Skip to main content

Networks: Structure and Dynamics

  • Reference work entry
Encyclopedia of Complexity and Systems Science
  • 276 Accesses

Definition and Relevance

Scientific research has had a long history of bottom-up approaches, which break the system into small or elementary constituents and map outinteractions between these components. The Standard Model describing elementary particles and the four types of interactions governing our world isperhaps the most successful example. Biology has developed a very detailed description of cellular components such as the DNA molecule or the variousproteins and metabolites. Furthermore, many of the interactions that govern a cells life have been investigated in great detail, but mainly in isolation:transcription of DNA, protein assembly, enzyme function, etc. Perhaps not surprisingly, the first attempts to understand complexity in physics were focused on small,simple system with complex dynamics: chaos theory. Nonetheless, large natural or social systems, like a cell, an ecosystem or the Internet are muchmore intuitive examples of complex systems. A meaningful description of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Simple graph or network :

A group of N nodes (vertices) among which there exist L undirected connections (links, edges), identical in strength.

Directed graph :

A group of nodes among which connections are directed.

Weighted network :

A group of nodes among which connections are not identical in strength, but carry a weight.

Bipartite network :

A network with more than one type of node, in which connections only exist between different node types (the definition can be relaxed to a network were most, but not all links run between vertices of different types).

Adjacency matrix A :

An \( { N\times N } \) matrix representing the network, whose elements \( { a_{ij} } \) are equal to 1 when there is a link from node i to j, zero otherwise.

Degree distribution \( { P(k) } \) :

The probability that a node of a network, chosen uniformly at random, has degree k.

Scale-free network :

A network in which the tail of the degree distribution follows a power law (strictly speaking, the term scale-free implies \( { P(k) \sim k^{-\gamma} } \), however, it is often used for networks where the tail of the distribution follows a power-law).

Degree exponent γ:

The power law exponent of the (tail of the) degree distribution

Scale-free model :

A growing network model proposed by Barabási and Albert [15]. The model builds a simple graph starting from a small connected group of nodes, to which new nodes are added one by one. These new nodes connect to m old nodes with probabilities that increase linearly with the degree of the old nodes.

Shortest path (geodesic path):

The smallest collection of links that form a path through the network from one vertex to another.

Diameter D :

The length of the largest geodesic path in a network.

Small-world network :

A network in which the average shortest path length grows logarithmically (or slower) with N.

Node betweenness (betweenness centrality or load):

The number of shortest paths between nodes of the network that run through a given node [62].

Edge betweennes :

The number of shortest paths between nodes of the network that run through a given edge.

Clustering coefficient C :

The fraction of connections that are realized between the neighbors of a node:

$$ C_i = \frac{2 \, n_i}{k_i\,(k_i - 1)}\;, $$

where \( { n_i } \) denotes the number of links connecting the \( { k_i } \) neighbors of node i. (The average clustering coefficient is given by \( { \langle C \rangle\, = \frac{1}{N}\,\sum_i C_i } \). An alternative global measure of clustering, also called transitivity, is the fraction of node triples that are linked into triangles.)

Assortativity coefficient :

A measure of the tendency of links to run among nodes that are similar in some respect. If the similarity is described by a scalar quantity (most often the node' s degree), then the assortativity coefficient is given by

$$ r=\frac{\sum_{x,y}\, xy\,(e_{x,y}-a_x b_y)}{\sigma_a \, \sigma_b}\;, $$

where x (y) is the scalar at the origin (end) of a link, \( { e_{x,y} } \) denotes the fraction of all edges in the network that go from nodes with value x to ones with value y, \( { a_x } \) (\( { b_y } \)) is the fraction of edges that start (end) at a link with values x (y), and \( { \sigma_a } \) (\( { \sigma_b } \)) is the standard deviations of the distributions of \( { a_x } \) (\( { b_y } \)) values [107].

