Skip to main content

Numerical Methods in Curve Evolution Theory

  • Reference work entry
  • First Online:
  • 337 Accesses

Synonyms

Active contours; Numerical partial differential equations

Definition

Two numerical approximations of curvature-driven flows are described for use in computer vision and image processing. The level-set methodology of Osher-Sethian that dominates the field is of particular interest, and a more recent, alternative interpretation of curvature flow, based on a stochastic evolution of density functions, is also presented.

Background

Two separate methods for the numerical approximation and computer implementation of curvature-driven flows in the plane are described. The first has become, perhaps, the standard in the field: the level-set methodology of Osher and Sethian [20, 21, 24, 25]. This approach and its variants (fast marching, narrow banding, etc.) dominate the literature and practice in computer vision and image processing.

There are, however, other possibilities that may be useful when estimation is necessary. For example, when tracking in a noisy, uncertain environment, the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alvarez L, Guichard F, Lions PL, Morel JM (1992) Axiomes et equations fondamentales du traitement d'images. C R Acad Sci Paris 315:135–138

    MathSciNet  MATH  Google Scholar 

  2. Alvarez L, Lions PL, Morel JM (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Numer Anal 29:845–866

    Article  MathSciNet  MATH  Google Scholar 

  3. Arous GB, Tannenbaum A, Zeitouni O (2003) Stochastic approximations of curve shortening flows. J Differ Equ 195:119–142

    Article  MathSciNet  MATH  Google Scholar 

  4. Angenent S, Tannenbaum A, Yezzi A, Zeitouni O (2006) Curve shortening and interacting particle systems. In: Krim H, Yezzi A (eds) Statistics and analysis of shapes. Birkhäuser Boston, Boston, MA, USA, pp 303–313

    Chapter  Google Scholar 

  5. Angenent S (1991) On the formation of singularities in the curve shortening flow. J Differ Geom 33: 601–633

    MathSciNet  MATH  Google Scholar 

  6. Arnold VI (1989) Mathematical methods in classical mechanics. Springer, New York

    Book  Google Scholar 

  7. Blake A, Yuille A (1992) Active vision. MIT, Cambridge

    Google Scholar 

  8. Blake A Isard M (1998) Active contours. Springer-Verlag New York, Secaucus, NJ, USA

    Book  Google Scholar 

  9. Busemann H (1958) Convex surfaces, Interscience, New York, NY, USA

    MATH  Google Scholar 

  10. Blum H (1973) Biological shape and visual science. J Theor Biol 38:205–287

    Article  Google Scholar 

  11. Caselles V, Kimmel R, Sapiro G, (1997) Geodesic snakes. Int J Comput Vis 22:6179

    Article  Google Scholar 

  12. Crandall MG, Ishii H, Lions PL (1992) Users guide to viscosity solutions of second order partial differential equations. Bull Am Math Soc 27:1–67

    Article  MathSciNet  MATH  Google Scholar 

  13. Gage M, Hamilton RS, (1986) The heat equation shrinking convex plane curves. J Differ Geom 23:69–96

    MathSciNet  MATH  Google Scholar 

  14. Grayson M (1987) The heat equation shrinks embedded plane curves to round points. J Diffe Geom 26: 285–314

    MathSciNet  MATH  Google Scholar 

  15. Grayson M, (1989) Shortening embedded curves. Ann Math 129:71–111

    Article  MathSciNet  MATH  Google Scholar 

  16. Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A, (1996) Conformal curvature flows: from phase transitions to active vision. Arch Ration Mech Anal 134:275–301

    Article  MathSciNet  MATH  Google Scholar 

  17. Kimia BB, Tannenbaum A, Zucker SW (1992) On the evolution of curves via a function of curvature, I: the classical case. J Math Anal Appl 163:438–458

    Article  MathSciNet  MATH  Google Scholar 

  18. Kipnis C, Landim C (1999) Scaling limits of interacting particle systems. Springer, New York

    Book  MATH  Google Scholar 

  19. LeVeque RJ, (1992) Numerical Methods for Conservation Laws. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  20. Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Springer-Verlag New York, Secaucus, NJ, USA

    Google Scholar 

  21. Osher SJ, Sethian JA, (1988) Fronts propagation with curvature dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  22. B. ter Haar Romeny (ed) (1994) Geometry driven diffusion in computer vision. Kluwer, Holland

    Book  MATH  Google Scholar 

  23. Sapiro G (2001) Geometric partial differential equations and image analysis. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  24. Sethian JA (1985) Curvature and the evolution of fronts. Commun Math Phys 101:487–499

    Article  MathSciNet  MATH  Google Scholar 

  25. Sethian JA (1999) Level set methods and fast marching methods, 2nd edn. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  26. . Sethian JA (1982) An analysis of flame propagation. Ph. D. dissertation, University of California

    Google Scholar 

  27. Smoller J (1983) Shock waves and reaction-diffusion equations. Springer, New York

    Book  MATH  Google Scholar 

  28. Sod GA (1985) Numerical methods in fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  29. Terzopoulos D, Szelski R (1992) Tracking with kalman snakes. In: Blake A, Zisserman A (eds) Active vision. MIT, Cambridge

    Google Scholar 

  30. Ushijima TK, Yazaki S (2000) Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature V = Kα. SIAM J Numer Anal 37:500–522

    Article  MathSciNet  MATH  Google Scholar 

  31. LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser, Boston

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Karasev, P., Kolesov, I., Tannenbaum, A. (2014). Numerical Methods in Curve Evolution Theory. In: Ikeuchi, K. (eds) Computer Vision. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31439-6_705

Download citation

Publish with us

Policies and ethics