Skip to main content

Rough Sets: Foundations and Perspectives

  • Reference work entry
Book cover Encyclopedia of Complexity and Systems Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Approximation:

The replacement of mathematical objects by others that resemble them in certain respects [64].

Approximation space :

An approximation space is denoted by \( { \left(\mathcal{O}, \mathcal{F}, \sim_B\right) } \), where \( { \mathcal{O} } \) is a set of perceived objects, \( { \mathcal{F} } \) is a set of probe functions representing object features, and \( { \sim_{B} } \) is an indiscernibility relation defined relative to \( { B\subseteq\mathcal{F} } \).This approximation space is considered fundamental because it provided a framework for the original rough set theory [37,40]. Severalgeneralizations of this definition of approximation space have been proposed(see, e.?g., [40,44,54,55,56,58,59,69]).

Attribute :

A quality regarded as characteristic or inherent inan object [29]. In rough set theory, an attribute a of an object x is represented by a partialfunction \( { f_a(x) = v }\), where v is a value in the range off a . In rough set theory,the function f a is oftencalled an attribute [38,45].

Boundary region :

The B-boundary region of an approximation of a set X is denoted by \( { \mathrm{Bnd}_B X } \) and is defined relative to a set of functions B representing features of objects in X as well as the lower approximation \( { B_{\ast}X } \) and theupper approximation \( { B^{\ast}X } \), where

$$\mathrm{Bnd}_B X = B^{\ast} X \setminus B_{\ast}X =\{x \mid x \in B^{\ast}X\text{ and } x \notin B_{\ast} X\} \:.$$
Elementary set:

B-class in the quotient set \( { X/\sim_B } \).

Equivalence class:

Given a relation ~, anequivalence class is a set denoted by \( {\left[x\right] } \) or \( { \left[x\right]_{\sim} } \) [10] in the quotient set \( { X/\sim } \) (See Glossary item “Quotientset”), where

$$\left[x\right] = \{x^\prime \in X \mid x \sim x^\prime\}\:.$$
Equivalence relation:

A reflexive, symmetric and transitive relation \( { \sim\subseteq X\times X } \). An equivalence relation ~ on a set X defines a partition of X into classes.

Feature :

Make, form, fashion, shape (of an object) [29]. A characteristic of an object perceived by the senses or knowable by the mind [41,52]. In rough set theory, a feature f of an object x is represented by a function \( { \phi_{f}(x) = v } \), where v is a value in the range of ? f (e.?g., ??(x) as a measure of the tonality ? feature of a Chopin Mazurka x) [41,52]. The function ? f is sometimes also termed an attribute [38,45].

Indiscernibility relation :

An equivalence relation

$$\sim_B = \{(x,x^\prime) \in X \times X | f(x)=f(x^\prime)\text{ for any } f \in B\} \:,$$

where X denotes a set of objects, B denotesa set of functions, and \( { f\in B } \) is a function representing a feature of anobject \( { x \in X } \). The notation used to denote an equivalencerelation in rough set theory has varied widely over time. Forexample, \( { \widetilde B } \) was originally introduced byZdzislaw Pawlak in 1981 [37]. Later,\( { \mathrm{Ind}(B) } \) [18,30,38,66] or\( { \mathrm{IND}_B } \) [45] or \( { \mathrm{Ind}_B } \) [14] or IND [66]or I(B) [40] or \( { =_B } \) [16] has also been used todenote an equivalence relation on a set X defined relative toattributes of objects. In rough set theory, the equivalence relation\( { \sim_B } \) was introduced by Zdzislaw Pawlak [37].

Information granule :

Information granules are obtained in theprocess of granulation. Granulation can be viewed as a human wayof achieving data compression and it plays a key role inimplementing the divide-and-conquer strategy in humanproblem-solving. An information granule represents a set of objects that have descriptions matching the granule [52], e.?g. elementary set\( { \left[x\right]_B } \), lower approximation \( { B_{\ast}X } \), quotient set \( { X/\sim_B } \).