Modularity Q :

The number of links between nodes within the same community minus the number expected by chance:

$$ Q= \frac{1}{2L}\sum_{i=1}^N\sum_{j=1}^N (A_{ij} - P_{ij})\, \delta_{g_i,g_j}\;, $$

where node i (j) belongs to the community \( { g_i } \) (\( { g_j } \)). \( { P_{ij} } \) gives the expected number of links between two nodes if the network is random with respect to communities [110]. In the simplest case, in which the null model is a random network, \( { P_{ij} =2L/N^2 } \). A more suitable assumption is \( { P_{ij} =k_i\, k_j/2L } \), which preserves the degree distribution of the network in question (the expected degree of node i is \( { \sum_j P_{ij} = k_i } \)) [109].

Bibliography

Primary Literature

  1. Adamic LA (1999) The small world web. In: Lecture Notes in Computer Science vol 1696. Springer, New York, pp 443–454

    Google Scholar 

  2. Adamic LA, Huberman BA (2000) Power-law distribution of the World Wide Web. Science 287:2115

    ADS  Google Scholar 

  3. Adamic LA, Lukose RM, Puniyani AR, Huberman BA (2001) Search in power-law networks. Phys Rev E 64(4):046 135

    Google Scholar 

  4. Aiello W, Chung F, Lu L (2000) A random graph model for massive graphs. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing. ACM, New York, pp 171–180

    Google Scholar 

  5. Albert R, Barabási A-L (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85:5234

    Google Scholar 

  6. Albert R, Jeong H, Barabási A-L (1999) Diameter of the World-Wide Web. Nature 401:130–131

    Google Scholar 

  7. Albert R, Jeong H, Barabási A-L (2000) Attack and error tolerance of complex networks. Nature 406:378

    Google Scholar 

  8. Albert R, Albert I, Nakarado GL (2004) Structural vulnerability of the North American power grid. Phys Rev Lett 69:025 103

    Google Scholar 

  9. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabási A-L (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427(6977):839–843

    Google Scholar 

  10. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Google Scholar 

  11. Amaral LAN, Scala A, Barthélémy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci USA 97:11 149

    Google Scholar 

  12. Arenas A, Danon L, Díaz-Guilera A, Gleiser PM, Guimerà R (2004) Community analysis in social networks. Euro Phys J B 38(2):373–380

    Google Scholar 

  13. Baiesi M, Paczuski M (2004) Scale-free networks of earthquakes and aftershocks. Phys Rev E 69(6):066106

    ADS  Google Scholar 

  14. Balázsi G, Barabási A-L, Oltvai ZN (2005) Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci USA 102(22):7841–7846

    Google Scholar 

  15. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Google Scholar 

  16. Barabási A-L, Albert R, Jeong H (1999) Mean-field theory for scale-free random networks. Physica A 272:173–187

    Google Scholar 

  17. Barabási A-L, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. Physica A 311:590

    Google Scholar 

  18. Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101:3747–3752

    Google Scholar 

  19. Barthélémy M (2003) Crossover from scale-free to spatial networks. EuroPhys Lett 63(6):915–921

    Google Scholar 

  20. Bender EA, R Canfield E, McKay BD (1997) The asymptotic number of labeled graphs with n vertices, q edges, and no isolated vertices. J Comb Theor: Series A 80(1):124–150

    MathSciNet  MATH  Google Scholar 

  21. Bianconi G, Barabási A-L (2001) Competition and multiscaling in evolving networks. EuroPhys Lett 54:436

    Google Scholar 

  22. Bianconi G, Barabási A-L (2001) Bose-Einstein condensation in complex networks. Phys Rev Lett 86:5632

    Google Scholar 

  23. Boguñá M, Pastor-Satorras R, Vespignani A (2003) Absence of epidemic threshold in scale-free networks with degree correlations. Phys Rev Lett 90(2):028 701

    Google Scholar 

  24. Boguñá M, Pastor-Satorras R, Diaz-Guilera A, Arenas A (2004) Models of social networks based on social distance attachment. Phys Rev E 70(5):056122

