Skip to main content

Bacterial Stress Sensors

  • Chapter
Book cover Cell Stress Proteins

Part of the book series: Protein Reviews ((PRON,volume 7))

  • 725 Accesses

Abstract

Bacterial cells have limited abilities to modify and choose their dynamic environment. They utilize information processing systems to monitor their surroundings constantly for important changes. Among the appropriate responses to environmental changes are alterations in physiology, development, virulence, and location. In most species, highly sophisticated global regulatory networks modulate the expression of genes. These effects are mediated in large part through the activation or repression of mRNA transcript initiation by DNA-binding proteins, σ-factors, and corresponding signal transduction systems. This adaptive response is based on appropriate genetic programmes allowing them to respond rapidly and effectively to environmental changes that impair growth or even threaten their life. Cellular homeostasis is achieved by a multitude of sensors and transcriptional regulators, which are able to sense and respond to changes in temperature (heat and cold shock), external pH (alkaline and acid shock), reactive oxygen species (hydrogen peroxide and superoxide), osmolarity (hyper- and hypoosmotic shock), and nutrient availability to mention the most important ones. These changes are often called stress factors, and stresses can come at a sudden (catastrophic stress) or grow and grow (pervasive stress). Each stress factor leads to the induction of a subset of genes, the stress genes coding for stress proteins. It should be mentioned that challenge to any stress factor will not only result in induction of genes, but also in repression or even turn off of a subset of genes, but the underlying mechanisms are largely unknown. While some genes are induced by only one single stress factor, others respond to several. The former are termed specific stress genes and the latter general stress genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ades, S. E. (2004) Control of the alternative sigma factor σE in Escherichia coli. Curr Opin Microbiol 7:157–62.

    Article  PubMed  CAS  Google Scholar 

  • Aguilar, P. S., Cronan, J. E., Jr., and De Mendoza, D. (1998) A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J Bacteriol 180:2194–200.

    PubMed  CAS  Google Scholar 

  • Aguilar, P. S., Hernandez-Arriaga, A. M., Cybulski, L. E., Erazo, A. C., and De Mendoza, D. (2001) Molecular basis of thermosensing: A two-component signal transduction thermometer in Bacillus subtilis. EMBO J 20:1681–91.

    Article  PubMed  CAS  Google Scholar 

  • Alba, B. M., and Gross, C. A. (2004) Regulation of the Escherichia coli σE-dependent envelope stress response. Mol Microbiol 52:613–9.

    Article  PubMed  CAS  Google Scholar 

  • Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P., and Miller, S. I. (1992) Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci U S A 89:10079–83.

    Article  PubMed  CAS  Google Scholar 

  • Altier, C., Suyemoto, M., Ruiz, A. I., Burnham, K. D., and Maurer, R. (2000) Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol Microbiol 35:635–46.

    Article  PubMed  CAS  Google Scholar 

  • Aslund, F., Zheng, M., Beckwith, J., and Storz, G. (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc Natl Acad Sci U S A 96:6161–5.

    Article  PubMed  CAS  Google Scholar 

  • Barriuso-Iglesias, M., Barreiro, C., Flechoso, F., and Martin, J. F. (2006) Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21.

    Article  PubMed  CAS  Google Scholar 

  • Bearson, S., Bearson, B., and Foster, J. W. (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–80.

    Article  PubMed  CAS  Google Scholar 

  • Bearson, B. L., Wilson, L., and Foster, J.W. (1998) A low PH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180:2409–17.

    PubMed  CAS  Google Scholar 

  • Bossemeyer, D., Borchard, A., Dosch, D. C., Helmer, G. C., Epstein, W., Booth, I. R., et al. (1989) K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. J Biol Chem 264:16403–10.

    PubMed  CAS  Google Scholar 

  • Brandi, A., Spurio, R., Gualerzi, C. O., and Pon, C. L. (1999) Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J 18:1653–9.

    Article  PubMed  CAS  Google Scholar 

  • Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P., and Helmann, J. D. (1998) Bacillus subtilis contains multiple Fur homologues: Identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–98.

