Skip to main content

Light Scattering by Particles on Substrates. Theory and Experiments

  • Chapter
Light Scattering and Nanoscale Surface Roughness

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

During recent decades the study of the scattering of electromagnetic waves by rough surfaces has aroused the interest of many research groups and has been approached from different standpoints. Of the geometrical models developed either to reproduce experimental results or to understand the physics involved in the phenomena of scattering, particular mention should be made of the model consisting of ensembles of particles with simple geometry seeded onto flat surfaces. What makes these surfaces especially attractive is that they allow both controlled calculation for different sizes, shapes, densities, or optical properties, and the possibility of experimental testing of such systems. But these surfaces are also interesting for other reasons in certain specific areas, such as mirror degradation by particle contamination,1 detection of surface defects in the semiconductor industry,2 construction of biosensors,3 optical particle sizing,4 and near field optics.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.R. Young, “Low-scatter mirror degradation by particle contamination,” Opt. Eng. 15, 516–520(1976).

    ADS  Google Scholar 

  2. A.J. Pidduck, DJ. Robbins, I.M. Young, A.G. Cullis, and A.S.R. Martin, The formation of dislocations and their in-situ detection during silicon vapor phase epitaxi at reduced temperature, Mater. Sci. Eng. B 4, 417–422 (1989).

    Article  Google Scholar 

  3. P.N. Prasad, Nanophotonics, (John Wiley and Sons, 2004).

    Google Scholar 

  4. J.L de la Peña, F. González, J.M. Saiz, P.J. Valle, and F. Moreno, Sizing particles on substrates: a general method for oblique incidence, J. Appl. Phys. 85, 432–438 (1999).

    Article  ADS  Google Scholar 

  5. D.W. Pohl and D. Courjon (eds.), Near Field Optics (Kluwer Academic Publishers, London, 1993).

    Google Scholar 

  6. I.V. Lindell, A.H. Sihvola, K.O. Muinonen, and P.W. Barber, Scattering by a small object close to an interface. I. Exact-image theory formulation, J. Opt. Soc. Am. A 8, 472–476 (1991).

    Article  ADS  Google Scholar 

  7. K.O. Muinonen, A.H. Sihlova, I.V. Lindell, and K.A. Lumme, Scattering by a small object close to an interface. II. Study of backscattering, J. Opt. Soc. Am. A 8, 477–482 (1991).

    Article  ADS  Google Scholar 

  8. G. Videen, M.G. Turner, V.J. Iafelice, W.S. Bickel, and W.L. Wolfe, Scattering from a small sphere near a surface, J. Opt. Soc. Am. A 10, 118–126 (1993).

    Article  ADS  Google Scholar 

  9. E. Jakeman, Scattering by particles on an interface, J. Phys. D: Appl. Phys. 27, 198–210 (1994).

    Article  ADS  Google Scholar 

  10. G. Videen, W.L. Wolfe, and W.S. Bickel, The light-scattering Mueller matrix for a surface contaminated by a single particle in the Rayleigh limit, Opt. Eng. 31, 341–349 (1992).

    Article  ADS  Google Scholar 

  11. F. Moreno, J.M. Saiz, P.J. Valle and F. González, On the multiple scattering effects for small metallic particles on flat conducting substrates, Waves Random Media 5, 73–88 (1995).

    Article  ADS  Google Scholar 

  12. T.A. Germer, Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, surface defects, and surface microroughness, Appl. Opt. 36, 8798–8805 (1997).

    Article  ADS  Google Scholar 

  13. E.M. Ortiz, P.J. Valle, J.M. Saiz, F. González, and F. Moreno, Multiscattering effects in the far-field region for two small particles on a flat conducting substrate, Waves Random Media 7, 319–329 (1997).

    Article  MATH  ADS  Google Scholar 

  14. E.M. Ortiz, P.J. Valle, J.M. Saiz, F. González, and F. Moreno, A detailed study of the scattered near field of nanoprotuberances on flat substrates, J. Phys. D: Appl. Phys. 31, 3009–3019 (1998).