    Google Scholar 

  25. Bollobás B, Riordan O (2004) The diameter of a scale-free random graph. Combinatorica 24(1):5–34

    Google Scholar 

  26. Bollobás B, de la Vega WF (1982) The diameter of random regular graphs. Combinatorica 2(2):125–134

    Google Scholar 

  27. Bollobás B, Riordan O, Spencer J, Tusnády G (2001) The degree sequence of a scale-free random process. Random Struct Algorithms 18:279–290

    Google Scholar 

  28. Broder A, Kumar R, Maghoul F, Raghavan P, Rajalopagan S, Stata R, Tomkins A, Wiener J (2000) Graph structure in the web. Comput Netw 33:309–320

    Google Scholar 

  29. Broida A, Claffy KC (2001) Internet topology: Connectivity of IP graphs. In: Fahmy S, Park K (eds) Scalability and Traffic Control in IP Networks in Proc SPIE, vol 4526. International Society for Optical Engineering, Bellingham, pp 172ñ–187

    Google Scholar 

  30. Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2000) Network robustness and fragility: Percolation on random graphs. Phys Rev Lett 85:5468

    ADS  Google Scholar 

  31. Capocci A, Servedio VDP, Colaiori F, Buriol LS, Donato D, Leonardi S, Caldarelli G (2006) Preferential attachment in the growth of social networks: the internet encyclopedia wikipedia. Phys Rev E 74:036 116

    Google Scholar 

  32. Chung F, Lu L (2002) The average distances in random graphs with given expected degrees. Proc Natl Acad Sci USA 99:15879–15882

    MathSciNet  ADS  MATH  Google Scholar 

  33. Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6 Pt 2):066 111

    Google Scholar 

  34. Cohen R, Havlin S (2003) Scale-free networks are ultra small. Phys Rev Lett 90:058 701

    Google Scholar 

  35. Cohen R, Erez K, ben Avraham D, Havlin S (2000) Resilience of the Internet to random breakdowns. Phys Rev Lett 85:4626–4628

    Google Scholar 

  36. Cohen R, Havlin S, ben Avraham D (2003) Efficient immunization strategies for computer networks and populations. Phys Rev Lett 91(24):247 901

    Google Scholar 

  37. Colizza V, Barrat A, Barthelemy M, Vespignani A (2006) The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci USA 103(7):2015–2020

    ADS  Google Scholar 

  38. Daley DJ, Kendall DG (1965) Stochastic rumours. IMA J Appl Math 1(1):42–55

    MathSciNet  Google Scholar 

  39. Dall J, Christensen M (2002) Random geometric graphs. Phys Rev E 66:016 121

    MathSciNet  Google Scholar 

  40. Danila B, Yu Y, Marsh JA, Bassler KE (2006) Optimal transport on complex networks. Phys Rev E 74(4):046106

    ADS  Google Scholar 

  41. Danila B, Yu Y, Marsh JA, Bassler KE (2007) Transport optimization on complex networks. Chaos 17(2):026102

    MathSciNet  ADS  Google Scholar 

  42. Davidsen J, Ebel H, Bornholdt S (2002) Emergence of a small world from local interactions: Modeling acquaintance networks. Phys Rev Lett 88(12):128 701

    Google Scholar 

  43. de Menezes MA, Barabási A-L (2004) Fluctuations in network dynamics. Phys Rev Lett 92:028 701

    Google Scholar 

  44. de Solla Price DJ (1965) Networks of scientific papers. Science 149:510–515

    ADS  Google Scholar 

  45. de Solla Price DJ (1976) A general theory of bibliometric and other cumulative advantage processes. J Am Soc Inform Sci 27:292–306

    Google Scholar 

  46. Demers A, Greene D, Hauser C, Irish W, Larson J, Shenker S, Sturgis H, Swinehart D, Terry D (1987) Epidemic algorithms for replicated database maintenance. In: PODC '87: Proc. 6th Ann. ACM Symposium on Principles of distributed computing. ACM, New York, pp 1–12