    Article  PubMed  CAS  Google Scholar 

  • Bucca, G., Ferina, G., Puglia, A. M., and Smith, C. P. (1995) The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17:663–74.

    Article  PubMed  CAS  Google Scholar 

  • Bucca, G., Brassington, A. M. E., Schönfeld, H.-J., and Smith, C. P. (2000) The HspR regulon of Streptomyces coelicolor: A role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38:1093–103.

    Article  PubMed  CAS  Google Scholar 

  • Buurman, E. T., Kim, K. T., and Epstein, W. (1995) Genetic evidence for two sequentially occupied K+ binding sites in the Kdp transport ATPase. J Biol Chem 270:6678–85.

    Article  PubMed  CAS  Google Scholar 

  • Castanie-Cornet, M. P., and Foster, J.W. (2001) Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147:709–15.

    PubMed  CAS  Google Scholar 

  • Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F., and Foster, J. W. (1999) Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–35.

    PubMed  CAS  Google Scholar 

  • Choi, H., Kim, S., Mukhopadhyay, P., Cho, S., Woo, J., Storz, G., et al. (2001) Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–13.

    Article  PubMed  CAS  Google Scholar 

  • Colonna, B., Casalino, M., Fradiani, P. A., Zagaglia, C., Naitza, S., Leoni, L., et al. (1995) HNS regulation of virulence gene expression in enteroinvasive Escherichia coli harboring the virulence plasmid integrated into the host chromosome. J Bacteriol 177:4703–12.

    PubMed  CAS  Google Scholar 

  • Cotter, P. D., and Hill, C. (2003) Surviving the acid test: Responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–53.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M. J. (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109.

    PubMed  CAS  Google Scholar 

  • Ding, H., and Demple, B. (2000) Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci U S A 97:5146–50.

    Article  PubMed  CAS  Google Scholar 

  • Dinnbier, U., Limpinsel, E., Schmid, R., and Bakker, E. P. (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–57.

    Article  PubMed  CAS  Google Scholar 

  • DiRita, V. J. (1992) Co-ordinate expression of virulence genes by ToxR in Vibrio cholerae. Mol Microbiol 6:451–8.

    Article  PubMed  CAS  Google Scholar 

  • Diwa, A., Bricker, A. L., Jain, C., and Belasco, J. G. (2000) An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression. Genes Dev 14:1249–60.

    PubMed  CAS  Google Scholar 

  • Dougan, D. A., Reid, B. G., Horwich, A. L., and Bukau, B. (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9:673–83.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, R. M., Roberts, J. A., Munro, A. W., Ritchie, G. Y., Lamb, A. J., and Booth, I. R. (1991) The distribution of homologues of the Escherichia coli KefC K(+)-efflux system in other bacterial species. J Gen Microbiol 137:1999–2005.

    PubMed  CAS  Google Scholar 

  • Durand, J. M., Dagberg, B., Uhlin, B. E., and Bjork, G. R. (2000) Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: The expression of the virF gene. Mol Microbiol 35:924–35.

    Article  PubMed  CAS  Google Scholar 

  • Ellermeier, C. D., and Losick, R. (2006) Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 18:2292–2301.

    Google Scholar 

  • Eriksson, S., Hurme, R., and Rhen, M. (2002) Low-temperature sensors in bacteria. Philos Trans R Soc Lond B 357:887–93.

    Article  CAS  Google Scholar 

  • Escolar, L., Perez-Martin, J., and de, L. V. (1999) Opening the iron box: Transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–9.

    PubMed  CAS  Google Scholar 

  • Feder, M. E., and Hofmann, G. E. (1999) Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu Rev Physiol 61:243–82.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, B. B., and Falkow, S. (1989) Salmonella as an intracellular parasite. Mol Microbiol 3:1833–41.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, J. M., Levchenko, I., Sauer, R. T., and Baker, T. A. (2004) Modulating substrate choice: The SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18:2292–301.