Lower approximation :

The B-lower approximation of a set X is denoted by \( { B_\ast X } \) and is defined relative to a set of functions B representing features of objects in X and the quotient set \( { X/\sim_B } \), where

$$B_{\ast}X = \bigcup_{x: [x]_B\subseteq X} [x]_B \:.$$
Object:

Something perceptible to the senses or knowable by the mind [29].

Information:

Whatever is conveyed or represented by a particular sequence of symbols [29]. In rough set theory, information is derivable either from the patterns in a particular information table or from what can be observed in a particular approximation space [37,40].

Information system :

A system to represent knowledge [25,36,40]. Syntactic representation of knowledge in table form [25,45].

Partition of a non-empty set X :

A family of non-empty, pairwise disjoint subsets of X(called classes) such that the union of this family is equal to X.

Quotient set:

Set of all classes in a partition defined by an equivalence relation ~ on a set X (denoted by \( { X/\sim } \)).

Rough set :

A set X is considered a rough set if, and only if it has a non-empty B-boundary \( { \mathrm{Bnd}_B X } \), i.?e., the B-approximation of X has a non-empty boundary.

Upper approximation :

The B-upper approximation of X is denoted by \( { B^\ast X } \) and is defined relative to a set of functions B representing features of objects in X and the quotient set \( { X/\sim_B } \), where

$$B^{\ast}X = \bigcup_{x: [x]_B\cap X \neq \emptyset}[x]_B \:.$$

Bibliography

Primary Literature

  1. Audi R (1999)The Cambridge Dictionary of Philosophy, 2nd edn.Cambridge University Press, UK

    Google Scholar 

  2. Banerjee M, Chakraborty MK (2004)Algebras from rough sets. In: Pal SK, Polkowski L, Skowron A (eds)Rough-Neural Computing. Techniques for Computing with Words.Springer, Berlin, pp 157–184

    Google Scholar 

  3. Bazan J (1998) A Comparison of Dynamic and Non-dynamic Rough Set Methods for ExtractingLaws from Decision Tables. In: Polkowski L, Skowron A (eds) Rough Sets in Knowledge Discovery 1:Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 18. Physica, Heidelberg, pp 321–365

    Google Scholar 

  4. Bazan J (2008)Rough sets and granular computing in behavioral pattern identification and planningIn: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of Granular Computing.Wiley, New York (in press), pp 777–799

    Google Scholar 

  5. Bazan J, Skowron A, Swiniarski R (2006)Rough sets and vague concept approximation: From sample approximation to adaptive learning.Transactions on Rough Sets V. Lecture Notes in Computer Science, vol 4100.Springer, Heidelberg, pp 39–62

    Google Scholar 

  6. Bazan J, Kruczek P, Bazan-Socha S, Skowron A, Pietrzyk JJ (2006) Automatic planning oftreatment of infants with respiratory failure through rough set modeling. In: Greco S, Hato Y,Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Slowinski R (eds) Proceedings of the 5thInternational Conference on Rough Sets and Current Trends in Computing, RSCTC 2006, Kobe, Japan,6–8 November. Lecture Notes in Artificial Intelligence, vol 4259. Springer, Heidelberg,pp 418–427

    Google Scholar 

  7. Bianucci D, Cattaneo G, Ciucci D (2007)Entropies and co-entropies of coverings with application to incomplete information systems.Fundam Inform 75:77–105

    MathSciNet  MATH  Google Scholar 

  8. Cattaneo G, Ciucci D (2004)Algebraic structures for rough sets. Transactions on Rough Sets II. LNCS(Lecture Notes in Artificial Intelligence), vol 3135.Springer, Heidelberg, pp 63–101

    Google Scholar 

  9. Chakraborty MK, Banerjee M (2007)Rough dialogue and implication lattices.Fundam Inform 75:123–139

    MathSciNet  MATH  Google Scholar 

  10. Devlin J (1993)The Joy of Sets.Fundamentals of Contemporary Set Theory.Springer, Berlin

    MATH  Google Scholar 

  11. Düntsch I (1997)A logic for rough sets.Theor Comput Sci 179:427–436

    Google Scholar 

  12. Frege G (1879)Begriffsschrift: eine der arithmetischen nachgebildete Formelsprachedes reinen Denkens. Nebert, Halle

    Google Scholar 

  13. Friedman JH, Hastie T, Tibshirani R (2001)The Elements of Statistical Learning: Data Mining, Inference, and Prediction.Springer, Heidelberg

