4599.

    Article  CAS  Google Scholar 

  7. Churchich JE. 1965. Fluorescence properties of pyridoxamine 5-phosphate. Biochim Biophys Acta 102:280–288.

    Article  CAS  Google Scholar 

  8. Hull RV, Conger PS, Hoobler RJ. 2001. Conformation of NADH studied by fluorescence excitation transfer spectroscopy. Biophys Chem 90:9–16.

    Article  CAS  Google Scholar 

  9. Vaccari S, Benci S, Peracchi A, Mozzarelli A. 1997. Time-resolved fluorescence of pyridoxal 5′-phosphate-containing enzymes: trypto-phan synthetase and O-acetylserine sulfhydrylase. J Fluoresc 7(1):135S–137S.

    CAS  Google Scholar 

  10. Kwon O-S, Blazquez M, Churchich JE. 1994. Luminescence spec-troscopy of pyridoxic acid and pyridoxic acid bound to proteins. Eur J Biochem 219:807–812.

    Article  CAS  Google Scholar 

  11. Xiao G-S, Zhou J-M. 1996. Conformational changes at the active site of bovine pancreatic RNase A at low concentrations of guanidine hydrochloride probed by pyridoxal 5′-phosphate. Biochim Biophys Acta 1294:1–7.

    Google Scholar 

  12. Churchich JE. 1986. Fluorescence properties of free and bound pyri-doxal phosphate and derivatives. Pyridoxal Phosphate: Chem Biochem Med Asp A, 1A:545–567.

    Google Scholar 

  13. Churchich JE. 1976. Fluorescent probe studies of binding sites in proteins and enzymes. Mod Fluoresc Spectrosc 2:217–237.

    CAS  Google Scholar 

  14. Vaccari S, Benci S, Peracchi A, Mozzarelli A. 1996. Time-resolved fluorescence of tryptophan synthase. Biophys Chem 61:9–22.

    Article  CAS  Google Scholar 

  15. Visser AJWG. 1984. Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence. Photochem Photobiol 40(6):703–706.

    Article  CAS  Google Scholar 

  16. Mataga N, Chosrowjan H, Taniguchi S, Tanaka F, Kido N, Kitamura M. 2002. Femtosecond fluorescence dynamcis of flavoproteins: comparative studies on flavodoxin, its site-directed mutants, and riboflavin binding protein regarding ultrafast electron transfer in protein nanospaces. J Phys Chem B 106:8917–8920.

    Article  CAS  Google Scholar 

  17. Albani JR, Sillen A, Engelborghs Y, Gervais M. 1999. Dynamics of flavin in flavocytochrome b2: a fluorescence study. Photochem Photobiol 69(1):22–26.

    CAS  Google Scholar 

  18. Leenders R, Kooijman M, van Hoek A, Veeger C, Visser AJWG. 1993. Flavin dynamics in reduced flavodoxins. Eur J Biochem 211:37–45.

    Article  CAS  Google Scholar 

  19. Wolfbeis OS. 1985. The fluorescence of organic natural products. In Molecular luminescence spectroscopy, Part 1, pp. 167–370. Ed SG Schulman. John Wiley & Sons, New York.

    Google Scholar 

  20. Wagnieres GA, Star WM, Wilson BC. 1998. In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632.

    CAS  Google Scholar 

  21. Richards-Kortum R, Sevick-Muraca E. 1996. Quantitative optical spectroscopy for tissue diagnosis. Annu Rev Phys Chem 47:555–606.

    Article  CAS  Google Scholar 

  22. DaCosta RS, Andersson H, Wilson BC. 2003. Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy. Photochem Photobiol 78(4):384–392.

    Article  CAS  Google Scholar 

  23. Madhuri S, Vengadesan N, Aruna P, Koteeswaran D, Venkatesan P, Ganesan S. 2003. Native fluorescence spectroscopy of blood plasma in the characterization of oral malignancy. Photochem Photobiol 78(2):197–204.

    Article  CAS  Google Scholar 

  24. Palmer GM, Keely PJ, Breslin TM, Ramanujam N. 2003. Autfluorescence spectroscopy of normal and malignant human breast cell lines. Photochem Photobiol 78(5):462–469.

    Article  CAS  Google Scholar 

  25. Mizeret J. 1998. Cancer detection by endoscopic frequency-domain fluorescence lifetime imaging. Thesis presented at École Polytechnique Federale de Lausanne, 177 pp.

    Google Scholar 

  26. Benson RC, Meyer RA, Zaruba ME, McKhann GM. 1979. Cellular autofluorescence: is it due to flavins? J Histochem Cytochem 27(1):44–48.