    Google Scholar 

  47. Dezső Z, Barabási A-L (2002) Halting viruses in scale-free networks. Phys Rev E 65:055 103

    Google Scholar 

  48. Di Matteo T, Aste T, Gallegati M (2005) Innovation flow through social networks: productivity distribution in france and italy. Euro Phys J B 47(3):459–466

    ADS  Google Scholar 

  49. Dodds PS, Muhamad R, Watts DJ (2003) An experimental study of search in global social networks. Science 301(5634):827–829

    ADS  Google Scholar 

  50. Dorogovtsev SN, Mendes JFF (2000) Scaling behaviour of developing and decaying networks. Europhys Lett 52:33

    ADS  Google Scholar 

  51. Dorogovtsev SN, Mendes JFF (2001) Effect of the accelerating growth of communications networks on their structure. Phys Rev E 63:025 101

    Google Scholar 

  52. Dorogovtsev SN, Mendes JFF (2001) Language as an evolving word web. Proc R Soc London B 268:2603–2606

    Google Scholar 

  53. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of growing networks with preferential linking. Phys Rev Lett 85:4633–4636

    ADS  Google Scholar 

  54. Dorogovtsev SN, Goltsev AV, Mendes JFF (2002) Pseudofractal scale-free web. Phys Rev E 65:066 122

    Google Scholar 

  55. Ebel H, Mielsch LI, Bormholdt S (2002) Scale-free topology of e‑mail networks. Phys Rev E 66:035 103

    Google Scholar 

  56. Echenique P, Gómez-Gardeñes J, Moreno Y (2004) Improved routing strategies for internet traffic delivery. Phys Rev E 70(5):056105

    Google Scholar 

  57. Erdős P, Rényi A (1959) On random graphs I. Publ Math (Debrecen) 6:290–297

    Google Scholar 

  58. Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  59. Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8:128–140

    Google Scholar 

  60. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the Internet topology. Comput Commun Rev 29:251–262

    Google Scholar 

  61. Ferrer i Cancho R, Solé RV (2001) The small-world of human language. Proc R Soc London B 268:2261–2266

    Google Scholar 

  62. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41

    Google Scholar 

  63. Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, DíSouza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabási A-L, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684

    Google Scholar 

  64. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826

    Google Scholar 

  65. Goffman W, Newill VA (1964) Generalization of epidemic theory: An application to the transmission of ideas. Nature 204(4955):225–228

    ADS  Google Scholar 

  66. Goh K-I, Oh E, Jeong H, Kahng B, Kim D (2002) Classification of scale-free networks. Proc Natl Acad Sci USA 99(20):12583–12588

    Google Scholar 

  67. Govindan R, Tangmunarunkit H (2000) Heuristics for Internet map discovery. In: Proceedings of IEEE INFOCOM 2000. Nineteenth annual joint conference of the IEEE computer and communications societies, Tel Aviv, Israel, vol 3. IEEE, Piscataway, New Jersey, pp 1371–1380

    Google Scholar 

  68. Grassberger P (1983) Critical behavior of the general epidemic process and dynamical percolation. Math Biosci 63(2):157–172

    MATH  Google Scholar 

  69. Guimerà R, Amaral LAN (2004) Modeling the world-wide airport network. Euro Phys J B 38(2):381–385

    Google Scholar 

  70. Guimerà R, Arenas A, Díaz-Guilera A, Giralt F (2002) Dynamical properties of model communication networks. Phys Rev E 66(2):026704

    Google Scholar 

  71. Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E 68(6):065103

    Google Scholar 

  72. Holme P, Kim BJ (2002) Growing scale-free networks with tunable clustering. Phys Rev E 65(2):026107

    ADS  Google Scholar 

  73. Holme P, Kim BJ (2002) Vertex overload breakdown in evolving networks. Phys Rev E 65(6):066109

    ADS  Google Scholar 

  74. Jain S, Krishna S (1998) Autocatalytic sets and the growth of complexity in an evolutionary model. Phys Rev Lett 81(25):5684–5687