    MATH  Google Scholar 

  14. Gomolinska A (2005)Rough validity, confidence, and coverage of rules in approximation spaces.Transactions on Rough Sets III.LNCS (Lecture Notes in Artificial Intelligence), vol 3400.Springer, Heidelberg, pp 57–81

    Google Scholar 

  15. Greco S, Matarazzo B, Slowinski R (2001)Rough sets theory for multicriteria decision analysis.Eur J Oper Res 129:1–47

    Google Scholar 

  16. Greco S, Slowinski R, Stefanowski J, Zurawski M (2005)Incremental vs. non-incremental rule induction for multicriteria classification.Transactions on Rough Sets II.LNCS (Lecture Notes in Artificial Intelligence), vol 3135.Springer, Heidelberg, pp 33–53

    Google Scholar 

  17. Grzymala-Busse JW (1992) LERS – A system for learning from examples based on roughsets In: Slowinski R (ed) Intelligent Decision Support – Handbook of Applications and Advancesof the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol 11.Kluwer, Dordrecht, pp 3–18

    Google Scholar 

  18. Grzymala-Busse JW, Grzymala-Busse WJ (2007)An experimental comparison of three rough set approaches to missing attribute values.Transactions on Rough Sets VI.LNCS (Lecture Notes in Artificial Intelligence), vol 4374.Springer, Heidelberg, pp 31–50

    Google Scholar 

  19. Henry C, Peters JF (2007)Image Pattern Recognition Using Approximation Spaces and Near Sets.In: Proceedings of Eleventh International Conference on RoughSets, Fuzzy Sets, Data Mining and Granular Computing. Joint Rough Set Symposium.Lecture Notes in Artificial Intelligence, vol 4482.Springer, Berlin, pp 475–482

    Google Scholar 

  20. Int. Rough Set Society website:www.roughsets.org

  21. Jankowski A, Skowron A (2007)Logic for Artificial Intelligence: The Rasiowa – Pawlak School Perspective. In:Ehrenfeucht A, Marek V, Srebrny M (eds) Andrzej Mostowski and Foundational Studies.IOS Press, Amsterdam, pp 106–143

    Google Scholar 

  22. Jankowski A, Skowron A (2008)Wisdom Granular Computing. In: Pedrycz W, Skowron A, Kreinovich V (eds)Handbook of Granular Computing.Wiley, New York, pp 329–345

    Google Scholar 

  23. Järvinen J (2007)Lattice theory for rough sets. Transactions on Rough Sets VI.LNCS (Lecture Notes in Artificial Intelligence), vol 4374.Springer, Heidelberg, pp 400–496

    Google Scholar 

  24. Keats J (1820)Lamia, Isabella, The Eve of St. Agness, and Other Poems.Taylor and Hessey, London

    Google Scholar 

  25. Konrad E, Orlowska E, Pawlak Z (1981)Knowledge Representation Systems. Definability of Informations.Prace IPI Pan, ICS PAS Report, vol 433 April.Institute of Computer Science,Polish Academy of Sciences, Warsaw

    Google Scholar 

  26. Lesniewski S (1929)Grungzüge eines neuen Systems der Grundlagen der Mathematik.Fundam Math pp 14:1–81

    Google Scholar 

  27. Lockery D, Peters JF (2007) Robotic Target Tracking with Approximation Space-basedFeedback During Reinforcement Learning, Springer best paper award. In: Proceedings of EleventhInternational Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. JointRough Set Symposium. Lecture Notes in Artificial Intelligence, vol 4482. Springer, Berlin, pp 483–490

