Skip to main content

HATs and HDACs

  • Chapter

Abstract

DNA in eukaryotes is arranged into higher order structures termed chromatin. Chromatin poses an obstacle for gene transcription because it is not readily accessible to DNA binding transcription factors. Chromatin also provides the structural basis for gene regulation, keeping most genes in a default state of repression. The regulation of gene expression involves dynamic chromatin remodeling associated with reversible histone acetylation. The enzymes that catalyze histone acetylation (HAT) and deacetylation (HDAC) are critical elements that regulate chromatin dynamics and gene expression. These chromatin-modifying enzymes are recruited to the genome by DNA binding transcription factors and are the key effectors that control chromatin structure. HAT and HDAC proteins are important in both normal cellular physiology and disease states. The recent identification of a large number of non-histone substrates for HATs and HDACs suggest even broader biological functions for these versatile enzymes.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ait-Si-Ali, S., Carlisi, D., Ramirez, S., Upegui-Gonzalez, L. C., Duquet, A., Robin, P., Rudkin, B., Harel-Bellan, A., and Trouche, D. (1999). Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem Biophys Res Commun 262, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Ait-Si-Ali, S., Ramirez, S., Barre, F. X., Dkhissi, F., Magnaghi-Jaulin, L., Girault, J. A., Robin, P., Knibiehler, M., Pritchard, L. L., Ducommun, B., et al. (1998). Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186.

    Article  PubMed  CAS  Google Scholar 

  • Allard, S., Utley, R. T., Savard, J., Clarke, A., Grant, P., Brandl, C. J., Pillus, L., Workman, J. L., and Cote, J. (1999). NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. Embo J 18, 5108–5119.

    Article  PubMed  CAS  Google Scholar 

  • Allfrey, V. G., Faulkner, R., and Mirsky, A. E. (1964). Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci USA 51, 786–794.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. M., Latorre-Esteves, M., Neves, A. R., Lavu, S., Medvedik, O., Taylor, C., Howitz, K. T., Santos, H., and Sinclair, D. A. (2003). Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 302, 2124–2126.

    Article  PubMed  CAS  Google Scholar 

  • Arany, Z., Sellers, W. R., Livingston, D. M., and Eckner, R. (1994). E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77, 799–800.

    Article  PubMed  CAS  Google Scholar 

  • Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K., and Rosenfeld, M. G. (2002). Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110, 55–67.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, A. J., and Kouzarides, T. (1996). The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, A. J., Miska, E. A., Gorlich, D., and Kouzarides, T. (2000). Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10, 467–470.

    Article  PubMed  CAS  Google Scholar 

  • Bannister, A. J., Zegerman, P., Partridge, J. F., Miska, E. A., Thomas, J. O., Allshire, R. C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Bereshchenko, O. R., Gu, W., and Dalla-Favera, R. (2002). Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 32, 606–613.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M., and Christman, M. F. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Bolger, T. A., and Yao, T. P. (2005). Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci. 25(41), 9544–53.

    Article  PubMed  CAS  Google Scholar 

  • Bone, J. R., Lavender, J., Richman, R., Palmer, M. J., Turner, B. M., and Kuroda, M. I. (1994). Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev 8, 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Boyes, J., Byfield, P., Nakatani, Y., and Ogryzko, V. (1998). Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396, 594–598.

    Article  PubMed  CAS  Google Scholar 

  • Bristow, C. A., and Shore, P. (2003). Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. Nucleic Acids Res 31, 2735–2744.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J. E., and Allis, C. D. (1995). An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci USA 92, 6364–6368.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gen5p linking histone acetylation to gene activation. Cell 84, 843–851.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., Lin, Y., Tran, H., Ross, S. E., Mostoslavsky, R., Cohen, H. Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  • Butler, L. M., Zhou, X., Xu, W. S., Scher, H. I., Rifkind, R. A., Marks, P. A., and Richon, V. M. (2002). The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 99, 11700–11705.

    Article  PubMed  CAS  Google Scholar 

  • Carapeti, M., Aguiar, R. C., Goldman, J. M., and Cross, N. C. (1998). A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91, 3127–3133.

    PubMed  CAS  Google Scholar 

  • Champagne, N., Bertos, N. R., Pelletier, N., Wang, A. H., Vezmar, M., Yang, Y., Heng, H. H., and Yang, X. J. (1999). Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. J Biol Chem 274, 28528–28536.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., McKinsey, T. A., Zhang, C. L., Richardson, J. A., Hill, J. A., and Olson, E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24, 8467–8476.

    Article  PubMed  CAS  Google Scholar 

  • Chauchereau, A., Mathieu, M., de Saintignon, J., Ferreira, R., Pritchard, L. L., Mishal, Z., Dejean, A., and Harel-Bellan, A. (2004). HDAC4 mediates transcriptional repression by the acute promyelocytic leukaemia-associated protein PLZF. Oncogene 23, 8777–8784.

    Article  PubMed  CAS  Google Scholar 

  • Chawla, S., Hardingham, G. E., Quinn, D. R., and Bading, H. (1998). CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281, 1505–1509.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Fischle, W., Verdin, E., and Greene, W. C. (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 1653–1657.