    Article  PubMed  CAS  Google Scholar 

  • Foster, J. W. (2004) Escherichia coli acid resistance: Tales of an amateur acidophile. Nat Rev Microbiol 2:898–907.

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson, A., Ballesteros, M., Dukan, S., and Nystrom, T. (2005) Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187:4207–13.

    Article  PubMed  CAS  Google Scholar 

  • Fuangthong, M., Atichartpongkul, S., Mongkolsuk, S., and Helmann, J. D. (2001) OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183:4134–41.

    Article  PubMed  CAS  Google Scholar 

  • Fuangthong, M., Herbig, A. F., Bsat, N., and Helmann, J. D. (2002) Regulation of the Bacillus subtilis fur and perR genes by PerR: Not all members of the PerR regulon are peroxide inducible. J Bacteriol 184:3276–86.

    Article  PubMed  CAS  Google Scholar 

  • Gaballa, A., and Helmann, J. D. (1998) Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J Bacteriol 180:5815–21.

    PubMed  CAS  Google Scholar 

  • Garwin, J. L., Klages, A. L., and Cronan, J. E., Jr. (1980) β-Ketoacyl-acyl carrier synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem 255:3263–56.

    PubMed  CAS  Google Scholar 

  • Gerchman, Y., Olami, Y., Rimon, A., Taglicht, D., Schuldiner, S., and Padan, E. (1993) Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. Proc Natl Acad Sci U S A 90:1212–6.

    Article  PubMed  CAS  Google Scholar 

  • Giuliodori, A. M., Brandi, A., Gualerzi, C. O., and Pon, C. L. (2004) Preferential translation of cold-shock mRNAs during cold adaptation. RNA 10:265–76.

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg, D., Azar, I., and Oppenheim, A. B. (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 19:241–8.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha, B., and Demple, B. (1997) Homeostatic regulation of intracellular hydrogen peroxide concentration in aerobically growing Escherichia coli. J Bacteriol 179:382–8.

    PubMed  CAS  Google Scholar 

  • Grimaud, R., Ezraty, B., Mitchell, J. K., Lafitte, D., Briand, C., Derrick, P. J., et al. (2001) Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase. J Biol Chem 276:48915–20.

    Article  PubMed  CAS  Google Scholar 

  • Gualerzi, C. O., Giuliodori, A. M., and Pon, C. L. (2003) Transcriptional and posttranscriptional control of cold-shock genes. J Mol Biol 331:527–39.

    Article  PubMed  CAS  Google Scholar 

  • Hall, H. K., Karem, K. L., and Foster, J. W. (1996) Molecular responses of microbes to environmental pH stress. Adv Microb Physiol 36:229–72.

    Google Scholar 

  • Heinrich, J., and Wiegert, T. (2006) YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Mol Microbiol 62:566–79.

    Article  PubMed  CAS  Google Scholar 

  • Herbig, A. F., and Helmann, J. D. (2001) Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41:849–59.

    Article  PubMed  CAS  Google Scholar 

  • Herman, C., Thévenet, D., Dβ Ari, R., and Bouloc, P. (1995) Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci U S A 92:3516–20.

    Article  PubMed  CAS  Google Scholar 

  • Hurme, R., Berndt, K. D., Namok, E., and Rhen, M. (1996) DNA binding exerted by a bacterial gene regulator with an extensive coiled-coil domain. J Biol Chem 271:12626–31.

    Article  PubMed  CAS  Google Scholar 

  • Hurme, R., Berndt, K. D., Normark, S. J., and Rhen, M. (1997) A proteinaceous gene regulatory thermometer in Salmonella. Cell 90:55–64.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J. A. (2002) How oxygen damages microbes: Oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol 46:111–53.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J. A. (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W., Hou, Y., and Inouye, M. (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K., Charles, I., Dougan, G., Pickard, D., O’Gaora, P., Costa, G., et al. (1991) The role of a stress-response protein in Salmonella typhimurium virulence. Mol Microbiol 5:401–7.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M., and Cossart, P. (2002) AnRNAthermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–61.

