Skip to main content

Abstract

In this chapter we will try to provide a more intuitive (and less mathematical) insight into image formation and practical image restoration by deconvolution methods. The mathematics of image formation and deconvolution microscopy have been described in greater detail elsewhere (see Chapters 11, 22, 23, and 24), so we will limit our discussion to fundamental issues and gloss over most of the mathematics of image restoration. We will also focus on practical ways of assessing microscope performance and getting the best possible data before applying more sophisticated image processing methods than are usually seen in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbe, E., 1873, Beitrage zur theorie des microscopes und der mikroskopischen wahrnehmung, Schultzes Arch f. Mikr. Anat. 9:413:468.

    Google Scholar 

  • Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W., 1989, Fluorescence microscopy in three dimensions, Methods Cell Biol. 30:353–377.

    Article  CAS  PubMed  Google Scholar 

  • Born, M., and Wolf, E., 1980, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, Oxford, England.

    Google Scholar 

  • Cagnet, M., Francon, M., and Thrierr, J.C., 1962, An Atlas of Optical Phenomena, Springer-Verlag, Berlin.

    Google Scholar 

  • Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, T.J., and O’Connor, N.J., 2000, Blind deconvolution of 3D transmitted light brightfield micrographs, J. Microsc. 200:114–127.

    Article  CAS  Google Scholar 

  • Jansson, P.A., Hunt, R.H., and Plyler, E.K., 1970, Resolution enhancement of spectra, J. Opt. Soc. Am. 60:596–599.

    Article  CAS  Google Scholar 

  • Keller, H.E., 1995, Objective lenses for confocal microscopy, In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 111–126 or Chapter 7, this volume.

    Google Scholar 

  • Lucy, L.B., 1974, An iterative technique for the rectification of observed distributions, Astronomy J. 79:745–765.

    Article  Google Scholar 

  • Mullikin, J.C., Van Vliet, L.J., Netten, H., Boddeke, F.R., van der Feltz, G.W., and Young, I.T., 1994, Methods for CCD camera characterization. Proc. SPIE 2173:73–84.

    Article  Google Scholar 

  • Pawley, J.B., 1995, Handbook of Biological Confocal Microscopy, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 2002, Numerical recipes in C: The art of scientific computing. Cambridge University Press, Cambridge, UK, 1–970; available free, on-line at www.library.cornell.edu.

  • Richardson, W.H., 1972, Bayesian-based iterative method of image restoration, J. Opt. Soc. Am. 62:55–59.

    Article  Google Scholar 

  • Shaw, P.J., and Rawlins, D.J., 1991, Three-dimensional fluorescence microscopy, Prog. Biophys. Mol. Biol. 56:187–213.

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov, A.N., and Arsenin, V.I., 1977, Solutions of Ill-Posed Problems, V.H. Winston, Washington, DC.

    Google Scholar 

  • van der Voort, H.T.M., and Brakenhoff, G.J., 1990, 3-D image formation in high-aperture fluorescence confocal microscopy: A numerical analysis, J. Microsc. 158:43–54.

    Google Scholar 

  • van Kempen, G.M., 1999, Image restoration in fluorescence microscopy, In: Advanced School for Computing and Imaging, Delft University of Technology, Delft, The Netherlands, p. 161.

    Google Scholar 

  • van Kempen, G.M.P., and van Vliet, L.J., 2000, Background estimation in nonlinear image restoration; J. Opt. Soc. Am. A-Opt. and Im. Sci. 17(3):425–433.

    Article  Google Scholar 

  • van Kempen, G.M., van Vliet, L., Verveer, P., and van der Voort, H., 1997, A quantitative comparison of image restoration methods for confocal

    Google Scholar 

  • microscopy, J. Microsc. 185:354–365.

    Google Scholar 

  • Wilson, T., 1990, Confocal microscopy, In: Confocal Miscrocopy (T. Wilson, ed), Academic Press, London, pp. 1–64.

    Google Scholar 

  • Young, I.T., 1989, Image fidelity: Characterizing the imaging transfer function, Methods Cell Biol. 30:1–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cannell, M.B., McMorland, A., Soeller, C. (2006). Image Enhancement by Deconvolution. In: Pawley, J. (eds) Handbook Of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-45524-2_25

Download citation

Publish with us

Policies and ethics