    CAS  Google Scholar 

  27. Huang S, Heikal AA, Webb WW. 2002. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys J 82:2811–2825.

    Article  CAS  Google Scholar 

  28. Breton R, Housset D, Mazza C, Fontecilla-Camps JC. 1996. The structure of a complex of human 17-β-hydroxysteroid dehydroge-nase with estradiol and NADP+ identifies two principal targets for the design of inhibitors. Structure 4:905–915.

    Article  CAS  Google Scholar 

  29. Li B, Lin S-X. 1996. Fluorescence-energy transfer in human estradi-ol 17β-dehydrogenase–NADH complex and studies on the coenzyme binding. Eur J Biochem 235:180–186.

    Article  CAS  Google Scholar 

  30. Haugland RP. 1996. Handbook of fluorescent probes and research chemicals, 9th ed. Molecular Probes Inc, Eugene, OR.

    Google Scholar 

  31. Weber G. 1951. Polarization of the fluorescence of macromolecules. Biochem J 51:155–167.

    Google Scholar 

  32. Waggoner A. 1995. Covalent labeling of proteins and nucleic acids with fluorophores. Methods Enzymol 246:362–373.

    Article  CAS  Google Scholar 

  33. Johnson ID, Kang HC, Haugland RP. 1991. Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Anal Biochem 198:228–237.

    Article  CAS  Google Scholar 

  34. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haugland RP, Haugland RP. 2003. Quantitative comparison of long-wavelength Alexa fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51(12):1699–1712.

    CAS  Google Scholar 

  35. Weber G, Farris FJ. 1979. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)-naphthalene. Biochemistry 18:3075–3078.

    Article  CAS  Google Scholar 

  36. Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD. 1983. Synthesis, spectral properties, and use of 6-acryloyl-2-dimethy-laminonaphthalene (Acrylodan). J Biol Chem 258(12):7541–7544.

    CAS  Google Scholar 

  37. Slavik J. 1982. Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25.

    CAS  Google Scholar 

  38. Daniel E, Weber G. 1966. Cooperative effects in binding by bovine serum albumin, I: the binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations. Coop Effects Binding Albumin 5:1893–1900.

    CAS  Google Scholar 

  39. Courtesy of Drs. I. Gryczynski and Z. Gryczynski

    Google Scholar 

  40. Prendergast FG, Haugland RP, Callahan PJ. 1981. 1-[4-(trimethy-lamino)phenyl]-6-phenylhexa-1,3,5 triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers. Biochemistry 20:7333–7338.

    Article  CAS  Google Scholar 

  41. Sklar LA, Hudson BS, Petersen M, Diamond J. 1977. Conjugated polyene fatty acids on fluorescent probes: Spectroscopic characterization. Biochemistry 16(5):813–818.

    Article  CAS  Google Scholar 

  42. Kinnunen PKJ, Koiv A, Mustonen P. 1993. Pyrene-labeled lipids as fluorescent probes in studies on biomembranes and membrane models. In Fluorescence spectroscopy: new methods and applications, pp. 159–171. Ed OS Wolfbeis. Springer-Verlag, New York.

    Google Scholar 

  43. Plásek J, Sigler K. 1996. Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J Photochem Photobiol B: Biol 33:101–124.

    Article  Google Scholar 

  44. Clarke RJ, Kane DJ. 1997. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta 1323:223–239.

    Article  CAS  Google Scholar 

  45. Dragsten PR, Webb WW. 1978. Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540. Biochemistry 17:5228–5240.

    Article  CAS  Google Scholar 

  46. Loew LM. 1994. Characterization of potentiometric membrane dyes. Adv Chem Ser 235:151–173.

    Article  CAS  Google Scholar 

  47. Waggoner AS. 1979. Dye indicators of membrane potential. Annu Rev Biophys Bioeng 8:47–68.

    Article  CAS  Google Scholar 

  48. Loew LM. 1982. Design and characterization of electrochromic membrane probes. J Biochem Biophys Methods 6:243–260.

    Article  CAS  Google Scholar 

  49. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB. 1991. Intracellular heterogeneity in mito-chondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675.