    ADS  Google Scholar 

  75. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Google Scholar 

  76. Jeong H, Néda Z, Barabási A-L (2003) Measuring preferential attachment for evolving networks. EuroPhys Lett 61:567

    Google Scholar 

  77. Jung S, Kim S, Kahng B (2002) A geometric fractal growth model for scale free networks. Phys Rev E 65:056101

    ADS  Google Scholar 

  78. Kermarrec AM, Massoulie L, Ganesh AJ (2003) Probabilistic reliable dissemination in large-scale systems. IEEE Trans Parallel Distributed Syst 14(3):248–258

    Google Scholar 

  79. Killworth PD, Bernard HR (1978) The reverse small world experiment. Social Netw 1:159–192

    Google Scholar 

  80. Kim BJ, Yoon CN, Han SK, Jeong H (2002) Path finding strategies in scale-free networks. Phys Rev E 65(2):027103

    ADS  Google Scholar 

  81. Kleinberg JM (2000) Navigation in a small world. Nature 406(6798):845

    ADS  Google Scholar 

  82. Kleinberg JM (2002) Small-world phenomena and the dynamics of information. In: Dietterich TG, Becker S, Ghahramani Z (eds) Proceedings of the 2001 Neural Information Processing Systems Conference. MIT Press, Cambridge

    Google Scholar 

  83. Kleinberg JM, Kumar SR, Raghavan P, Rajagopalan S, Tomkins A (1999) The web as a graph: Measurements, models and methods. In: Proc. of the Int. Conf. on Combinatorics and Computing, COCOON'99 Berlin. Springer, Tokyo, p 1

    Google Scholar 

  84. Klemm K, Eguíluz VM (2002) Growing scale-free networks with small-world behavior. Phys Rev E 65:057102

    Google Scholar 

  85. Krapivsky PL, Redner S (2001) Organization of growing random networks. Phys Rev E 63:66–123

    Google Scholar 

  86. Krapivsky PL, Redner S (2002) A statistical physics perspective on web growth. Comput Netw 39:261–276

    Google Scholar 

  87. Krapivsky PL, Redner S, Leyvraz F (2000) Connectivity of growing random networks. Phys Rev Lett 85:4629–4632

    ADS  Google Scholar 

  88. Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) Trawling the web for emerging cyber-communities. Comput Netw 31:1481–1493

    Google Scholar 

  89. Leone M, Vázquez A, Vespignani A, Zecchina R (2002) Ferromagnetic ordering in graphs with arbitrary degree distribution. Euro Phys J B 28:191–197

    Google Scholar 

  90. Liljeros F, Edling C, Amaral L, Aberg Y (2001) The web of human sexual contacts. Nature 411:907–908

    ADS  Google Scholar 

  91. Ma HW, Zeng AP (2003) The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19(11):1423–1430

    Google Scholar 

  92. Manna SS, Sen P (2002) Modulated scale-free network in euclidean space. Phys Rev E 66(6):066114

    ADS  Google Scholar 

  93. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296:910–913

    ADS  Google Scholar 

  94. Milgram S (1967) The small-world problem. Psychology Today 2:60–67

    Google Scholar 

  95. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    ADS  Google Scholar 

  96. Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Euro Phys J B 26(4):521–529

    ADS  Google Scholar 

  97. Moreno Y, Gómez JB, Pacheco AF (2003) Epidemic incidence in correlated complex networks. Phys Rev E 68(3):035103

    Google Scholar 

  98. Moreno Y, Nekovee M, Vespignani A (2004) Efficiency and reliability of epidemic data dissemination in complex networks. Phys Rev E 69(5):055101

    ADS  Google Scholar 

  99. Motter AE (2004) Cascade control and defense in complex networks. Phys Rev Lett 93(9):098701

    ADS  Google Scholar 

  100. Motter AE, Lai YC (2002) Cascade-based attacks on complex networks. Phys Rev E 66(6):065102

    ADS  Google Scholar 

  101. Motter AE, de Moura APS, Lai YC, Dasgupta P (2002) Topology of the conceptual network of language. Phys Rev E 65:065102