    Article  PubMed  Google Scholar 

  • Kiley, P. J., and Storz, G. (2004) Exploiting thiol modifications. PLoS Biol 2:e400.

    Article  PubMed  CAS  Google Scholar 

  • Kirstein, J., Zühlke, D., Gerth, U., Turgay, K., and Hecker, M. (2005) A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in Bacillus subtilis. EMBO J 24:3435–45.

    Article  PubMed  CAS  Google Scholar 

  • Krüger, E., Zühlke, D., Witt, E., Ludwig, H., and Hecker, M. (2001) Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20:852–63.

    Article  PubMed  Google Scholar 

  • Li, L., Jia, Y., Hou, Q., Charles, T. C., Nester, E. W., and Pan, S. Q. (2002) A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc Natl Acad Sci U S A 99:12369–74.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Gong, S., Richard, H., Tucker, D. L., Conway, T., and Foster, J. W. (2003) GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309–20.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Masuda, N., and Foster, J. W. (2004) Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186:7378–89.

    Article  PubMed  CAS  Google Scholar 

  • Mansilla, M. C., and De Mendoza, D. (2005) The Bacillus subtilis desaturase: A model to understand phospholipid modification and temperature sensing. Arch Microbiol 183:229–35.

    Article  PubMed  CAS  Google Scholar 

  • Maurer, L. M., Yohannes, E., Bondurant, S. S., Radmacher, M., and Slonczewski, J. L. (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–19.

    Article  PubMed  CAS  Google Scholar 

  • McLaggan, D., Naprstek, J., Buurman, E. T., and Epstein, W. (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269:1911–7.

    PubMed  CAS  Google Scholar 

  • Meury, J., and Kohiyama, M. (1992) Potassium ions and changes in bacterial DNA supercoiling under osmotic stress. FEMS Microbiol Lett 99:159–64.

    Article  CAS  Google Scholar 

  • Miller, V. L., Taylor, R. K., and Mekalanos, J. J. (1987) Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48:271–9.

    Article  PubMed  Google Scholar 

  • Mogk, A., and Bukau, B. (2004) Molecular chaperones: Structure of a protein disaggregase. Curr Biol 14:R78–80.

    Article  PubMed  CAS  Google Scholar 

  • Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F. X., and Schumann, W. (1997) The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16:4579–90.

    Article  PubMed  CAS  Google Scholar 

  • Mongkolsuk, S., and Helmann, J. D. (2002) Regulation of inducible peroxide stress responses. Mol Microbiol 45:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, R. I., Tissi`eres, A., and Georgopoulos, C. (1994) The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Morita, M. T., Tanaka, Y., Kodama, T. S., Kyogoku, Y., Yanagi, H., and Yura, T. (1999) Translational induction of heat shock transcription factor σ32: Evidence for a built-in RNA thermosensor. Genes Dev 13:655–65.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, S., and Watanabe, H. (1995) Involvement of cpxA, a sensor of a two-component regulatory system, in the pH-dependent regulation of expression of Shigella sonnei virF gene. J Bacteriol 177:5062–9.

    PubMed  CAS  Google Scholar 

  • Nakayama, S., and Watanabe, H. (1998) Identification of cpxR as a positive regulator essential for expression of the Shigella sonnei virF gene. J Bacteriol 180:3522–8.

    PubMed  CAS  Google Scholar 

  • Narberhaus, F. (2002a) Alpha-crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66:64–93.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus, F. (2002b) mRNA-mediated detection of environmental conditions. Arch Microbiol 178:404–10.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus, F., Waldminghaus, T., and Chowdhury, S. (2006) RNA thermometers. FEMS Microbiol Rev 30:3–16.

    Article  PubMed  CAS  Google Scholar 

  • Nocker, A., Hausherr, T., Balsiger, S., Krstulovic, N. P., Hennecke, H., and Narberhaus, F. (2001a) A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–7.