    Article  CAS  Google Scholar 

  50. Sims PJ, Waggoner AS, Wang C-H, Hoffman JF. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13(16):3315–3336.

    Article  CAS  Google Scholar 

  51. Gross E, Bedlack RS, Loew LM. 1994. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J 67:208–216.

    Article  CAS  Google Scholar 

  52. Zhang J, Davidson RM, Wei M, Loew LM. 1998. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys J 74:48–53.

    Article  CAS  Google Scholar 

  53. Loew LM. 1996. Potentiometric dyes: imaging electrical activity of cell membranes. Pure Appl Chem 68(7):1405–1409.

    Article  CAS  Google Scholar 

  54. Klymchenko AS, Duportail G, Mély Y, Demchenko AP. 2003. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proc Natl Acad Sci USA 100(20):11219–11224.

    Article  CAS  Google Scholar 

  55. Chang PY, Jackson MB. 2003. Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes. J Membr Biol 196:105–116.

    Article  CAS  Google Scholar 

  56. Kao WY, Davis CE, Kim YI, Beach JM. 2001. Fluorescence emission spectral shift measurements of membrane potential in single cells. Biophys J 81:1163–1170.

    Article  CAS  Google Scholar 

  57. Shapovalov VL, Kotova EA, Rokitskaya TI, Antonenko YN. 1999. Effect of Gramicidin A on the dipole potential of phospholipid membranes. Biophys J 77:299–305.

    Article  CAS  Google Scholar 

  58. Gonzalez JE, Tsien RY. 1995. Voltage sensing by fluorescence resonance energy transfer in single cells. Biophys J 69:1272–1280.

    Article  CAS  Google Scholar 

  59. Cacciatore TW, Brodfuehrer PD, Gonzalez JE, Jiang T, Adams SR, Tsien RY, Kristan Jr WB, Kleinfield D. 1999. Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes. Neuron 23:449–459.

    Article  CAS  Google Scholar 

  60. Thompson RB. 1994. Red and near-infrared fluorometry. In Topics in fluorescence spectroscopy, Vol 4: Probe design and chemical sensing, pp. 151–152. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  61. Southwick PL, Ernst LA, Tauriello EW, Parker SR, Mujumdar RB, Mujumdar SW, Clever HA, Waggoner AS. 1990. Cyanine dye labeling reagents-carboxymethylindocyanine succinimidyl esters. Cytometry 11:418–430.

    Article  CAS  Google Scholar 

  62. Buschmann V, Weston KD, Sauer M. 2003. Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjugate Chem 14:195–204.

    Article  CAS  Google Scholar 

  63. Lin Y, Weissleder R, Tung CH. 2003. Synthesis and properties of sulfhydryl-reactive near-infrared cyanine fluorochromes for fluorescence imaging. Mol Imaging 2(2):87–92.

    Article  CAS  Google Scholar 

  64. Rahavendran SV, Karnes HT. 1996. Application of rhodamine 800 for reversed phase liquid chromatographic detection using visible diode laser induced fluorescence. Anal Chem 68:3763–3768.

    Article  CAS  Google Scholar 

  65. Rahavendran SV, Karnes HT. 1996. An oxazine reagent for derivati-zation of carboxylic acid analytes suitable for liquid chromatograph-ic detection using visible diode laser-induced fluorescence. J Pharmacol Biomed Anal 15:83–98.

    Article  CAS  Google Scholar 

  66. Flanagan JH, Romero SE, Legendre BL, Hammer RP, Soper A. 1997. Heavy-atom modified near-IR fluorescent dyes for DNA sequencing applications: synthesis and photophysical characterization. SPIE Proc 2980:328–337.

    Google Scholar 

  67. Leznoff CC, Lever ABP. 1989. Phthalocyanines properties and applications. VCH Publishers, New York.

    Google Scholar 

  68. Hammer RP, Owens CV, Hwang SH, Sayes CM, Soper SA. 2002. Asymmetrical, water-soluble phthalocyanine dyes for covalent labeling of oligonucleotides. Bioconjugate Chem 13:1244–1252.

    Article  CAS  Google Scholar 

  69. Adachi M, Nagao Y. 2001. Design of near-infrared dyes based on A-conjugation system extension, 2: theoretical elucidation of framework extended derivatives of perylene chromophore. Chem Mater 13:662–669.

    Article  CAS  Google Scholar 

  70. Arden-Jacob J, Frantzeskos J, Kemnitzer NU, Zilles A, Drexhage KH. 2001. New fluorescent markers for the red region. Spectrochim Acta A 57:2271–2283.

    Article  CAS  Google Scholar 

  71. Oswald B, Gruber M, Bohmer M, Lehmann F, Probst M, Wolfbeis OS. 2001. Novel diode laser-compatible fluorophores and their application to single molecule detection, protein labeling and fluorescence resonance energy transfer immunoassay. Photochem Photobiol 74(2):237–245.