    Google Scholar 

  28. Lukasiewicz J (1913)Die logischen Grundlagen der Wahrscheinlichkeitsrechnung.In: Borkowski L (ed) Jan Lukasiewicz – Selected Works.North Holland, Amsterdam; (1970)Polish Scientific Publishers, Warsaw, pp 16–63

    Google Scholar 

  29. Murray JA, Bradley H, Craigie W, Onions C (1933)The Oxford English Dictionary.Oxford University Press, London

    Google Scholar 

  30. Nguyen HS (2006)Approximate boolean reasoning: Foundations and applications in data mining.Transactions on Rough Sets V.LNCS (Lecture Notes in Artificial Intelligence), vol 4100.Springer, Heidelberg, pp 344–523

    Google Scholar 

  31. Nguyen SH, Bazan J, Skowron A, Nguyen HS (2004)Layered learning for concept synthesis, Transactions on Rough Sets I.LNCS (Lecture Notes in Artificial Intelligence), vol 3100.Springer, Heidelberg, pp 187–208

    Google Scholar 

  32. Pal SK, Polkowski L, Skowron A (2004)Rough-Neural Computing.Techniques for Computing with Words.Springer, Berlin

    MATH  Google Scholar 

  33. Orlowska E (1985)Semantics of Vague Concepts. In: Dorn G, Weingartner P (eds)Foundations of Logic and Linguistics. Problems and Solutions.Plenum, London, pp 465–482

    Google Scholar 

  34. Orlowska E (1985)A logic of indiscernibility relations.Lecture Notes in Computer Science, vol 208.Springer, Berlin, pp 177–186

    Google Scholar 

  35. Pal SK, Polkowski L, Skowron A (2004)Rough-Neural Computing: Techniques for Computing with Words.Springer, Berlin

    Google Scholar 

  36. Pawlak Z (1973)Mathematical foundations of information retrieval.Proceedings of Symposium of Mathematical Foundations of ComputerScience, 3–8 September, High Tartras, pp. 135–136. See also:Mathematical Foundations of Information Retrieval. Computation Center,Polish Academy of Sciences, Research Report CC PAS Report 101, Warsaw

    Google Scholar 

  37. Pawlak Z (1981)Classification of objects by means of attributes.Institute for Computer Science, Polish Academy of Sciences.Research Report CC PAS Report 429, Warsaw

    Google Scholar 

  38. Pawlak Z (1991)Rough Sets. Theoretical Aspects of Reasoning about Data.Kluwer, Dordrecht

    MATH  Google Scholar 

  39. Pawlak Z (1995)On rough derivatives, rough integrals, and rough differential equations,ICS Research Report 41/95.Institute of Computer Science, Warsaw

    Google Scholar 

  40. Pawlak Z, Skowron A (2007)Rudiments of rough sets. Information Sciences.Int J 177(1): 3–27;Rough sets: Some extensions. Information Sciences.Int J 177(1): 28–40;Rough sets and Boolean reasoning. Information Sciences.Int J 177(1):41–73

    MathSciNet  MATH  Google Scholar 

  41. Peters JF (2008)Classification of perceptual objects by means of features.Int J Inf Technol Intell Comput 3(2):1–35

    Google Scholar 

  42. Peters JF, Henry C (2007)Approximation spaces in off-policy Monte Carlo learning.Engineering Applications of Artificial Intelligence.Int J Intell Real-Time Autom 20(5):667–675

    Google Scholar 

  43. Peters JF, Henry C, Gunderson DS (2006)Biologically-inspired approximate adaptive learningcontrol strategies: A rough set approach.Inter J Hybrid Intell Syst 3:1–14

    Google Scholar 

  44. Peters JF, Skowron A, Stepaniuk J (2007)Nearness of Objects: Extension of Approximation Space Model.Fundam Inform 79(3–4):497–512

    MathSciNet  MATH  Google Scholar 

  45. Polkowski L (2002)Rough Sets: Mathematical Foundations.Advances in Soft Computing.Physica, Heidelberg

    Google Scholar 

  46. Polkowski L, Skowron A (1996)Rough mereology: A new paradigm for approximate reasoning.J Approx Reas 15(4):333–365

    MathSciNet  MATH  Google Scholar 

  47. Polkowski L, Skowron A (1998)Rough Sets in Knowledge Discovery 1:Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 18.Physica, Heidelberg