    Article  ADS  Google Scholar 

  15. P.J. Valle, E.M. Ortiz and J.M. Saiz, Near field by subwavelength particles on metallic substrates with cylindrical surface plasmon excitation, Opt. Commun. 137, 334–342 (1997).

    Article  ADS  Google Scholar 

  16. K.B. Nahm and W.L. Wolfe, Light scattering models for spheres on a conducting plane: comparison with experiment, Appl. Opt. 26, 2995–2999 (1987).

    Article  ADS  Google Scholar 

  17. D.C. Weber and E.D. Hirleman, Light scattering signatures of individual spheres on optically smooth conducting surfaces, Appl. Opt. 27, 4019–4026 (1998).

    Article  ADS  Google Scholar 

  18. E.J. Bawolek and E.D Hirleman, Particles on Surfaces 3, K.L. Mittal, ed. (Plenum Press, New York, 1991).

    Google Scholar 

  19. F. Moreno, J.M. Saiz, P.J. Valle, and F. González, Metallic particle sizing on flat surfaces: application to conducting substrates, Appl. Phys. Lett. 68, 3087–3089 (1996).

    Article  ADS  Google Scholar 

  20. J.L. de la Peña, J.M. Saiz, and F. González, Profile of a fiber from backscattering measurements, Opt. Lett. 25, 1699–1701 (2000).

    Article  ADS  Google Scholar 

  21. J.L. de la Peña, J.M. Saiz, F. González, and F. Moreno, Detection and recognition of local defects in 1D structures, Opt. Commun. 196, 33–39 (2001).

    Article  ADS  Google Scholar 

  22. P.A. Bobbert and J. Vlieger, Light scattering by a sphere on a substrate, Physica A 137, 209–242 (1986).

    Article  ADS  Google Scholar 

  23. P.A. Bobbert, J. Vlieger, and R. Greef, Light reflection from a substrate sparsely seeded with spheres—comparison with an ellipsometric experiment, Physica A 137, 243–257 (1986).

    Article  ADS  Google Scholar 

  24. G. Videen, Light Scattering from a sphere on or near a surface, J. Opt. Soc. Am. A 8, 483–489 (1991); errata, J. Opt. Soc. Am. A 9, 844–845 (1992).

    Article  ADS  Google Scholar 

  25. G. Videen, Light scattering from a sphere behind a surface, J. Opt. Soc. Am. A 10, 110–117(1993).

    Article  ADS  Google Scholar 

  26. G. Videen, Light scattering from a particle on or near a perfectly conducting surface, Opt. Commun. 115, 1–7 (1995).

    Article  ADS  Google Scholar 

  27. G. Videen, Light scattering from an irregular particle behind a plane interface, Opt. Commun. 128, 81–90 (1996).

    Article  ADS  Google Scholar 

  28. B.R. Johnson, Light scattering from a spherical particle on a conducting plane: I. Normal incidence, J. Opt. Soc. Am. A 9, 1341–1351 (1992); errata, J. Opt. Soc. Am. A 10, 766 (1993).

    Article  ADS  Google Scholar 

  29. B.R. Johnson, Calculation of light scattering from spherical particle on a surface by the multipole expansion method, J. Opt. Soc. Am. A 13, 326–337 (1996).

    Article  ADS  Google Scholar 

  30. B.R. Johnson, Light diffraction by a particle on an optically smooth surface, Appl. Opt. 36, 240–246 (1997).

    Article  ADS  Google Scholar 

  31. E. Fucile, P. Denti, E. Borghese, R. Saija, and O.I. Sindoni, Optical properties of a sphere in the vicinity of a plane surface, J. Opt. Soc. Am. A 14, 1505–1514 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Videen and D. Ngo, Light scattering from a cylinder near a plane interface: theory and comparison with experimental data, J. Opt. Soc. Am. A 14, 70–78 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Videen, W.S. Bickel, V.J. Iafelice, and D. Abromson, Experimental light-scattering Mueller matrix for a fiber on a reflecting optical surface as a function of incident angle, J. Opt. Soc. Am. A 9, 312–315 (1992).