    Article  CAS  Google Scholar 

  72. Klonis N, Wang H, Quazi NH, Casey JL, Neumann GM, Hewish DR, Hughes AB, Deady LW, Tilley L. 2001. Characterization of a series of far red absorbing perylene diones: a new class of fluorescent probes for biological applications. J Fluoresc 11(1):1–11.

    Article  CAS  Google Scholar 

  73. Steiner RF, Kubota Y. 1983. Fluorescent dye-nucleic acid complexes. In Excited states of biopolymers. Ed RF Steiner. Plenum Press, New York.

    Google Scholar 

  74. Georghiou S. 1977. Interaction of acridine drugs with DNA and nucleotides. Photochem Photobiol 26:59–68.

    Article  CAS  Google Scholar 

  75. Suh D, Chaires JB. 1995. Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 3(6):723–728.

    Article  CAS  Google Scholar 

  76. Eriksson S, Kim SK, Kubista M, Norden B. 1993. Binding of 4′,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: evidence for an allosteric conformational change. Biochemistry 32:2987–2998.

    Article  CAS  Google Scholar 

  77. Parkinson JA, Barber J, Douglas KT, Rosamond J, Sharples D. 1990. Minor-groove recognition of the self-complementary duplex d(CGC-GAATTCGCG)2 by Hoechst 33258: a high-field NMR study. Biochemistry 29:10181–10190.

    Article  CAS  Google Scholar 

  78. Loontiens FG, McLaughlin LW, Diekmann S, Clegg RM. 1991. Binding of Hoechst 33258 and 4′,6-diamidino-2-phenylindole to self-complementary decadeoxynucleotides with modified exocyclic base substitutents. Biochemistry 30:182–189.

    Article  CAS  Google Scholar 

  79. Haq I, Ladbury JE, Chowdhry BZ, Jenkins TC, Chaires JB. 1997. Specific binding of Hoechst 33258 to the d(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J Mol Biol 271:244–257.

    Article  CAS  Google Scholar 

  80. Glazer AN, Peck K, Matheis RA. 1990. A stable double-stranded DNA ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels. Proc Natl Acad Sci USA 87:3851–3855.

    Article  CAS  Google Scholar 

  81. Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN. 1992. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20(11):2803–2812.

    Article  CAS  Google Scholar 

  82. Wu P, Li H, Nordlund TM, Rigler R. 1990. Multistate modeling of the time and temperature dependence of fluorescence from 2-aminopurine in a DNA decamer. SPIE Proc 204:262–269.

    Article  Google Scholar 

  83. Nordlund TM, Wu P, Anderson S, Nilsson L, Rigler R, Graslund A, McLaughlin LW, Gildea B. 1990. Structural dynamics of DNA sensed by fluorescence from chemically modified bases. SPIE Proc 1204:344–353.

    Article  CAS  Google Scholar 

  84. Jean JM, Hall KB. 2001. 2-aminopurine fluorescence quenching and lifetimes: role of base stacking. Proc Natl Acad Sci USA 98(1):37–41.

    Article  CAS  Google Scholar 

  85. Kawai M, Lee MJ, Evans KO, Nordlund TM. 2001. Temperature and base sequence dependence of 2-aminopurine fluorescence bands in single- and double-stranded oligodeoxynucleotides. J Fluoresc 11(1):23–32.

    Article  CAS  Google Scholar 

  86. Jean JM, Hall KB. 2002. 2-aminopurine electronic structure and fluorescence properties in DNA. Biochemistry 41:13152–13161.

    Article  CAS  Google Scholar 

  87. Hawkins ME, Pfleiderer W, Mazumder A, Pommier YG, Balis FM. 1995. Incorporation of a fluorescent guanosine analog into oligonu-cleotides and its application to a real time assay for the HIV-1 integrase 3′-processing reaction. Nucleic Acids Res 23(15):2872–2880.

    Article  CAS  Google Scholar 

  88. Hawkins ME. 2001. Fluorescent pteridine nucleoside analogues. Cell Biochem Biophys 34:257–281.

    Article  CAS  Google Scholar 

  89. Kulkosky J, Skalka AM. 1990. HIV DNA integration: observations and inferences. J Acquired Immune Def Synd 3:839–851.

    CAS  Google Scholar 

  90. Brown PO 1990. Integration of retroviral DNA. Curr Top Microbiol Immunol 157:19–48.

    CAS  Google Scholar 

  91. Biwersi J, Tulk B, Verkman AS. 1994. Long-wavelength chloridesensitive fluorescent indicators. Anal Biochem 219:139–143.