    Article  CAS  Google Scholar 

  • Choi, C. H., Hiromura, M., and Usheva, A. (2003). Transcription factor IIB acetylates itself to regulate transcription. Nature 424, 965–969.

    Article  PubMed  CAS  Google Scholar 

  • Chopin, V., Toillon, R. A., Jouy, N., and Le Bourhis, X. (2002). Sodium butyrate induces P53-independent, Fas-mediated apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol 135, 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Chrivia, J. C., Kwok, R. P., Lamb, N., Hagiwara, M., Montminy, M. R., and Goodman, R. H. (1993). Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855–859.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, A. S., Lowell, J. E., Jacobson, S. J., and Pillus, L. (1999). Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol 19, 2515–2526.

    PubMed  CAS  Google Scholar 

  • Cohen, H. Y., Miller, C., Bitterman, K. J., Wall, N. R., Hekking, B., Kessler, B., Howitz, K. T., Gorospe, M., de Cabo, R., and Sinclair, D. A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. A., Marks, P. A., Rifkind, R. A., Amin, S., Desai, D., Pittman, B., and Richon, V. M. (2002). Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, suppresses the growth of carcinogen-induced mammary tumors. Anticancer Res 22, 1497–1504.

    PubMed  CAS  Google Scholar 

  • Cohen, T., and Yao, T. P. (2004). AcK-knowledge reversible acetylation. Sci STKe 2004, pe42.

    Article  PubMed  Google Scholar 

  • Creaven, M., Hans, F., Mutskov, V., Col, E., Caron, C., Dimitrov, S., and Khochbin, S. (1999). Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry 38, 8826–8830.

    Article  CAS  Google Scholar 

  • Czubryt, M. P., McAnally, J., Fishman, G. I., and Olson, E. N. (2003). Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA 100, 1711–1716.

    Article  PubMed  CAS  Google Scholar 

  • Davis, F. J., Gupta, M., Camoretti-Mercado, B., Schwartz, R. J., and Gupta, M. P. (2003). Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem 278, 20047–20058.

    Article  PubMed  CAS  Google Scholar 

  • De Nadal, E., Zapater, M., Alepuz, P. M., Sumoy, L., Mas, G., and Posas, F. (2004). The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427, 370–374.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, K., Ayton, P. M., Carapeti, M., Kutok, J. L., Snyder, C. S., Williams, I. R., Cross, N. C., Glass, C. K., Cleary, M. L., and Gilliland, D. G. (2003). MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Deleu, L., Shellard, S., Alevizopoulos, K., Amati, B., and Land, H. (2001). Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 20, 8270–8275.

    Article  PubMed  CAS  Google Scholar 

  • Dequiedt, F., Kasler, H., Fischle, W., Kiermer, V., Weinstein, M., Herndier, B. G., and Verdin, E. (2003). HDAC7, a thymus-specific class II histone deacetylase, regulates Nur77 transcription and TCR-mediated apoptosis. Immunity 18, 687–698.

    Article  PubMed  CAS  Google Scholar 

  • Dhalluin, C., Carlson, J. E., Zeng, L., He, C., Aggarwal, A. K., and Zhou, M. M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Dryden, S. C., Nahhas, F. A., Nowak, J. E., Goustin, A. S., and Tainsky, M. A. (2003). Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23, 3173–3185.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenhofer-Murray, A. E., Rivier, D. H., and Rine, J. (1997). The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145, 923–934.

    PubMed  CAS  Google Scholar 

  • Ferrante, R. J., Kubilus, J. K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N. W., Ratan, R. R., Luthi-Carter, R., and Hersch, S. M. (2003). Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23, 9418–9427.

    PubMed  CAS  Google Scholar 

  • Finnin, M. S., Donigian, J. R., Cohen, A., Richon, V. M., Rifkind, R. A., Marks, P. A., Breslow, R., and Pavletich, N. P. (1999). Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Fischle, W., Dequiedt, F., Hendzel, M. J., Guenther, M. G., Lazar, M. A., Voelter, W., and Verdin, E. (2002). Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9, 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Frank, S. R., Parisi, T., Taubert, S., Fernandez, P., Fuchs, M., Chan, H. M., Livingston, D. M., and Amati, B. (2003). MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 4, 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Fulco, M., Schiltz, R. L., Iezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., and Sartorelli, V. (2003). Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Furumai, R., Komatsu, Y., Nishino, N., Khochbin, S., Yoshida, M., and Horinouchi, S. (2001). Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 98, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Gao, L., Cueto, M. A., Asselbergs, F., and Atadja, P. (2002). Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277, 25748–25755.

    Article  PubMed  CAS  Google Scholar 

  • Gayther, S. A., Batley, S. J., Linger, L., Bannister, A., Thorpe, K., Chin, S. F., Daigo, Y., Russell, P., Wilson, A., Sowter, H. M., et al. (2000). Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24, 300–303.

    Article  PubMed  CAS  Google Scholar 

  • Giannakou, M. E., and Partridge, L. (2004). The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 14, 408–412.

    Article  PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D., and Hay, R. T. (2003). P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R. H., and Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev 14, 1553–1577.

