Skip to main content

Reversible Cellular Automata

  • Reference work entry

Definition of the Subject

Reversible cellular automata (RCAs) are defined as cellularautomata (CAs) with an injective global function. Every configurationof an RCA has exactly one previous configuration, and thus RCAs are“backward deterministic” CAs. The notion of reversibility originally comes from physics. It is one of the fundamentalmicroscopic physical laws of Nature. In this sense, an RCA is thoughtas an abstract model of a physically reversible space as well asa computing model. It is very important to investigate howcomputation can be carried out efficiently and elegantly ina system having reversibility. This is because future computingdevices will surely become those of a nanoscale size.

In this article, we mainly discuss on the properties of RCAsfrom the computational aspects. In spite of the strong constraint ofreversibility, RCAs have very rich ability of computing. We can seethat even very simple RCAs have universal computing ability. We canalso recognize, in some...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Cellular automaton :

A cellular automaton (CA) is a systemconsisting of a large (theoretically, infinite) number of finiteautomata, called cells, which are connected uniformly in a space.Each cell transits its state depending on the states of itself and thecells in its neighborhood. Thus the state transition of a cellis specified by a local function. Applying the local function toall the cells in the space synchronously, the transition ofa configuration (i.?e., a whole state of the cellularspace) is induced. Such a transition function is calleda global function. A CA is regarded as a kind ofdynamical system that can deal with various kinds ofspatio-temporal phenomena.

Cellular automaton with blockrules :

A CA with block rules was proposed byMargolus [18],and it is often called a CA with Margolus-neighborhood.The cellular space is divided into infinitely many blocks of the samesize (in the two-dimensional case, e.?g., \( { 2 \times 2 }\)). A local transitionfunction consisting of “block rules”, which isa mapping from a block state to a block state, isapplied to all the blocks in parallel. At the next time step, theblock division pattern is shifted by some fixed amount (e.?g.,to the north-east direction by one cell), and the same localfunction is applied to them. This model of CA is convenient to designa reversible CA. Because, if the local transition function isinjective, then the resulting CA is reversible.

Partitioned cellularautomaton :

A partitioned cellular automaton (PCA) isa framework for designing a reversible CA. It isa subclass of a usual CA where each cell is partitioned intoseveral parts, whose number is equal to the neighborhood size. Eachpart of a cell has its own state set, and can be regarded as anoutput port to a specified neighboring cell. Depending only onthe corresponding parts (not on the entire states) of the neighboringcells, the next state of each cell is determined by a localfunction. We can see that if the local function is injective, then theresulting PCA is reversible. Hence, a PCA makes it feasible toconstruct a reversible CA.

Reversible cellularautomaton :

A reversible cellular automaton (RCA) isdefined as a one whose global function is injective (i.?e.,one-to-one). It can be regarded as a kind ofa discrete model of reversible physical space. It is in generaldifficult to construct an RCA with a desired property such ascomputation-universality. Therefore, the frameworks ofa CA with Margolus neighborhood, a partitioned cellularautomaton, and others are often used to designRCAs.

Universal cellularautomaton :

A CA is called computationally universal, ifit can compute any recursive function by giving an appropriate initialconfiguration. Equivalently, it is also defined as a CA that cansimulate a universal Turing machine. Universality of RCAs can beproved by simulating other systems such as arbitrary (irreversible)CAs, reversible Turing machines, reversible counter machines, andreversible logic elements and circuits, which have already been knownto be universal.

Bibliography

Primary Literature

  1. AmorosoS, Cooper G (1970) The Garden of Eden theorem for finiteconfigurations. Proc Amer Math Soc26:158–164

    MathSciNet  MATH  Google Scholar 

  2. AmorosoS, Patt YN (1972) Decision procedures for surjectivity and injectivityof parallel maps for tessellation structures. J Comput Syst Sci6:448–464

    MathSciNet  MATH  Google Scholar 

  3. BennettCH (1973) Logical reversibility of computation. IBM J Res Dev17:525–532

    MATH  Google Scholar 

  4. BennettCH (1982) The thermodynamics of computation. Int J Theor Phys21:905–940

    Google Scholar 

  5. BennettCH, Landauer R (1985) The fundamental physical limits of computation.Sci Am 253:38–46

    ADS  Google Scholar 

  6. BoykettT (2004) Efficient exhaustive listings of reversible one dimensionalcellular automata. Theor Comput Sci325:215–247

    MathSciNet  MATH  Google Scholar 

  7. Cook M(2004) Universality in elementary cellular automata. Complex Syst15:1–40

    MATH  Google Scholar 

  8. FredkinE, Toffoli T (1982) Conservative logic. Int J Theor Phys21:219–253

    MathSciNet  MATH  Google Scholar 

  9. GruskaJ (1999) Quantum Computing. McGraw-Hill,London

    Google Scholar 

  10. HedlundGA (1969) Endomorphisms and automorphisms of the shift dynamicalsystem. Math Syst Theor 3:320–375

    MathSciNet  MATH  Google Scholar 

  11. ImaiK, Morita K (1996) Firing squad synchronization problem in reversiblecellular automata. Theor Comput Sci165:475–482

    MathSciNet  MATH  Google Scholar 

  12. ImaiK, Morita K (2000) A computation-universal two-dimensional8-state triangular reversible cellular automaton. Theor Comput Sci231:181–191

    MathSciNet  MATH  Google Scholar 

  13. ImaiK, Hori T, Morita K (2002) Self-reproduction in three-dimensionalreversible cellular space. Artifici Life8:155–174