    Article  CAS  Google Scholar 

  92. Geddes CD, Lakowicz JR, eds. 2005. Advanced concepts in fluorescence sensing: small molecule sensing. Top Fluoresc Spectrosc 9, forthcoming.

    Google Scholar 

  93. Valeur B. 1994. Principles of fluorescent probe design for ion recognition. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 21–48. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  94. Poenie M, Chen C-S. 1993. New fluorescent probes for cell biology. In Optical microscopy, pp. 1–25. Ed B Herman, JJ Lemasters. Academic Press, New York.

    Google Scholar 

  95. Szmacinski H, Lakowicz JR. 1994. Lifetime-based sensing. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 295–334. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  96. Czarnik AW. 1994. Fluorescent chemosensors for cations, anions, and neutral analytes. In Topics in fluorescence spectroscopy, Vol. 4: probe design and chemical sensing, pp. 49–70. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  97. Haugland RP, Johnson ID. 1993. Detecting enzymes in living cells using fluorogenic substrates. J Fluoresc 3(3):119–127.

    Article  CAS  Google Scholar 

  98. Wang Q, Scheigetz J, Gilbert M, Snider J, Ramachandran C. 1999. Fluorescein monophosphates as fluorogenic substrates for protein tyrosine phosphatases. Biochim Biophys Acta 1431:14–23.

    CAS  Google Scholar 

  99. Zhou M, Upson RH, Diwu Z, Haugland RP. 1996. A fluorogenic substrate for β-glucuronidase: applications in fluorometric, polyacry-lamide gel and histochemical assays. J Biochem Biophys Methods 33:197–205.

    Article  CAS  Google Scholar 

  100. Gershkovich AA, Kholodovych VV. 1996. Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). J Biochem Biophys Methods 33:135–162.

    Article  CAS  Google Scholar 

  101. Geoghegan KF. 1996. Improved method for converting an unmodified peptide to an energy-transfer substrate for a proteinase. Bioconjugate Chem 7(3):385–391.

    Article  CAS  Google Scholar 

  102. Matayoshi ED, Wang GT, Krafft GA, Erickson J. 1990. Novel fluo-rogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247:954–957.

    Article  CAS  Google Scholar 

  103. Hale JE, Schroeder F. 1982. Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol. Eur J Biochem 122:649–661.

    Article  CAS  Google Scholar 

  104. Fischer RT, Cowlen MS, Dempsey ME, Schroeder F. 1985. Fluorescence of Δ5,7,9(11),22-ergostatetraen-3β-ol in micelles, sterol carrier protein complexes, and plasma membranes. Biochemistry 24:3322–3331.

    Article  CAS  Google Scholar 

  105. Schroeder F, Barenholz Y, Gratton E, Thompson TE. 1987. A fluorescence study of dehydroergosterol in phosphatidylcholine bilayer vesicles. Biochemistry 26:2441–2448.

    Article  CAS  Google Scholar 

  106. Loura LMS, Prieto M. 1997. Aggregation state of dehydroergosterol in water and in a model system of membranes. J Fluoresc 7(1):173S–175S.

    CAS  Google Scholar 

  107. Hwang K-J, O’Neil JP, Katzenellenbogen JA. 1992. 5,6,11,12-Tetrahydrochrysenes: synthesis of rigid stilbene systems designed to be fluorescent ligands for the estrogen receptor. J Org Chem 57:1262–1271.

    Article  CAS  Google Scholar 

  108. Bowen CM, Katzenellenbogen JA. 1997. Synthesis and spectroscop-ic characterization of two aza-tetrahydrochrysenes as potential fluorescent ligands for the estrogen receptor. J Org Chem 62:7650–7657.

    Article  CAS  Google Scholar 

  109. Akers W, Haidekker MA. 2004. A molecular rotor as viscosity sensor in aqueous colloid solutions. Trans ASME 126:340–345.

    CAS  Google Scholar 

  110. Kung CE, Reed JK. 1986. Microviscosity measurements of phospho-lipid bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 25:6114–6121. See also Biochemistry (1989) 28:6678–6686.

    Article  CAS  Google Scholar 

  111. Iwaki T, Torigoe C, Noji M, Nakanishi M. 1993. Antibodies for fluorescent molecular rotors. Biochemistry 32:7589–7592.

    Article  CAS  Google Scholar 

  112. Rettig W, Lapouyade R. 1994. Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic pho-toreactions. In Topics in fluorescence spectroscopy, Vol. 4: Probe design and chemical sensing, pp. 109–149. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  113. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. 1996. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395.