    Article  ADS  Google Scholar 

  34. R. Borghi, F. Gori, M. Santarsiero, F. Frezza, and G. Schettini, Plane-wave scattering by a set of perfectly conducting circular cylinders in the presence of a plane surface, J. Opt. Soc. Am. A 13, 2441–2452 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Nieto-Vesperinas, Scattering and diffraction in Physical Optics (Wiley-Interscience, New York, 1991).

    Google Scholar 

  36. P.J. Valle, F. González, and F. Moreno, Electromagnetic wave scattering from conducting cylindrical structures on flat substrates: study by means of the extinction theorem, Appl. Opt. 33, 512–523 (1994).

    Article  ADS  Google Scholar 

  37. P.J. Valle, F. Moreno, J.M. Saiz and F. González, Near-field scattering from subwavelength metallic protuberances on conducting flat substrates, Phys. Rev. B 51, 13681–13690(1995).

    Article  ADS  Google Scholar 

  38. J.M. Saiz, P.J. Valle, F. González, E.M. Ortiz, and F. Moreno, Scattering by a metallic cylinder on a substrate: burying effects, Opt. Lett. 21, 1330–1332 (1996).

    Article  ADS  Google Scholar 

  39. P.J. Valle, F. Moreno, J.M. Saiz, and F. González, Electromagnetic interaction between two parallel circular cylinders on a planar interface, IEEE Trans. Antennas Propag. 44, 321–325 (1996).

    Article  ADS  Google Scholar 

  40. P.J. Valle, F. Moreno, and J.M. Saiz, Comparison of real-and perfect-conductor approaches for scattering by a cylinder on a flat substrate, J. Opt. Soc. Am. A 15, 158–162 (1998).

    Article  ADS  Google Scholar 

  41. A. Madrazo and M. Nieto-Vesperinas, Scattering of electromagnetic waves from a cylinder in front of a conducting plane, J. Opt. Soc. Am. A 12, 1298–1309 (1995).

    Article  ADS  Google Scholar 

  42. R. Carminati, A. Madrazo and M. Nieto-Vesperinas, Electromagnetic wave scattering from a cylinder in front of a conducting surface-relief grating, Opt. Commun. 111, 26–33 (1994).

    Article  ADS  Google Scholar 

  43. A. Madrazo and M. Nieto-Vesperinas, Scattering of light and other electromagnetic waves from a body buried beneath a highly rough random surface, J. Opt. Soc. Am. A 14, 1859–1866(1997).

    Article  ADS  Google Scholar 

  44. J.-J. Greffet and F.-R Ladan, Comparison between theoretical and experimental scattering of an s-polarized electromagnetic wave by a two-dimensional obstacle on a surface, J. Opt. Soc. Am. A 8, 1261–1269 (1991).

    Article  ADS  Google Scholar 

  45. F. Pincemin, A. Sentenac, and J.-J. Greffet, Near field scattered by a dielectric rod below a metallic surface, J. Opt. Soc. Am. A 11, 1117–1127 (1994).

    Article  ADS  Google Scholar 

  46. T. Wriedt and A. Doicu, Light Scattering by Microstructures, F. Moreno and F. González, eds. (Lecture Notes in Physics Series, Springer-Verlag, Berlin, 2000), pp. 113–132.

    Chapter  Google Scholar 

  47. M.A. Taubenblatt, Light scattering from cylindrical structures on surfaces, Opt. Lett. 15, 255–257 (1990).

    Article  ADS  Google Scholar 

  48. R. Schmehl, B.M. Nebeker, and E.D. Hirleman, Discrete-dipole approximation for scattering by features on surfaces by means of a two-dimensional fast Fourier transform technique, J. Opt. Soc. Am. A 14, 3026–3036 (1997).