    PubMed  CAS  Google Scholar 

  • Grant, P. A., Duggan, L., Cote, J., Roberts, S. M., Brownell, J. E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C. D., Winston, F, et al. (1997). Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11, 1640–1650.

    Article  PubMed  CAS  Google Scholar 

  • Grant, P. A., Schieltz, D., Pray-Grant, M. G., Yates, J. R., 3rd, and Workman, J. L. (1998). The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol Cell 2, 863–867.

    Article  PubMed  CAS  Google Scholar 

  • Gregoire, S., and Yang, X. J. (2005). Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25, 2273–2287.

    Article  PubMed  CAS  Google Scholar 

  • Grozinger, C. M., Hassig, C. A., and Schreiber, S. L. (1999). Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 96, 4868–4873.

    Article  PubMed  CAS  Google Scholar 

  • Grozinger, C. M., and Schreiber, S. L. (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA 97, 7835–7840.

    Article  PubMed  CAS  Google Scholar 

  • Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606.

    Article  PubMed  CAS  Google Scholar 

  • Guardiola, A. R., and Yao, T. P. (2002). Molecular cloning and characterization of a novel histone deacetylase HDAC10. J Biol Chem 277, 3350–3356.

    Article  PubMed  CAS  Google Scholar 

  • Guarente, L., and Picard, F. (2005). Calorie restriction—the SIR2 connection. Cell 120, 473–482.

    Article  PubMed  CAS  Google Scholar 

  • Haggarty, S. J., Koeller, K. M., Wong, J. C., Grozinger, C. M., and Schreiber, S. L. (2003). Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 100, 4389–4394.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E., Whyte, P., Franza, B. R., Jr., and Schley, C. (1986). Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol Cell Biol 6, 1579–1589.

    PubMed  CAS  Google Scholar 

  • Heinzel, T., Lavinsky, R. M., Mullen, T. M., Soderstrom, M., Laherty, C. D., Torchia, J., Yang, W. M., Brard, G., Ngo, S. D., Davie, J. R., et al. (1997). A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Herold, C., Ganslmayer, M., Ocker, M., Hermann, M., Geerts, A., Hahn, E. G., and Schuppan, D. (2002). The histone-deacetylase inhibitor Trichostatin A blocks proliferation and triggers apoptotic programs in hepatoma cells. J Hepatol 36, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A., and Lucchesi, J. C. (1997). mof, a putative acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. Embo J 16, 2054–2060.

    Article  PubMed  CAS  Google Scholar 

  • Hockly, E., Richon, V. M., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P. A., et al. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100, 2041–2046.

    Article  PubMed  CAS  Google Scholar 

  • Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., and et al. (1995). Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Horn, P. J., and Peterson, C. L. (2002). Molecular biology. Chromatin higher order folding—wrapping up transcription. Science 297, 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  • Howe, L., Auston, D., Grant, P., John, S., Cook, R. G., Workman, J. L., and Pillus, L. (2001). Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes Dev 15, 3144–3154.

    Article  PubMed  CAS  Google Scholar 

  • Howitz, K. T., Bitterman, K. J., Cohen, H. Y., Lamming, D. W., Lavu, S., Wood, J. G., Zipkin, R. E., Chung, P., Kisielewski, A., Zhang, L. L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S. C., Chrivia, J., and Ghosh, A. (1999). Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22, 799–808.

    Article  PubMed  CAS  Google Scholar 

  • Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X. F., and Yao, T. P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, R. E. (2002). Polyglutamine disease: acetyltransferases awry. Curr Biol 12, R141–143.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, G. W., Wang, Y., Russanova, V. R., Hirai, T., Qin, J., Nakatani, Y., and Howard, B. H. (2001). Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J Biol Chem 276, 6817–6824.

    Article  PubMed  CAS  Google Scholar 

  • Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J., and Nakatani, Y. (2000). Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473.

    Article  PubMed  CAS  Google Scholar 

  • Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800.

    Article  PubMed  CAS  Google Scholar 

  • Imhof, A., Yang, X. J., Ogryzko, V. V., Nakatani, Y., Wolffe, A. P., and Ge, H. (1997). Acetylation of general transcription factors by histone acetyltransferases. Curr Biol 7, 689–692.

    Article  PubMed  CAS  Google Scholar 

  • Itazaki, H., Nagashima, K., Sugita, K., Yoshida, H., Kawamura, Y., Yasuda, Y., Matsumoto, K., Ishii, K., Uotani, N., Nakai, H., and et al. (1990). Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot (Tokyo) 43, 1524–1532.

    PubMed  CAS  Google Scholar 

  • Ito, A., Kawaguchi, Y., Lai, C. H., Kovacs, J. J., Higashimoto, Y., Appella, E., and Yao, T. P. (2002). MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. Embo J 21, 6236–6245.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, D., Schleiffer, A., Eisenhaber, F., Mechtler, K., Haering, C. H., and Nasmyth, K. (2002). Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol 12, 323–328.

    Article  PubMed  CAS  Google Scholar 

  • Iwao, K., Kawasaki, H., Taira, K., and Yokoyama, K. K. (1999). Ubiquitination of the transcriptional coactivator p300 during retinic acid induced differentiation. Nucleic Acids Symp Ser, 207–208.