    Google Scholar 

  48. Polkowski L, Skowron A (1998)Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Studies in Fuzziness and Soft Computing, vol 19.Physica, Heidelberg

    Google Scholar 

  49. Rissanen J (1985)Minimum-description-length Principle. In: Kotz S, Johnson N (eds)Encyclopedia of Statistical Sciences.Wiley, New York, pp 523–527

    Google Scholar 

  50. Rough Set Database:http://rsds.univ.rzeszow.pl/

  51. Skowron A, Grzymala-Busse JW (1994)From Rough Set Theory to Evidence Theory. In: Yager R, Fedrizzi M,Kacprzyk J (eds) Advances in the Dempster-Shafer Theory of Evidence.Wiley, New York, pp 193–236

    Google Scholar 

  52. Skowron A, Peters JF (2008)Rough-granular computing.In: Pedrycz W, Skowron A, Kreinovich V (eds) Handbook of Granular Computing.Wiley, pp 285–328

    Google Scholar 

  53. Skowron A, Rauszer C (1992) The Discernibility Matrices and Functions in InformationSystems. In: Slowinski R (ed) Intelligent Decision Support – Handbook of Applications andAdvances of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol 11.Kluwer, Dordrecht, pp 331–362

    Google Scholar 

  54. Skowron A, Stepaniuk J (1996)Tolerance approximation spaces.Fundam Inform 27:245–253

    MathSciNet  MATH  Google Scholar 

  55. Skowron A, Swiniarski R, Synak P (2005)Approximation spaces and information granulation. Transactions on Rough Sets III.LNCS (Lecture Notes in Artificial Intelligence), vol 3400.Springer, Heidelberg, pp 175–189

    Google Scholar 

  56. Skowron A, Stepaniuk J, Peters JF, Swiniarski R (2006)Calculi of approximation spaces.Fundam Inform 72(1–3):363–378

    MathSciNet  MATH  Google Scholar 

  57. Stepaniuk J (1998) Approximation spaces, reducts and representatives. In: Polkowski L,Skowron A (eds) Rough Sets in Knowledge Discovery 2: Applications, Case Studies and SoftwareSystems, Studies in Fuzziness and Soft Computing, vol 19. Physica, Heidelberg, pp 109–126

    Google Scholar 

  58. Stepaniuk J (2000) Knowledge discovery by application of rough set models. In:Polkowski L, Tsumoto S, Lin TY (eds) Rough Set Methods and Applications. New Developments inKnowledge Discovery in Information Systems. Physica, Heidelberg, pp 137–233

    Google Scholar 

  59. Stepaniuk J (2007)Approximation Spaces in Multi Relational Knowledge Discovery, Transactions on Rough Sets VI:LNCS (Lecture Notes in Artificial Intelligence), vol 4374.Springer, Heidelberg, pp 351–365

    Google Scholar 

  60. Sl?zak D (1996) Approximate reducts in decision tables. Sixth InternationalConference on Information Processing and Management of Uncertainty in Knowledge-Based Systems,IPMU'1996, vol III, Granada, Spain, pp 1159–1164

    Google Scholar 

  61. Sl?zak D (2002)Approximate entropy reducts.Fundam Inform 53:365–387

    Google Scholar 

  62. Transactions on Rough Sets website:http://www.springer.com/east/home/computer/lncs?SGWID=5-164-6-99627-0, special issues ofother journals, proceedings of international conferences, tutorials or surveys (see, references inthis paper and, e.?g., Pawlak Z, Skowron A (2007) Rudiments of rough sets. Information Sciences.Int J 177(1):3–27; Rough sets: Some extensions. Information Sciences. Int J 177(1):28–40; Roughsets and Boolean reasoning. Information Sciences. Int J 177(1):41–73, and numerous web pages(www.roughsets.org, and logic.mimuw.edu.pl))