    Article  ADS  Google Scholar 

  49. G.L. Wojcik, D.K. Vaughan, and L.K. Galbraith, Calculation of light scatter from structures of silicon surfaces, Lasers in Microlithography, SPIE 774, 21–31 (1987).

    Google Scholar 

  50. M.A. Kolbehdari, H.A. Auda, and A.Z. Elsherbeni, Scattering from dielectric cylinder partially embedded in a perfectly conducting ground plane, J. Electromagn. Waves Appl. 3, 531–554(1989).

    Google Scholar 

  51. J.M. Saiz, F. González, F. Moreno, and P.J. Valle, Application of a ray-tracing model to the study of backscattering from surfaces with particles, J. Phys. D: Appl. Phys. 28, 1040–1046 (1995).

    Article  ADS  Google Scholar 

  52. F. González, J.M. Saiz, P.J. Valle and F. Moreno, Scattering from particulate metallic surfaces: effect of surface particle density, Opt. Eng. 34, 1200–1207 (1995).

    Article  ADS  Google Scholar 

  53. FEMLAB 3.0. Electromagnetics Module User’s Guide. COMSOL AB (2004).

    Google Scholar 

  54. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  55. W.L. Barnes, A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics, Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  56. A.V. Zayats and I.I. Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons, J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003).

    Article  ADS  Google Scholar 

  57. P.W. Barber and S.C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

    Google Scholar 

  58. P. Dawson, F. de Fornel, and J-P. Goudonnet, Imaging of surface plasmon propagation and edge interaction using a photon scanning tunnelling microscope, Phys. Rev. Lett. 72(18), 2927–2930 (1994).

    Article  ADS  Google Scholar 

  59. F. Keilmann and Y.H. Bai, Periodic surface structures frozen into CO2 laser-melted quartz, Appl. Phys. A 29, 9–18 (1982).

    Article  ADS  Google Scholar 

  60. A. Sommerfeld, Partial differential equations in physics (Academic Press, New York, 1967) p. 236.

    Google Scholar 

  61. V.A. Kosobukin, Polarization and resonance effects in optical generation of cylindrical surface polaritons and surface structures, Sov. Phys. — Solid State 35, 457–463 (1993).

    ADS  Google Scholar 

  62. G.J. Burke and A.J. Poggio, Numerical Electromagnetics Code (NEC). Method of Moments. Report UCID 18834 (Lawrence Livermore Lab, Livermore CA, 1981).

    Google Scholar 

  63. J.M. Saiz, J.L. de la Peña, F. González, and F. Moreno, Detection and recognition of local defects in 1D structures, Opt. Commun. 196, 33–39 (2001).

    Article  ADS  Google Scholar 

  64. F. González, J.M. Saiz, P.J. Valle, and F. Moreno, Multiple scattering in particulate surfaces: cross-polarization ratios and shadowing effects, Opt. Commun. 137, 359–366 (1997).

    Article  ADS  Google Scholar 

  65. J.L. de la Peña, J.M. Saiz, G. Videen, F. González, P.J. Valle, and F. Moreno, Scattering from particles on surfaes: visibility factor and polydispersity, Opt.Lett. 24, 1451–1453 (1999).

    Article  ADS  Google Scholar 

  66. E.M. Ortiz, F. González, J.M. Saiz, and F. Moreno, Experimental measurements of the statistics of the scattered intensity from particles on surfaces, Opt. Express 10, 190–195 (2002).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moreno, F., Saiz, J.M., González, F. (2007). Light Scattering by Particles on Substrates. Theory and Experiments. In: Maradudin, A.A. (eds) Light Scattering and Nanoscale Surface Roughness. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35659-4_12

Download citation

Publish with us

Policies and ethics