    Google Scholar 

  • Jaboin, J., Wild, J., Hamidi, H., Khanna, C., Kim, C. J., Robey, R., Bates, S. E., and Thiele, C. J. (2002). MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62, 6108–6115.

    PubMed  CAS  Google Scholar 

  • Jenuwein, T., and Allis, C. D. (2001). Translating the histone code. Science 293, 1074–1080.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H., Nucifora, F. C., Jr., Ross, C. A., and DeFranco, D. B. (2003). Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum Mol Genet 12, 1–12.

    Article  PubMed  Google Scholar 

  • John, S., Howe, L., Tafrov, S. T., Grant, P. A., Sternglanz, R., and Workman, J. L. (2000). The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF (II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14, 1196–1208.

    PubMed  CAS  Google Scholar 

  • Kadosh, D., and Struhl, K. (1998). Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18, 5121–5127.

    PubMed  CAS  Google Scholar 

  • Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570–2580.

    Article  PubMed  CAS  Google Scholar 

  • Kalkhoven, E. (2004). CBP and p300: HATs for different occasions. Biochem Pharmacol 68, 1145–1155.

    Article  PubMed  CAS  Google Scholar 

  • Kamine, J., Elangovan, B., Subramanian, T., Coleman, D., and Chinnadurai, G. (1996). Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Kang-Decker, N., Tong, C., Boussouar, F., Baker, D. J., Xu, W., Leontovich, A. A., Taylor, W. R., Brindle, P. K., and van Deursen, J. M. (2004). Loss of CBP causes T cell lymphomagenesis in synergy with p27Kip1 insufficiency. Cancer Cell 5, 177–189.

    Article  PubMed  CAS  Google Scholar 

  • Kao, G. D., McKenna, W. G., Guenther, M. G., Muschel, R. J., Lazar, M. A., and Yen, T. J. (2003). Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J Cell Biol 160, 1017–1027.

    Article  PubMed  CAS  Google Scholar 

  • Katan-Khaykovich, Y., and Struhl, K. (2002). Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev 16, 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, Y., Kovacs, J. J., McLaurin, A., Vance, J. M., Ito, A., and Yao, T. P. (2003). The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727–738.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y., and Yokoyama, K. K. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Kehle, J., Beuchle, D., Treuheit, S., Christen, B., Kennison, J. A., Bienz, M., and Muller, J. (1998). dMi-2, a hunchback-interacting protein that functions in polycomb repression. Science 282, 1897–1900.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, W. K., Richon, V. M., O’Connor, O., Curley, T., MacGregor-Curtelli, B., Tong, W., Klang, M., Schwartz, L., Richardson, S., Rosa, E., et al. (2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9, 3578–3588.

    PubMed  CAS  Google Scholar 

  • Kikuchi, H., Takami, Y., and Nakayama, T. (2005). GCN5: a supervisor in all-inclusive control of vertebrate cell cycle progression through transcription regulation of various cell cycle-related genes. Gene.

    Google Scholar 

  • Kim, M. S., Son, M. W., Kim, W. B., In Park, Y., and Moon, A. (2000a). Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett 157, 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. B., Ki, S. W., Yoshida, M., and Horinouchi, S. (2000b). Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo) 53, 1191–1200.

    PubMed  CAS  Google Scholar 

  • Kimura, A., Umehara, T., and Horikoshi, M. (2002). Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32, 370–377.

    Article  PubMed  Google Scholar 

  • Kleff, S., Andrulis, E. D., Anderson, C. W., and Sternglanz, R. (1995). Identification of a gene encoding a yeast histone H4 acetyltransferase. J Biol Chem 270, 24674–24677.

    Article  PubMed  CAS  Google Scholar 

  • Koipally, J., Renold, A., Kim, J., and Georgopoulos, K. (1999). Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. Embo J 18, 3090–3100.

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides, T. (2000). Acetylation: a regulatory modification to rival phosphorylation? Embo J 19, 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  • Kundu, T. K., Wang, Z., and Roeder, R. G. (1999). Human TFIIIC relieves chromatin-mediated repression of RNA polymerase III transcription and contains an intrinsic histone acetyltransferase activity. Mol Cell Biol 19, 1605–1615.

    PubMed  CAS  Google Scholar 

  • Kung, A. L., Rebel, V. I., Bronson, R. T., Ch’ng, L. E., Sieff, C. A., Livingston, D. M., and Yao, T. P. (2000). Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14, 272–277.

    PubMed  CAS  Google Scholar 

  • Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E., and Allis, C. D. (1998). Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 12, 627–639.

    PubMed  CAS  Google Scholar 

  • Kurdistani, S. K., and Grunstein, M. (2003). Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol 4, 276–284.

    Article  PubMed  CAS  Google Scholar 

  • Kusch, T., Florens, L., Macdonald, W. H., Swanson, S. K., Glaser, R. L., Yates, J. R., 3rd, Abmayr, S. M., Washburn, M. P., and Workman, J. L. (2004). Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084–2087.