    Article  CAS  Google Scholar 

  114. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–805.

    Article  CAS  Google Scholar 

  115. Niwa H, Inouye S, Hirano T, Matsuno T, Kojima S, Kubota M, Ohashi M, Tsuji FI. 1996. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci USA 93:13617–13622.

    Article  CAS  Google Scholar 

  116. Tsien RY. 1998. The green fluorescent protein. Annu Rev Biochem 67:509–544.

    Article  CAS  Google Scholar 

  117. Zimmer M. 2002. Green fluorescent protein (GFP): applications, structure, and related photophysical behavior. Chem Rev 102:759–781.

    Article  CAS  Google Scholar 

  118. Billinton N, Knight AW. 2001. Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal Biochem 291:175–197.

    Article  CAS  Google Scholar 

  119. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, Hasegawa S, Bouvet M, Al-tuwaijri M, Chishima T, Shimada H, Moossa AR, Penman S, Hoffman RM. 2000. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97(3):1206–1211.

    Article  CAS  Google Scholar 

  120. Kwon MS, Koo BC, Choi BR, Lee HT, Kim YH, Ryu WS, Shim H, Kim JH, Kim NH, Kim T. 2004. Development of transgenic chickens expressing enhanced green fluorescent protein. Biochem Biophys Res Commun 320:442–448.

    Article  CAS  Google Scholar 

  121. Diegelman S, Fiala A, Leibold C, Spall T, Buchner E. 2002. Transgenic flies expressing the fluorescence calcium sensor cameleon 2.1 under UAS control. Genesis 34:95–98.

    Article  CAS  Google Scholar 

  122. Ehrig T, O’Kane DJ, Prendergast FG. 1995. Green fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett 367:163–166.

    Article  CAS  Google Scholar 

  123. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. 1995. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20:448–455.

    Article  CAS  Google Scholar 

  124. Heim R, Tsien RY. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182.

    Article  CAS  Google Scholar 

  125. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA. 1999. Fluorescent proteins from non-bioluminescent Anthozoa species. Nature Biotechnol 17:969–973.

    Article  CAS  Google Scholar 

  126. Fradkov AF, Chen Y, Ding L, Barsova EV, Matz MV, Lukyanov SA. 2000. Novel fluorescent protein from discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130.

    Article  CAS  Google Scholar 

  127. Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A. 2003. A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278(36):34167–34171.

    Article  CAS  Google Scholar 

  128. Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA. 2000. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882.

    Article  CAS  Google Scholar 

  129. Lippincott-Schwartz J, Patterson GH. 2003. Development and use of fluorescent protein markers in living cells. Science 300:87–91.

    Article  CAS  Google Scholar 

  130. Zhang J, Campbell RE, Ting AY, Tsien RY. 2002. Creating new fluorescent probes for cell biology. Nature 3:906–918.

    CAS  Google Scholar 

  131. Mizuno H, Sawano A, Eli P, Hama H, Miyawaki A. 2001. Red fluorescent protein from discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry 40:2502–2510.

    Article  CAS  Google Scholar 

  132. Baird GS, Zacharias DA, Tsien RY. 2000. Biochemistry, mutagene-sis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97(22):11984–11989.

    Article  CAS  Google Scholar 

  133. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY. 2002. A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99(12):7877–7882.

    Article  CAS  Google Scholar 

  134. Wiedenmann J, Schenk A, Rocker C, Girod A, Spindler KD. 2002. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (anthozoa, actinaria). Proc Natl Acad Sci USA 99(18):11646–11651.

    Article  CAS  Google Scholar 

  135. Bevis BJ, Glick BS. 2002. Rapidly maturing variants of the discosoma red fluorescent protein (DsRed). Nature Biol 20:83–87.

    Article  CAS  Google Scholar 

  136. Remington SJ. 2002. Negotiating the speed bumps to fluroescence. Nature Biotechnol 20:28–29.

    Article  CAS  Google Scholar 

  137. Li L, Murphy JT, Lagarias JC. 1995. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry 34:7923–7930.

    Article  CAS  Google Scholar 

  138. Murphys JT, Lagarias JC. 1997. Purification and characterization of recombinant affinity peptide-tagged oat phytochrome A. Photochem Photobiol 65(4):750–758.

    Article  Google Scholar 

  139. Murphy JT, Lagarias JC. 1997. The phytofluors: a new class of fluorescent protein probes. Curr Biol 7:870–876.

    Article  CAS  Google Scholar 

  140. Gambetta GA, Lagarias JC. 2001. Genetic engineering of phy-tochrome biosynthesis in bacteria. Proc Natl Acad Sci USA 98(19):10566–10571.