    Article  PubMed  CAS  Google Scholar 

  • Nocker, A., Krstulovic, N. P., Perret, X., and Narberhaus, F. (2001b) ROSEelements occur in disparate rhizobia and are functionally interchangeable between species. Arch Microbiol 176:44–51.

    Article  PubMed  CAS  Google Scholar 

  • Padan, E., Maisler, N., Taglicht, D., Karpel, R., and Schuldiner, S. (1989) Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative NA+/H+ antiporters system(s). J Biol Chem 264: 20097–302.

    Google Scholar 

  • Parsot, C., and Mekalanos, J. J. (1991) Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J Bacteriol 173:2842–51.

    PubMed  CAS  Google Scholar 

  • Pomposiello, P. J., and Demple, B. (2001) Redox-operated genetic switches: The SoxR and OxyR transcription factors. Trends Biotechnol 19:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Poolman, B., Spitzer, J. J., and Wood, J. M. (2004) Bacterial osmosensing: Roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim Biophys Acta 1666:88–104.

    Article  PubMed  CAS  Google Scholar 

  • Prosseda, G., Fradiani, P. A., Di, L. M., Falconi, M., Micheli, G., Casalino, M., et al. (1998) A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. Res Microbiol 149:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Prosseda, G., Falconi, M., Nicoletti, M., Casalino, M., Micheli, G., and Colonna, B. (2002) Histone-like proteins and the Shigella invasivity regulon. Res Microbiol 153:461–8.

    Article  PubMed  CAS  Google Scholar 

  • Prosseda, G., Falconi, M., Giangrossi, M., Gualerzi, C. O., Micheli, G., and Colonna, B. (2004) The virF promoter in Shigella: More than just a curved DNA stretch. Mol Microbiol 51:523–37.

    Article  PubMed  CAS  Google Scholar 

  • Rahav-Manor, O., Carmel, O., Karpel, R., Taglicht, D., Glaser, G., Schuldiner, S., et al. (1992) NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J Biol Chem 267:10433–8.

    PubMed  CAS  Google Scholar 

  • Requena, J. R., Chao, C. C., Levine, R. L., and Stadtman, E. R. (2001) Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc Natl Acad Sci U S A 98:69–74.

    Article  PubMed  CAS  Google Scholar 

  • Reverter-Branchat, G., Cabiscol, E., Tamarit, J., and Ros, J. (2004) Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: Common targets and prevention by calorie restriction. J Biol Chem 279:31983–9.

    Article  PubMed  CAS  Google Scholar 

  • Schöbel, S., Zellmeier, S., Schumann, W., and Wiegert, T. (2004) The Bacillus subtilis ?W anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52:1091–105.

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner, S., and Padan, E. (1993) Molecular analysis of the role of Na+/H+ antiporters in bacterial cell physiology. Int Rev Cytol 137C:229–66.

    PubMed  CAS  Google Scholar 

  • Schumann, W. (2003) The Bacillus subtilis heat shock stimulon. Cell Stress Chap 8:207–17.

    Article  CAS  Google Scholar 

  • Schumann, W., Hecker, M., and Msadek, T. (2002) Regulation and function of heat-inducible genes in Bacillus subtilis. In Sonenshein, A. L., Hoch, J. A., and Losick, R. (eds.): Bacillus subtilis and Its Closest Relatives: From Genes to Cells. American Society for Microbiology, Washington, D. C. pp. 359–68.

    Google Scholar 

  • Seaver, L. C., and Imlay, J. A. (2001) Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol 183:7173–81.

    Article  PubMed  CAS  Google Scholar 

  • Servant, P., Grandvalet, C., and Mazodier, P. (2000) The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. Proc Natl Acad Sci U S A 97:3538–43.

    Article  PubMed  CAS  Google Scholar 

  • Shi, X., and Bennett, G. N. (1994) Effects of rpoA and cysB mutations on acid induction of biodegradative arginine decarboxylase in Escherichia coli. J Bacteriol 176:7017–23.

    PubMed  CAS  Google Scholar 

  • Storz, G., and Imlay, J. A. (1999) Oxidative stress. Curr Opin Microbiol 2:188–194.