    Article  PubMed  CAS  Google Scholar 

  • L’Hernault, S. W., and Rosenbaum, J. L. (1985). Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 24, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S. E., and Hearing, P. (2003). The adenovirus E1A oncoprotein recruits the cellular TRRAP/GCN5 histone acetyltransferase complex. Oncogene 22, 2836–2841.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S. E., McMahon, S. B., Cole, M. D., and Hearing, P. (2001). E2F transcriptional activation requires TRRAP and GCN5 cofactors. J Biol Chem 276, 32627–32634.

    Article  PubMed  CAS  Google Scholar 

  • Lavau, C., Du, C., Thirman, M., and Zeleznik-Le, N. (2000). Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. Embo J 19, 4655–4664.

    Article  PubMed  CAS  Google Scholar 

  • Lee, H. J., Chun, M., and Kandror, K. V. (2001). Tip60 and HDAC7 interact with the endothelin receptor a and may be involved in downstream signaling. J Biol Chem 276, 16597–16600.

    Article  PubMed  CAS  Google Scholar 

  • Lemercier, C., Brocard, M. P., Puvion-Dutilleul, F., Kao, H. Y., Albagli, O., and Khochbin, S. (2002). Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem 277, 22045–22052.

    Article  PubMed  CAS  Google Scholar 

  • Linseman, D. A., Bartley, C. M., Le, S. S., Laessig, T. A., Bouchard, R. J., Meintzer, M. K., Li, M., and Heidenreich, K. A. (2003). Inactivation of the myocyte enhancer factor-2 repressor histone deacetylase-5 by endogenous Ca(2+) //calmodulin-dependent kinase II promotes depolarization-mediated cerebellar granule neuron survival. J Biol Chem 278, 41472–41481.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F., Dowling, M., Yang, X. J., and Kao, G. D. (2004). Caspase-mediated specific cleavage of human histone deacetylase 4. J Biol Chem 279, 34537–34546.

    Article  PubMed  CAS  Google Scholar 

  • Lonard, D. M., Nawaz, Z., Smith, C. L., and O’Malley, B. W. (2000). The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5, 939–948.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6, 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137–148.

    Article  PubMed  CAS  Google Scholar 

  • Maison, C., Bailly, D., Peters, A. H., Quivy, J. P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T., and Almouzni, G. (2002). Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30, 329–334.

    Article  PubMed  Google Scholar 

  • Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M., and Greenberg, M. E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Marks, P. A., Richon, V. M., and Rifkind, R. A. (2000). Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92, 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  • Marmorstein, R., and Roth, S. Y. (2001). Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11, 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, E., Kundu, T. K., Fu, J., and Roeder, R. G. (1998). A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273, 23781–23785.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Balbas, M. A., Bannister, A. J., Martin, K., Haus-Seuffert, P., Meisterernst, M., and Kouzarides, T. (1998). The acetyltransferase activity of CBP stimulates transcription. Embo J 17, 2886–2893.

    Article  PubMed  CAS  Google Scholar 

  • McCampbell, A., Taylor, J. P., Taye, A. A., Robitschek, J., Li, M., Walcott, J., Merry, D., Chai, Y., Paulson, H., Sobue, G., and Fischbeck, K. H. (2000). CREB-binding protein sequestration by expanded polyglutamine. Hum Mol Genet 9, 2197–2202.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408, 106–111.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2001). Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21, 6312–6321.

    Article  PubMed  CAS  Google Scholar 

  • McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2002). MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27, 40–47.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D., and Cole, M. D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Metzger, J. M. (2002). HDAC lightens a heavy heart. Nat Med 8, 1078–1079.

    Article  PubMed  CAS  Google Scholar 

  • Minamiyama, M., Katsuno, M., Adachi, H., Waza, M., Sang, C., Kobayashi, Y., Tanaka, F., Doyu, M., Inukai, A., and Sobue, G. (2004). Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 13, 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  • Miska, E. A., Karlsson, C., Langley, E., Nielsen, S. J., Pines, J., and Kouzarides, T. (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. Embo J 18, 5099–5107.

    Article  PubMed  CAS  Google Scholar 

  • Mizzen, C. A., Yang, X. J., Kokubo, T., Brownell, J. E., Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L., Kouzarides, T., et al. (1996). The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Munshi, N., Merika, M., Yie, J., Senger, K., Chen, G., and Thanos, D. (1998). Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol Cell 2, 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Munster, P. N., Troso-Sandoval, T., Rosen, N., Rifkind, R., Marks, P. A., and Richon, V. M. (2001). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61, 8492–8497.

    PubMed  CAS  Google Scholar 

  • Muraoka, M., Konishi, M., Kikuchi-Yanoshita, R., Tanaka, K., Shitara, N., Chong, J. M., Iwama, T., and Miyaki, M. (1996). p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12, 1565–1569.

    PubMed  CAS  Google Scholar 

  • Nakajima, H., Kim, Y. B., Terano, H., Yoshida, M., and Horinouchi, S. (1998). FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res 241, 126–133.

    Article  PubMed  CAS  Google Scholar 

  • Naruse, Y., Aoki, T., Kojima, T., and Mori, N. (1999). Neural restrictive silencer factor recruits mSin3 and histone deacetylase complex to repress neuron-specific target genes. Proc Natl Acad Sci USA 96, 13691–13696.