    Article  CAS  Google Scholar 

  141. Fischer AJ, Lagarias JC. 2004. Harnessing phytochrome’s glowing potential. Proc Natl Acad Sci USA (Early Ed.) 101:17334–17339.

    Article  CAS  Google Scholar 

  142. Loos D, Cotlet M, De Schryver F, Habuchi S, Jofkens J. 2004. Single-molecule spectroscopy selectively probes donor and acceptor chromophore in the phycobiliprotein allophycocyanin. Biophys J 87:2598–2608.

    Article  CAS  Google Scholar 

  143. Glazer AN. 1985. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47–77.

    Article  CAS  Google Scholar 

  144. MacColl R, Guard-Friar D. 1987. Phycobiliproteins. CRC Press, Boca Raton, FL.

    Google Scholar 

  145. Glazer AN, Stryer L. 1984. Phycofluor probes. Trends Biochem Sci 423:423–427.

    Article  Google Scholar 

  146. Adir N, Lerner N. 2003. The crystal structure of a novel unmethylat-ed form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J Biol Chem 278(28):25926–25932.

    Article  CAS  Google Scholar 

  147. White JC, Stryer L. 1987. Photostability studies of phycobiliprotein fluorescent labels. Anal Biochem 161:442–452.

    Article  CAS  Google Scholar 

  148. Oi VT, Glazer AN, Stryer L. 1982. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 93:981–986.

    Article  CAS  Google Scholar 

  149. Trinquet E, Maurin F, Préaudat M, Mathis G. 2001. Allphycocyanin 1 as a near-infrared fluorescent tracer: isolation, characterization, chemical modification, and use in a homogeneous fluorescence resonance energy transfer system. Anal Biochem 296:232–244.

    Article  CAS  Google Scholar 

  150. Graefe KA, Tang Z, Karnes HT. 2000. High-performance liquid chromatography with on-line post-column immunoreaction detection of digoxin and its metabolites based on fluorescence energy transfer in the far-red spectral region. J Chromatogr B 745:305–314.

    Article  CAS  Google Scholar 

  151. Tjioe I, Legerton T, Wegstein J, Herzenberg LA, Roederer M. 2001. Phycoerythrin-allophycocyanin: a resonance energy transfer fluo-rochrome for immunofluorescence. Cytometry 44:24–29.

    Article  CAS  Google Scholar 

  152. Telford WG, Moss MW, Morseman JP, Allnutt FCT. 2001. Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254:13–30.

    Article  CAS  Google Scholar 

  153. Telford WG, Moss MW, Morseman JP, Allnutt FCT. 2001. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry 44:16–23.

    Article  CAS  Google Scholar 

  154. Triantafilou K, Triantafilou M, Wilson KM. 2000. Phycobili-protein–fab conjugates as probes for single particle fluorescence imaging. Cytometry 41:226–234.

    Article  CAS  Google Scholar 

  155. Holzwarth AR, Wendler J, Suter GW. 1987. Studies on chromophore coupling in isolated phycobiliproteins. Biophys J 51:1–12.

    Article  CAS  Google Scholar 

  156. Griffin BA, Adams SR, Tsien RY. 1998. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272.

    Article  CAS  Google Scholar 

  157. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY. 2002. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076.

    Article  CAS  Google Scholar 

  158. Ignatova Z, Gierasch LM. 2004. Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA 101:523–528.

    Article  CAS  Google Scholar 

  159. Andresen M, Schmitz-Salue R, Jakobs S. 2004. Short tetracysteine tags to β-tubulin demonstrate the significance of small labels for live cell imaging. Mol Biol Cell 15:5616–5622.

    Article  CAS  Google Scholar 

  160. Nakanishi J, Maeda M, Umezawa Y. 2004. A new protein conformation indicator based on biarsenical fluorescein with an extended ben-zoic acid moiety. Anal Sci 20:273–278.

    Article  CAS  Google Scholar 

  161. Nakanishi J, Nakajima T, Sato M, Ozawa T, Tohda K, Umezawa Y. 2001. Imaging of conformational changes of proteins with a new environment-sensitive fluorescent probe designed for site-specific labeling of recombinant proteins in live cells. Anal Chem 73:2920–2928.

    Article  CAS  Google Scholar 

  162. Davenport L, Targowski P. 1996. Submicrosecond phospholipid dynamics using a long lived fluorescence emission anisotropy probe. Biophys J 71:1837–1852.