    ADS  Google Scholar 

  102. Myers CR (2003) Software systems as complex networks: Structure, function, and evolvability of software collaboration graphs. Phys Rev E 68:046116

    ADS  Google Scholar 

  103. Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102(R)

    ADS  Google Scholar 

  104. Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409

    MathSciNet  ADS  MATH  Google Scholar 

  105. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    ADS  Google Scholar 

  106. Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66(1):016128

    MathSciNet  ADS  Google Scholar 

  107. Newman MEJ (2003) Mixing patterns in networks. Phys Rev E 67:026126

    MathSciNet  ADS  Google Scholar 

  108. Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E 69(6 Pt 2):066133

    ADS  Google Scholar 

  109. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):036104

    MathSciNet  ADS  Google Scholar 

  110. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69(2):026113

    ADS  Google Scholar 

  111. Newman MEJ, Watts DJ (1999) Renormalization group analysis of the small-world network model. Phys Lett A 263:341–346

    Google Scholar 

  112. Newman MEJ, Strogatz SH, Watts DJ (2001) Random graphs with arbitrary degree distributions and their applications. Phys Rev E 64(2):026118

    ADS  Google Scholar 

  113. Ohira T, Sawatari R (1998) Phase transition in a computer network traffic model. Phys Rev E 58(1):193–195

    ADS  Google Scholar 

  114. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    ADS  Google Scholar 

  115. Pastor-Satorras R, Vespignani A (2001) Epidemic dynamics and endemic states in complex networks. Phys Rev E 63(6):066117

    ADS  Google Scholar 

  116. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203

    ADS  Google Scholar 

  117. Pastor-Satorras R, Vespignani A (2002) Epidemic dynamics in finite size scale-free networks. Phys Rev E 65(3):035108

    ADS  Google Scholar 

  118. Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev Lett 65:036104

    ADS  Google Scholar 

  119. Pastor-Satorras R, Vázquez A, Vespignani A (2001) Dynamical and correlation properties of the Internet. Phys Rev Lett 87:258701

    Google Scholar 

  120. Rao F, Caflisch A (2004) The protein folding network. J Mol Biol 342:299–306

    Google Scholar 

  121. Ravasz E, Barabási A-L (2002) Hierarchical organization in complex networks. Phys Rev E 67:026122

    Google Scholar 

  122. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Google Scholar 

  123. Ravasz E, Gnanakaran S, Toroczkai Z (2007) Network structure of protein folding pathways. arXiv:0705.0912v1

    Google Scholar 

  124. Redner S (1998) How popular is your paper? An empirical study of the citation distribution. Euro Phys J B 4:131–135

    ADS  Google Scholar 

  125. Redner S (2004) Citation statistics from more than a century of Physical Review. arXiv:physics/0407137v2

    Google Scholar 

  126. Scala A, Amaral LAN, Barthélémy M (2001) Small-world networks and the conformation space of a short lattice polymer chain. Europhys Lett 55(4):594–600

    Google Scholar 

  127. Serrano MA, Boguñá M (2003) Topology of the world trade web. Phys Rev E 68:015101

    Google Scholar 

  128. Shen-Orr S, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of E. coli. Nat Genet 31:64–68

    Google Scholar 

  129. Sigman M, Cecchi GA (2002) Global organization of the Wordnet lexicon. Proc Natl Acad Sci USA 99(3):1742–1747

    ADS  Google Scholar 

  130. Solé R, Pastor-Satorras R, Smith E, Kepler T (2002) A model of large-scale proteome evolution. Adv Compl Syst 5:43–54

    Google Scholar 

  131. Solé RV, Valverde S (2001) Information transfer and phase transitions in a model of internet traffic. Physica A 289(3–4):595–605

    Google Scholar 

  132. Song C, Havlin S, Makse HA (2005) Self-similarity of complex networks. Nature 433(7024):392–395

    ADS  Google Scholar 

  133. Song C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex networks. Nat Phys 2(4):275–281

    Google Scholar 

  134. Sreenivasan S, Cohen R, Lopez E, Toroczkai Z, Stanley HE (2007) Structural bottlenecks for communication in networks. Phys Rev E 75(3):036105