    Article  PubMed  CAS  Google Scholar 

  • Naryzhny, S. N., and Lee, H. (2004). The post-translational modifications of proliferating cell nuclear antigen: acetylation, not phosphorylation, plays an important role in the regulation of its function. J Biol Chem 279, 20194–20199.

    Article  PubMed  CAS  Google Scholar 

  • Nemoto, S., Fergusson, M. M., and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha. J Biol Chem.

    Google Scholar 

  • Neuwald, A. F., and Landsman, D. (1997). GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci 22, 154–155.

    Article  PubMed  CAS  Google Scholar 

  • Ng, H. H., Zhang, Y., Hendrich, B., Johnson, C. A., Turner, B. M., Erdjument-Bromage, H., Tempst, P., Reinberg, D., and Bird, A. (1999). MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23, 58–61.

    PubMed  CAS  Google Scholar 

  • North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M., and Verdin, E. (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11, 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Nucifora, F. C., Jr., Sasaki, M., Peters, M. F., Huang, H., Cooper, J. K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V. L., et al. (2001). Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko, V. V., Kotani, T., Zhang, X., Schiltz, R. L., Howard, T., Yang, X. J., Howard, B. H., Qin, J., and Nakatani, Y. (1998). Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959.

    Article  PubMed  CAS  Google Scholar 

  • Oike, Y., Hata, A., Mamiya, T., Kaname, T., Noda, Y., Suzuki, M., Yasue, H., Nabeshima, T., Araki, K., and Yamamura, K. (1999). Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Hum Mol Genet 8, 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D., and Feinberg, A. P. (2002). SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA 99, 13653–13658.

    Article  PubMed  CAS  Google Scholar 

  • Paroni, G., Mizzau, M., Henderson, C., Del Sal, G., Schneider, C., and Brancolini, C. (2004). Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 15, 2804–2818.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier, N., Champagne, N., Stifani, S., and Yang, X. J. (2002). MOZ and MORF histone acetyltransferases interact with the Runt-domain transcription factor Runx2. Oncogene 21, 2729–2740.

    Article  PubMed  CAS  Google Scholar 

  • Pijnappel, W. W., Schaft, D., Roguev, A., Shevchenko, A., Tekotte, H., Wilm, M., Rigaut, G., Seraphin, B., Aasland, R., and Stewart, A. F. (2001). The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15, 2991–3004.

    Article  PubMed  CAS  Google Scholar 

  • Poizat, C., Sartorelli, V., Chung, G., Kloner, R. A., and Kedes, L. (2000). Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 20, 8643–8654.

    Article  PubMed  CAS  Google Scholar 

  • Rebel, V. I., Kung, A. L., Tanner, E. A., Yang, H., Bronson, R. T., and Livingston, D. M. (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 99, 14789–14794.

    Article  PubMed  CAS  Google Scholar 

  • Reifsnyder, C., Lowell, J., Clarke, A., and Pillus, L. (1996). Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat Genet 14, 42–49.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Q., and Gorovsky, M. A. (2001). Histone H2A.Z acetylation modulates an essential charge patch. Mol Cell 7, 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  • Richon, V. M., Emiliani, S., Verdin, E., Webb, Y., Breslow, R., Rifkind, R. A., and Marks, P. A. (1998). A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95, 3003–3007.

    Article  PubMed  CAS  Google Scholar 

  • Rine, J., and Herskowitz, I. (1987). Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9–22.

    PubMed  CAS  Google Scholar 

  • Robyr, D., Suka, Y., Xenarios, I., Kurdistani, S. K., Wang, A., Suka, N., and Grunstein, M. (2002). Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. Cell 109, 437–446.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Rouaux, C., Jokic, N., Mbebi, C., Boutillier, S., Loeffler, J. P., and Boutillier, A. L. (2003). Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. Embo J 22, 6537–6549.

    Article  PubMed  CAS  Google Scholar 

  • Rouaux, C., Loeffler, J. P., and Boutillier, A. L. (2004). Targeting CREB-binding protein (CBP) loss of function as a therapeutic strategy in neurological disorders. Biochem Pharmacol 68, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  • Samuelson, A. V., Narita, M., Chan, H. M., Jin, J., de Stanchina, E., McCurrach, M. E., Fuchs, M., Livingston, D. M., and Lowe, S. W. (2005). p400 is required for E1A to promote apoptosis. J Biol Chem.

    Google Scholar 

  • Sawa, H., Murakami, H., Ohshima, Y., Sugino, T., Nakajyo, T., Kisanuki, T., Tamura, Y., Satone, A., Ide, W., Hashimoto, I., and Kamada, H. (2001). Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad. Brain Tumor Pathol 18, 109–114.

    Article  PubMed  CAS  Google Scholar 

  • Schwer, B., North, B. J., Frye, R. A., Ott, M., and Verdin, E. (2002). The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158, 647–657.

    Article  PubMed  CAS  Google Scholar 

  • Shalizi, A., Lehtinen, M., Gaudilliere, B., Donovan, N., Han, J., Konishi, Y., and Bonni, A. (2003). Characterization of a neurotrophin signaling mechanism that mediates neuron survival in a temporally specific pattern. J Neurosci 23, 7326–7336.