    Article  CAS  Google Scholar 

  163. Davenport L, Shen B, Joseph TW, Straher MP. 2001. A novel fluorescent coronenyl-phospholipid analogue for investigations of sub-microsecond lipid fluctuations. Chem Phys Lipids 109:145–156.

    Article  CAS  Google Scholar 

  164. Richardson FS. 1982. Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552.

    Article  CAS  Google Scholar 

  165. Sabbatini N, Guardigli M. 1993. Luminescent lanthanide complexes as photochemical supramolecular devices. Coord Chem Rev 123:201–228.

    Article  CAS  Google Scholar 

  166. Balzani V, Ballardini R. 1990. New trends in the design of luminescent metal complexes. Photochem Photobiol 52(2):409–416.

    Article  CAS  Google Scholar 

  167. Li M, Selvin PR. 1995. Luminescent polyaminocarboxylate chelates of terbium and europium: the effect of chelate structure. J Am Chem Soc 117:8132–8138.

    Article  CAS  Google Scholar 

  168. Martin RB, Richardson FS. 1979. Lanthanides as probes for calcium in biological systems. Quart Rev Biophys 12(2):181–209.

    Article  CAS  Google Scholar 

  169. Bruno J, Horrocks WDeW, Zauhar RJ. 1992. Europium(III) luminescence and tyrosine to terbium(III) energy transfer studies of invertebrate (octopus) calmodulin. Biochemistry 31:7016–7026.

    Article  CAS  Google Scholar 

  170. Horrocks WDeW, Sudnick DR. 1981. Lanthanide ion luminescence probes of the structure of biological macromolecules. Acc Chem Res 14:384–392.

    Article  CAS  Google Scholar 

  171. Lumture JB, Wensel TG. 1993. A novel reagent for labelling macro-molecules with intensity luminescent lanthanide complexes. Tetrahedron Lett 34(26):4141–4144.

    Article  Google Scholar 

  172. Lamture JB, Wensel TG. 1995. Intensely luminescent immunoreac-tive conjugates of proteins and dipicolinate-based polymeric Tb(III) chelates. Bioconjugate Chem 6:88–92.

    Article  CAS  Google Scholar 

  173. Lövgren T, Pettersson K. 1990. Time-resolved fluoroimmunoassay, advantages and limitations. In Luminescence immunoassay and molecular applications, pp. 233–253. Ed K Van Dyke, R Van Dyke. CRC Press, Boca Raton, FL.

    Google Scholar 

  174. Hemmila I. 1993. Progress in delayed fluorescence immunoassay. In Fluorescence spectroscopy, new methods and applications, pp. 259–266. Ed OS Wolfbeis. Springer-Verlag, New York.

    Google Scholar 

  175. Demas JN, DeGraff BA. 1992. Applications of highly luminescent transition metal complexes in polymer systems. Macromol Chem Macromol Symp 59:35–51.

    CAS  Google Scholar 

  176. Li L, Szmacinski H, Lakowicz JR. 1997. Long-lifetime lipid probe containing a luminescent metal-ligand complex. Biospectroscopy 3:155–159.

    Article  CAS  Google Scholar 

  177. Terpetschnig E, Szmacinski H, Lakowicz JR. 1997. Long lifetime metal—ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol 278:295–321.

    Article  CAS  Google Scholar 

  178. Giuliano KA, Taylor DL. 1998. Fluorescent-protein biosensors: new tools for drug discovery. Tibtech 16:135–140.

    CAS  Google Scholar 

  179. Hellinga HW, Marvin JS. 1998. Protein engineering and the development of generic biosensors. Tibtech 16:183–189.

    CAS  Google Scholar 

  180. Walkup GK, Imperiali B. 1996. Design and evaluation of a peptidyl fluorescent chemosensor for divalent zinc. J Am Chem Soc 118:3053–3054.

    Article  CAS  Google Scholar 

  181. Douglass PM, Salins LLE, Dikici E, Daunert S. 2002. Class-selective drug detection: fluorescently labeled calmodulin as the biorecogni-tion element for phenothiazines and tricyclic antidepressants. Bioconjugate Chem 13:1186–1192.

    Article  CAS  Google Scholar 

  182. Illsley NP, Verkman AS. 1987. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Biochemistry 26:1215–1219.

    Article  CAS  Google Scholar 

  183. Kao JPY. 1994. Practical aspects of measuring [Ca2+] with fluorescent indicators. In Methods in Cell Biology, Vol. 40, pp. 155–181. Ed R Nuccitelli. Academic Press, New York.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Fluorophores. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_3

Download citation

Publish with us

Policies and ethics