  63. University of Regina Electronic Bulletin of the Rough Set Community:http://www.cs.uregina.ca/%7Eroughset

  64. Vinogradov IM (ed) (1995)Encyclopedia of Mathematics.Kluwer, Dordrecht

    Google Scholar 

  65. Warsaw University Logic Group website:logic.mimuw.edu.pl

  66. Wojna A (2007)Analogy-based reasoning in classifier construction.Transactions on Rough Sets IV.LNCS (Lecture Notes in Artificial Intelligence), vol 3700.Springer, Heidelberg, pp 277–374

    Google Scholar 

  67. Zadeh LA (2001)A new direction in AI: Toward a computational theory of perceptions.AI Mag 22(1):73–84

    Google Scholar 

  68. Zadeh LA (2005)Toward a generalized theory of uncertainty (GTU) – An outline.Inform Sci 171:1–40

    MathSciNet  Google Scholar 

  69. Ziarko W (1993)Variable precision rough set model.J Comput Syst Sci 46:39–59

    MathSciNet  MATH  Google Scholar 

Further Readings – Books

  1. Demri S, Orlowska E (2002)Incomplete Information: Structure, Inference, Complexity.Monographs in Theoretical Computer Science.Springer, Berlin

    Google Scholar 

  2. Dunin-K?plicz B, Jankowski A, Skowron A, Szczuka M (eds) (2005)Monitoring, Security, and Rescue Tasks in Multiagent Systems, MSRAS'2004.Advances in Soft Computing.Springer, Heidelberg

    Google Scholar 

  3. Düntsch I, Gediga G (2000)Rough set data analysis: A road to non-invasive knowledge discovery.Methodos, Bangor

    Google Scholar 

  4. Grzymala-Busse JW (1990)Managing Uncertainty in Expert Systems.Kluwer, Norwell

    Google Scholar 

  5. Inuiguchi M, Hirano S, Tsumoto S (eds) (2003)Rough Set Theory and Granular Computing, Studies in Fuzziness and Soft Computing, vol 125.Springer, Heidelberg

    Google Scholar 

  6. Kostek B (2005) Perception-Based Data Processing in Acoustics. Applications to MusicInformation Retrieval and Psychophysiology of Hearing, Studies in Computational Intelligence, vol 3. Springer, Heidelberg

    Google Scholar 

  7. Lin TY, Cercone N (eds) (1997)Rough Sets and Data Mining – Analysis of Imperfect Data.Kluwer, Boston

    Google Scholar 

  8. Lin TY, Yao YY, Zadeh LA (eds) (2001)Rough Sets, Granular Computing and Data Mining.Studies in Fuzziness and Soft Computing.Physica, Heidelberg

    Google Scholar 

  9. Mitra S, Acharya T (2003)Data mining.Multimedia, Soft Computing, and Bioinformatics.Wiley, New York

    Google Scholar 

  10. Munakata T (ed) (1998) Fundamentals of the New Artificial Intelligence: BeyondTraditional Paradigms. Graduate Texts in Computer Science, vol 10. Springer, New York

    Google Scholar 

  11. Orlowska E (ed) (1997)Incomplete Information: Rough Set Analysis. Studies in Fuzziness and Soft Computing, vol 13.Physica, Heidelberg

    Google Scholar 

  12. Pal SK, Skowron A (eds) (1999)Rough Fuzzy Hybridization: A New Trend in Decision-Making.Springer, Singapore

    MATH  Google Scholar 

  13. Polkowski L, Lin TY, Tsumoto S (eds) (2000)Rough Set Methods and Applications: New Developments in KnowledgeDiscovery in Information Systems, Studies in Fuzziness and Soft Computing, vol 56.Physica, Heidelberg

    Google Scholar 

  14. Slowinski R (ed) (1992) Intelligent Decision Support – Handbook of Applications andAdvances of the Rough Sets Theory, System Theory, Knowledge Engineering and Problem Solving, vol 11.Kluwer, Dordrecht