    PubMed  CAS  Google Scholar 

  • Shi, T., Wang, F., Stieren, E., and Tong, Q. (2005). SIRT3, a mitochondrial Sirtuin deacetylase, regulates mitochondrial function and thermogenesis in Brown adipocytes. J Biol Chem.

    Google Scholar 

  • Sinclair, D. A., and Guarente, L. (1997). Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91, 1033–1042.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. R., Pannuti, A., Gu, W., Steurnagel, A., Cook, R. G., Allis, C. D., and Lucchesi, J. C. (2000). The drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol Cell Biol 20, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. (2002). Human Sir2 and the’ silencing’ of p53 activity. Trends Cell Biol 12, 404–406.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. S., and Boeke, J. D. (1997). An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11, 241–254.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O’Malley, B. W. (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389, 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., Kazantsev, A., Schmidt, E., Zhu, Y. Z., Greenwald, M., et al. (2001). Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743.

    Article  PubMed  CAS  Google Scholar 

  • Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y. Z., Gohler, H., Wanker, E. E., Bates, G. P., Housman, D. E., and Thompson, L. M. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci USA 97, 6763–6768.

    Article  PubMed  CAS  Google Scholar 

  • Sterner, D. E., and Berger, S. L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435–459.

    Article  PubMed  CAS  Google Scholar 

  • Sterner, R., Vidali, G., and Allfrey, V. G. (1981). Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in high mobility group proteins 14 and 17. J Biol Chem 256, 8892–8895.

    PubMed  CAS  Google Scholar 

  • Sterner, R., Vidali, G., Heinrikson, R. L., and Allfrey, V. G. (1978). Postsynthetic modification of high mobility group proteins. Evidence that high mobility group proteins are acetylated. J Biol Chem 253, 7601–7604.

    PubMed  CAS  Google Scholar 

  • Suka, N., Luo, K., and Grunstein, M. (2002). Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat Genet 32, 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, J., Fujigasaki, H., Zander, C., El Hachimi, K. H., Stevanin, G., Durr, A., Lebre, A. S., Yvert, G., Trottier, Y., The, H., et al. (2002). Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain 125, 1534–1543.

    Article  PubMed  Google Scholar 

  • Takata, T., and Ishikawa, F. (2003). Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1-and HEY2-mediated transcriptional repression. Biochem Biophys Res Commun 301, 250–257.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, Y., Naruse, I., Maekawa, T., Masuya, H., Shiroishi, T., and Ishii, S. (1997). Abnormal skeletal patterning in embryos lacking a single Cbp allele: a partial similarity with Rubinstein-Taybi syndrome. Proc Natl Acad Sci USA 94, 10215–10220.

    Article  PubMed  CAS  Google Scholar 

  • Tanner, K. G., Landry, J., Sternglanz, R., and Denu, J. M. (2000). Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97, 14178–14182.

    Article  PubMed  CAS  Google Scholar 

  • Taunton, J., Hassig, C. A., and Schreiber, S. L. (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. P., Taye, A. A., Campbell, C., Kazemi-Esfarjani, P., Fischbeck, K. H., and Min, K. T. (2003). Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev 17, 1463–1468.

    Article  PubMed  CAS  Google Scholar 

  • Thiagalingam, S., Cheng, K. H., Lee, H. J., Mineva, N., Thiagalingam, A., and Ponte, J. F. (2003). Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983, 84–100.

    PubMed  CAS  Google Scholar 

  • Thomas, T., Voss, A. K., Chowdhury, K., and Gruss, P. (2000). Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development 127, 2537–2548.

    PubMed  CAS  Google Scholar 

  • Tong, J. K., Hassig, C. A., Schnitzler, G. R., Kingston, R. E., and Schreiber, S. L. (1998). Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395, 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, N., Kobayashi, M., Nagashima, K., Wakisaka, Y., and Koizumi, K. (1976). A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 29, 1–6.

    PubMed  CAS  Google Scholar 

  • Turner, B. M., Birley, A. J., and Lavender, J. (1992). Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69, 375–384.

    Article  PubMed  CAS  Google Scholar 

  • van der Horst, A., Tertoolen, L. G., de Vries-Smits, L. M., Frye, R. A., Medema, R. H., and Burgering, B. M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279, 28873–28879.

    Article  PubMed  CAS  Google Scholar 

  • Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., and Weinberg, R. A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Vega, R. B., Harrison, B. C., Meadows, E., Roberts, C. R., Papst, P. J., Olson, E. N., and McKinsey, T. A. (2004a). Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24, 8374–8385.

    Article  PubMed  CAS  Google Scholar 

  • Vega, R. B., Matsuda, K., Oh, J., Barbosa, A. C., Yang, X., Meadows, E., McAnally, J., Pomajzl, C., Shelton, J. M., Richardson, J. A., et al. (2004b). Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119, 555–566.

    Article  PubMed  CAS  Google Scholar 

  • Verdin, E., Dequiedt, F., and Kasler, H. G. (2003). Class II histone deacetylases: versatile regulators. Trends Genet 19, 286–293.

    Article  PubMed  CAS  Google Scholar 

  • Vetting, M. W., LP, S. d. C., Yu, M., Hegde, S. S., Magnet, S., Roderick, S. L., and Blanchard, J. S. (2005). Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433, 212–226.