    Article  PubMed  CAS  Google Scholar 

  • Storz, G., and Hengge-Aronis, R. (2000) Bacterial Stress Responses. American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Tao, K., Fujita, N., and Ishihama, A. (1993) Involvement of the RNA polymresae α subunit C-terminal region in co-operative interaction and transcriptional activation with OxyR protein. Mol Microbiol 7:859–64.

    Article  PubMed  CAS  Google Scholar 

  • Tatsuta, T., Tomoyasu, T., Bukau, B., Kitagawa, M., Mori, H., Karata, K., et al. (1998) Heat shock regulation in the ftsH null mutant of Escherichia coli: Dissection of stability and activity control mechanisms of σ32 in vivo. Mol Microbiol 30:583–94.

    Article  PubMed  CAS  Google Scholar 

  • Tobe, T., Yoshikawa, M., Mizuno, T., and Sasakawa, C. (1993) Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: Activation by virF and repression by H-NS. J Bacteriol 175:6142–9.

    PubMed  CAS  Google Scholar 

  • Toledano, M. B., Kullik, I., Trinh, F., Baird, P. T., Schneider, T. D., and Storz, G. (1994) Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: A mechanism for differential promoter selection. Cell 78:897–909.

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu, T., Gamer, J., Bukau, B., Kanemori, M., Mori, H., Rutman, A. J., et al. (1995) Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor σ32. EMBO J 14:2551–60.

    PubMed  CAS  Google Scholar 

  • Tomoyasu, T., Ogura, T., Tatsuta, T., and Bukau, B. (1998) Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30:567–82.

    Article  PubMed  CAS  Google Scholar 

  • Touati, D. (2000) Sensing and protecting against superoxide stress in Escherichia coli-How many ways are there to trigger soxRS response? Redox Rep 5:287–93.

    Article  PubMed  CAS  Google Scholar 

  • Voelkner, P., Puppe, W., and Altendorf, K. (1993) Characterization of the KdpD protein, the sensor kinase of the K+-translocating Kdp system of Escherichia coli. Eur J Biochem 217:1019–26.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M. H. W., and Marahiel, M. A. (2003) Bacterial cold shock responses. Sci Prog 86:9–75.

    Article  PubMed  CAS  Google Scholar 

  • Weibezahn, J., Schlieker, C., Tessarz, P., Mogk, A., and Bukau, B. (2005) Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol Chem 386:739–44.

    Article  PubMed  CAS  Google Scholar 

  • Weissbach, H., Etienne, F., Hoshi, T., Heinemann, S. H., Lowther, W. T., Matthews, B., et al. (2002) Peptide methionine sulfoxide reductase: Structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172–8.

    Article  PubMed  CAS  Google Scholar 

  • Wick, L. M., and Egli, T. (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89:1–45.

    PubMed  CAS  Google Scholar 

  • Wiegert, T., Homuth, G., Versteeg, S., and Schumann, W. (2001) Alkaline shock induces the Bacillus subtilis σW regulon. Mol Microbiol 41:59–71.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. M. (1999) Osmosensing by bacteria: Signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–62.

    PubMed  CAS  Google Scholar 

  • Wood, J. M., Bremer, E., Csonka, L. N., Kraemer, R., Poolman, B., Van der Heide, T., et al. (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A Mol Integr Physiol 130:437–60.

    Article  PubMed  CAS  Google Scholar 

  • Zellmeier, S., Schumann, W., and Wiegert, T. (2006) Involvement of Clp protease activity in modulating the Bacillus subtilis ?W stress response. Mol Microbial 61:1569–82.

    Article  CAS  Google Scholar 

  • Zheng, M., Åslund, F., and Storz, G. (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–21.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., and Storz, G. (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, S. B., and Trach, S. O. (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schumann, W. (2007). Bacterial Stress Sensors. In: Calderwood, S.K. (eds) Cell Stress Proteins. Protein Reviews, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-0-387-39717-7_3

Download citation

Publish with us

Policies and ethics