    Google Scholar 

  15. Zhong N, Liu J (eds) (2004)Intelligent Technologies for Information Analysis.Springer, Heidelberg

    MATH  Google Scholar 

Further Readings – Transactions on Rough Sets

  1. Peters JF, Skowron A et al (eds) (2004–2008)Transactions on Rough Sets I-VIII.(Lecture Notes in Computer Science), vols 3100, 3135, 3400, 3700, 4100, 4374, 4400, 5084.Springer, Heidelberg

    Google Scholar 

Further Readings – Special Issues of Journals

  1. Cercone N, Skowron A, Zhong N (eds) (2001)Comput Intell Int J 17(3)

    Google Scholar 

  2. Lin TY (ed) (1996)J Intell Autom Soft Comput 2(2)

    Google Scholar 

  3. Pal SK, Pedrycz W, Skowron A, Swiniarski R (eds) (2001)Special volume: Rough-neuro computing.Neurocomputing 36

    Google Scholar 

  4. Peters J, Skowron A (eds) (2001)Special issue: on a rough set approach to reasoning about data.Int J Intell Syst 16(1)

    Google Scholar 

  5. Skowron A, Pal SK (eds) (2003)Special volume: Rough sets, pattern recognition and data mining.Pattern Recognit Lett 24(6)

    Google Scholar 

  6. Slowinski R, Stefanowski J (eds) (1993) Special issue: Proceedings of the FirstInternational Workshop on Rough Sets: State of the Art and Perspectives, Kiekrz, Poznan, Poland,2–4 September 1992. Found Comput Decis Sci 18(3–4)

    Google Scholar 

  7. Ziarko W (ed) (1995)Comput Intell Int J 11(2)

    Google Scholar 

  8. Ziarko W (ed) (1996)Fundam Inform 27(2–3)

    Google Scholar 

Further Readings – Proceedings of International Conferences

  1. Alpigini JJ, Peters JF, Skowron A, Zhong N (eds) (2002)Third International Conference on Rough Sets and Current Trends in Computing, RSCTC'2002,Malvern, PA, 14–16 October.Lecture Notes in Artificial Intelligence, vol 2475.Springer, Heidelberg

    Google Scholar 

  2. An A, Stefanowski J, Ramanna S, Butz CJ, Pedrycz W, Wang G (eds) (2007) Proceedings ofthe Eleventh International Conference on Rough Sets, Fuzzy Sets, Data Mining, and GranularComputing, RSFDGrC 2007, Toronto, Canada, 14–16 May. Lecture Notes in Artificial Intelligence,vol 4482. Springer, Heidelberg

    Google Scholar 

  3. Greco S, Hata Y, Hirano S, Inuiguchi M, Miyamoto S, Nguyen HS, Slowinski R (eds)(2006) Proceedings of the Fifth International Conference on Rough Sets and Current Trends inComputing, RSCTC 2006, Kobe, Japan, 6–8 November. Lecture Notes in Artificial Intelligence, vol 4259. Springer, Heidelberg

    Google Scholar 

  4. Hirano S, Inuiguchi M, Tsumoto S (eds) (2001) Proceedings of International Workshop onRough Set Theory and Granular Computing, RSTGC'2001, Matsue, Japan, 20–22 May. Bull Int RoughSet Soc 5(1–2)

    Google Scholar 

  5. Kryszkiewicz M, Peters JF, Rybinski H, Skowron A (eds) (2007) Proceedings of theInternational Conference on Rough Sets and Intelligent Systems Paradigms, RSEISP 2007, Warsaw,Poland, 28–30 June. Lecture Notes in Artificial Intelligence, vol 4585. Springer, Heidelberg

    Google Scholar 

  6. Lin TY, Wildberger AM (eds) (1995)Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery.Simulation Councils, USA

    Google Scholar 

  7. Polkowski L, Skowron A (eds) (1998)First International Conference on Rough Sets and Soft Computing, RSCTC'1998.Lecture Notes in Artificial Intelligence, vol 1424.Springer, Poland

    Google Scholar 

  8. Skowron A (ed) (1985)Proceedings of the 5th Symposium on Computation Theory.Zaborów, Poland, 1984.Lecture Notes in Computer Science, vol 208.Springer, Berlin