    Article  PubMed  CAS  Google Scholar 

  • Vogelauer, M., Wu, J., Suka, N., and Grunstein, M. (2000). Global histone acetylation and deacetylation in yeast. Nature 408, 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Waltregny, D., De Leval, L., Glenisson, W., Ly Tran, S., North, B. J., Bellahcene, A., Weidle, U., Verdin, E., and Castronovo, V. (2004). Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to cells showing smooth muscle differentiation in normal human tissues. Am J Pathol 165, 553–564.

    PubMed  CAS  Google Scholar 

  • Wang, A., Kurdistani, S. K., and Grunstein, M. (2002). Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298, 1412–1414.

    Article  PubMed  CAS  Google Scholar 

  • Wang, A. H., and Yang, X. J. (2001). Histone deacetylase 4 possesses intrinsic nuclear import and export signals. Mol Cell Biol 21, 5992–6005.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., Huang, Z. Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B. D., Briggs, S. D., Allis, C. D., Wong, J., Tempst, P., and Zhang, Y. (2001). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853–857.

    Article  PubMed  CAS  Google Scholar 

  • Watamoto, K., Towatari, M., Ozawa, Y., Miyata, Y., Okamoto, M., Abe, A., Naoe, T., and Saito, H. (2003). Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22, 9176–9184.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., Suka, N., Carlson, M., and Grunstein, M. (2001). TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast. Mol Cell 7, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, H., Chung, J., Kao, H. Y., and Yang, Y. C. (2003). Tip60 is a co-repressor for STAT3. J Biol Chem 278, 11197–11204.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Edmondson, D. G., and Roth, S. Y. (1998). Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 18, 5659–5669.

    PubMed  CAS  Google Scholar 

  • Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., and Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2, 851–861.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, M., Wood, J. D., Shimohata, T., Hayashi, S., Tsuji, S., Ross, C. A., and Takahashi, H. (2001). Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann Neurol 49, 14–23.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W. M., Inouye, C., Zeng, Y., Bearss, D., and Seto, E. (1996). Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 93, 12845–12850.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. J. (2004a). The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32, 959–976.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X. J. (2004b). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26, 1076–1087.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V., and Bai, W. (2005). Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. Embo J 24, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch’ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Yee, S. P., and Branton, P. E. (1985). Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147, 142–153.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., and Mayo, M. W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. Embo J 23, 2369–2380.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H. G., Chan, D. W., Huang, Z. Q., Li, J., Fondell, J. D., Qin, J., and Wong, J. (2003). Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. Embo J 22, 1336–1346.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, M., Furumai, R., Nishiyama, M., Komatsu, Y., Nishino, N., and Horinouchi, S. (2001). Histone deacetylase as a new target for cancer chemotherapy. Cancer Chemother Pharmacol 48Suppl 1, S20–26.

    Article  PubMed  CAS  Google Scholar 

  • Youn, H. D., Sun, L., Prywes, R., and Liu, J. O. (1999). Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286, 790–793.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X., Guo, Z. S., Marcu, M. G., Neckers, L., Nguyen, D. M., Chen, G. A., and Schrump, D. S. (2002). Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 94, 504–513.

    PubMed  CAS  Google Scholar 

  • Yuan, L. W., Soh, J. W., and Weinstein, I. B. (2002). Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim Biophys Acta 1592, 205–211.

    PubMed  CAS  Google Scholar 

  • Zhang, C. L., McKinsey, T. A., Chang, S., Antos, C. L., Hill, J. A., and Olson, E. N. (2002a). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. L., McKinsey, T. A., Lu, J. R., and Olson, E. N. (2001). Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 276, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. L., McKinsey, T. A., and Olson, E. N. (2002b). Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22, 7302–7312.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W., and Dean, D. C. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Bone, J. R., Edmondson, D. G., Turner, B. M., and Roth, S. Y. (1998a). Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. Embo J 17, 3155–3167.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., LeRoy, G., Seelig, H. P., Lane, W. S., and Reinberg, D. (1998b). The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95, 279–289.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., and Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13, 1924–1935.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Ito, A., Kane, C. D., Liao, T. S., Bolger, T. A., Lemrow, S. M., Means, A. R., and Yao, T. P. (2001). The modular nature of histone deacetylase HDAC4 confers phosphorylation-dependent intracellular trafficking. J Biol Chem 276, 35042–35048.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Sternsdorf, T., Bolger, T. A., Evans, R. M., Yao, T. P. (2005). Regulation of MEF2 by histone deacetylase 4-and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol. 25(19), 8456–64.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X., Richon, V. M., Rifkind, R. A., and Marks, P. A. (2000). Identification of a transcriptional repressor related to the noncatalytic domain of histone deacetylases 4 and 5. Proc Natl Acad Sci USA 97, 1056–1061.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Higher Education Press

About this chapter

Cite this chapter

Bolger, T.A., Cohen, T., Yao, TP. (2006). HATs and HDACs. In: Ma, J. (eds) Gene Expression and Regulation. Springer, New York, NY. https://doi.org/10.1007/978-0-387-40049-5_6

Download citation

Publish with us

Policies and ethics