    Google Scholar 

  14. KariJ (1994) Reversibility and surjectivity problems of cellular automata.J Comput Syst Sci 48:149–182

    MathSciNet  MATH  Google Scholar 

  15. KariJ (1996) Representation of reversible cellular automata with blockpermutations. Math Syst Theor29:47–61

    MathSciNet  MATH  Google Scholar 

  16. LandauerR (1961) Irreversibility and heat generation in the computing process.IBM J Res Dev 5:183–191

    MathSciNet  MATH  Google Scholar 

  17. LangtonCG (1984) Self-reproduction in cellular automata. Physica10D:135–144

    ADS  Google Scholar 

  18. MargolusN (1984) Physics-like model of computation. Physica10D:81–95

    MathSciNet  ADS  Google Scholar 

  19. MaruokaA, Kimura M (1976) Condition for injectivity of global maps fortessellation automata. Inf Control32:158–162

    MathSciNet  MATH  Google Scholar 

  20. MaruokaA, Kimura M (1979) Injectivity and surjectivity of parallel maps forcellular automata. J Comput Syst Sci18:47–64

    MathSciNet  MATH  Google Scholar 

  21. MinskyML (1967) Computation: Finite and Infinite Machines. Prentice-Hall,Englewood Cliffs

    MATH  Google Scholar 

  22. MooreEF (1962) Machine models of self-reproduction, Proc Symposia inApplied Mathematics. Am Math Soc14:17–33

    Google Scholar 

  23. MoraJCST, Vergara SVC, Martinez GJ, McIntosh HV (2005) Procedures forcalculating reversible one-dimensional cellular automata. Physica D202:134–141

    MathSciNet  ADS  MATH  Google Scholar 

  24. MoritaK (1995) Reversible simulation of one-dimensional irreversiblecellular automata. Theor Comput Sci148:157–163

    MATH  Google Scholar 

  25. MoritaK (1996) Universality of a reversible two-counter machine. TheorComput Sci 168:303–320

    MATH  Google Scholar 

  26. MoritaK (2001) A simple reversible logic element and cellular automatafor reversible computing. In: Proc 3rd Int Conf on Machines,Computations, and Universality. LNCS, vol 2055. Springer, Berlin, pp 102–113

    Google Scholar 

  27. MoritaK (2007) Simple universal one-dimensional reversible cellular automata. J Cell Autom 2:159–165

    MathSciNet  MATH  Google Scholar 

  28. MoritaK, Harao M (1989) Computation universality of one-dimensionalreversible (injective) cellular automata. Trans IEICE JapanE-72:758–762

    Google Scholar 

  29. MoritaK, Imai K (1996) Self-reproduction in a reversible cellular space.Theor Comput Sci 168:337–366

    MathSciNet  MATH  Google Scholar 

  30. MoritaK, Ueno S (1992) Computation-universal models of two-dimensional16-state reversible cellular automata. IEICE Trans Inf SystE75-D:141–147

    Google Scholar 

  31. MoritaK, Shirasaki A, Gono Y (1989) A 1-tape 2-symbol reversible Turingmachine. Trans IEICE JapanE-72:223–228

    Google Scholar 

  32. MoritaK, Tojima Y, Imai K, Ogiro T (2002) Universal computing in reversibleand number-conserving two-dimensional cellular spaces. In: AdamatzkyA (ed) Collision-based Computing. Springer, London, pp 161–199

    Google Scholar 

  33. MyhillJ (1963) The converse of Moore's Garden-of-Eden theorem. Proc Am MathSoc 14:658–686

    MathSciNet  Google Scholar 

  34. RichardsonD (1972) Tessellations with local transformations. J Comput Syst Sci6:373–388

    MATH  Google Scholar 

  35. SutnerK (2004) The complexity of reversible cellular automata. Theor ComputSci 325:317–328

    MathSciNet  MATH  Google Scholar 

  36. ToffoliT (1977) Computation and construction universality of reversiblecellular automata. J Comput Syst Sci15:213–231

    MathSciNet  MATH  Google Scholar 

  37. ToffoliT (1980) Reversible computing, Automata, Languages andProgramming. In: de Bakker JW, van Leeuwen J (eds) LNCS, vol 85. Springer, Berlin, pp 632–644

    Google Scholar 

  38. ToffoliT, Margolus N (1990) Invertible cellular automata: a review.Physica D 45:229–253

    MathSciNet  ADS  MATH  Google Scholar 

  39. ToffoliT, Capobianco S, Mentrasti P (2004) How to turn a second-ordercellular automaton into lattice gas: a new inversion scheme. TheorComput Sci 325:329–344

    MathSciNet  MATH  Google Scholar 

  40. vonNeumann J (1966) Theory of Self-reproducing Automata. Burks AW (ed)University of Illinois Press, Urbana

    Google Scholar 

  41. WatrousJ (1995) On one-dimensional quantum cellular automata. In: Proc 36thSymp on Foundation of Computer Science. IEEE, LosAlamitos, pp 528–537

    Google Scholar 

Books and Reviews

  1. AdamatzkyA (ed) (2002) Collision-Based Computing. Springer, London

    Google Scholar 

  2. BennettCH (1988) Notes on the history of reversible computation. IBM J ResDev 32:16–23

    Google Scholar 

  3. BurksA (1970) Essays on Cellular Automata. University of Illinois Press,Urbana

    MATH  Google Scholar 

  4. KariJ (2005) Theory of cellular automata: A survey. Theor Comput Sci334:3–33

    MathSciNet  MATH  Google Scholar 

  5. MoritaK (2001) Cellular automata and artificial life–computation andlife in reversible cellular automata. In: Goles E, Martinez S (eds)Complex Systems. Kluwer, Dordrecht,pp 151–200

    Google Scholar 

  6. WolframS (2001) A New Kind of Science. Wolfram Media, Champaign

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Morita, K. (2009). Reversible Cellular Automata. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_455

Download citation

Publish with us

Policies and ethics