    Google Scholar 

  9. Skowron A, Szczuka M (eds) (2003)Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS, 12–13 April.Electronic Notes in Computer Science, vol 82(4).Elsevier, Netherlands, http://www.elsevier.nl/locate/entcs/volume82.html

  10. Sl?zak D, Wang G, Szczuka M, Düntsch I, Yao Y (eds) (2005) Proceedings of the 10thInternational Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing,RSFDGrC'2005, Regina, Canada, 31 August–3 September, Part I. Lecture Notes in ArtificialIntelligence, vol 3641. Springer, Heidelberg

    Google Scholar 

  11. Sl?zak D, Yao JT, Peters JF, Ziarko W, Hu X (eds) (2005)Proceedings of the 10th International Conference on Rough Sets, FuzzySets, Data Mining, and Granular Computing, RSFDGrC'2005,Regina, Canada, 31 August–3 September,Part II. Lecture Notes in Artificial Intelligence, vol 3642.Springer, Heidelberg

    Google Scholar 

  12. Terano T, Nishida T, Namatame A, Tsumoto S, Ohsawa Y, Washio T (eds) (2001)New Frontiers in Artificial Intelligence, Joint JSAI'2001.Workshop Post-Proceedings. Lecture Notes in Artificial Intelligence, vol 2253.Springer, Heidelberg

    Google Scholar 

  13. Tsumoto S, Kobayashi S, Yokomori T, Tanaka H, Nakamura A (eds) (1996)Proceedings of the The Fourth Internal Workshop on Rough Sets, Fuzzy Sets and Machine Discovery,University of Tokyo, Japan, 6–8 November.The University of Tokyo, Tokyo

    Google Scholar 

  14. Tsumoto S, Slowinski R, Komorowski J, Grzymala-Busse J (eds) (2004) Proceedingsof the 4th International Conference on Rough Sets and Current Trends in Computing, RSCTC'2004,Uppsala, Sweden, 1–5 June. Lecture Notes in Artificial Intelligence, vol 3066. Springer,Heidelberg

    Google Scholar 

  15. Yao JT, Lingras P, Wu WZ, Szczuka M, Cercone NJ, Sl?zak D (eds) (2007)Proceedings of the Second International Conference on Rough Sets and Knowledge Technology,RSKT 2007, Toronto, Canada, 14–16 May.Lecture Notes in Artificial Intelligence, vol 4481.Springer, Heidelberg

    Google Scholar 

  16. Wang G, Liu Q, Yao Y, Skowron A (eds) (2003) Proceedings of the 9th InternationalConference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, RSFDGrC'2003,Chongqing, China, 26–29 May. Lecture Notes in Artificial Intelligence, vol 2639. Springer,Heidelberg

    Google Scholar 

  17. Zhong N, Skowron A, Ohsuga S (eds) (1999) Proceedings of the 7th InternationalWorkshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, RSFDGrC'99,Yamaguchi, 9–11 November. Lecture Notes in Artificial Intelligence, vol 1711. Springer,Heidelberg

    Google Scholar 

  18. Ziarko W (ed) (1994) Rough Sets, Fuzzy Sets and Knowledge Discovery: Proceedings ofthe Second International Workshop on Rough Sets and Knowledge Discovery, RSKD'93, Banff, Canada,12–15 October 1993. Workshops in Computing. Springer & British Computer Society, London,Berlin

    Google Scholar 

  19. Ziarko W, Yao Y (2001)Proceedings of the 2nd International Conference on Rough Sets and Current Trends in Computing, RSCTC'2000,Banff, Canada, 16–19 October 2000.Lecture Notes in Artificial Intelligence, vol 2005.Springer, Heidelberg

    Google Scholar 

Download references

Acknowledgments

The research has been supported by the grant fromMinistry of Scientific Research and Information Technology of theRepublic of Poland and by grant 185986 from the Natural Sciencesand Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Peters, J.F., Skowron, A., Stepaniuk, J. (2009). Rough Sets: Foundations and Perspectives. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_461

Download citation

Publish with us

Policies and ethics