    ADS  Google Scholar 

  135. Tadić B (2001) Dynamics of directed graphs: The world-wide web. Physica A 293:273–284

    Google Scholar 

  136. Tadić B, Rodgers GJ (2002) Packet Transport on Scale Free Networks. Adv Compl Syst 5:445–456

    Google Scholar 

  137. Tadić B, Thurner S (2004) Information super-diffusion on structured networks. Physica A 332:566–584

    Google Scholar 

  138. Thieffry D, Huerta AM, Perez-Rueda E, Collado-Vides J (1998) From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20(5):433–440

    Google Scholar 

  139. Toroczkai Z, Bassler KE (2004) Network dynamics: Jamming is limited in scale-free systems. Nature 428:716

    ADS  Google Scholar 

  140. Toroczkai Z, Kozma B, Bassler KE, Hengartner NW, Korniss G (2004) Gradient networks. arXiv:cond-mat/0408262v1

    Google Scholar 

  141. Tyler JR, Wilkinson DM, Huberman BA (2003) Email as spectroscopy: Automated discovery of community structure within organizations. In: Huysman M, Wenger E, Wulf V (eds) Communities and Technologies. Proceedings of the First International Conference on Communities and Technologies. Kluwer, Norwell MA, pp 81–96

    Google Scholar 

  142. Valverde S, Solé RV (2002) Self-organized critical traffic in parallel computer networks. Physica A 312(3–4):636–648

    Google Scholar 

  143. Valverde S, Solé RV (2004) Internet's critical path horizon. Euro Phys J B 38(2):245–252

    Google Scholar 

  144. Vázquez A, Weigt M (2003) Computational complexity arising from degree correlations in networks. Phys Rev E 67(2):027101

    Google Scholar 

  145. Vázquez A, Flammini A, Maritan A, Vespignani A (2003) Modelling of protein interaction networks. ComPlexUs 1:38–44

    Google Scholar 

  146. Vogels W, van Renesse R, Birman K (2003) The power of epidemics: robust communication for large-scale distributed systems. SIGCOMM Comput Commun Rev 33(1):131–135

    Google Scholar 

  147. Wasserman S, Faust K (1994) Social Network Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  148. Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    ADS  Google Scholar 

  149. Watts DJ, Dodds PS, Newman MEJ (2002) Identity and search in social networks. Science 296:130

    Google Scholar 

  150. Wilkinson DM, Huberman BA (2004) A method for finding communities of related genes. Proc Natl Acad Sci USA Suppl 101(1):5241–5248

    ADS  Google Scholar 

  151. Xulvi-Brunet R, Sokolov IM (2002) Evolving networks with disadvantaged long-range connections. Phys Rev E 66(2):026118

    ADS  Google Scholar 

  152. Yook SH, Jeong H, Barabási A-L (2003) Modelling the Internet's large-scale topology. Proc Natl Acad Sci USA 99:13382–13386

    Google Scholar 

  153. Zanette DH (2001) Critical behavior of propagation on small-world networks. Phys Rev E 64(5):050901

    ADS  Google Scholar 

  154. Zhao L, Lai YC, Park K, Ye N (2005) Onset of traffic congestion in complex networks. Phys Rev E 71(2):026125

    ADS  Google Scholar 

Books and Reviews

  1. Barabási A-L (2002) Linked: The New Science of Networks. Perseus Publishing, Cambridge

    Google Scholar 

  2. Pastor-Satorras R, Rubi M, Diaz-Guilera A (eds) (2003) Statistical Mechanics of Complex Networks, 625, Lecture Notes in Physics. Springer, Berlin

    Google Scholar 

  3. Mendes J, Oliveira JG, Abreu FV, Povolotsky A, Dorogovtsev SN (eds) (2005) Science of Complex Networks: From Biology to the Internet and WWW. AIP conference proceedings, CNET 2004, Aveiro, Portugal, vol 776

    Google Scholar 

  4. Newman MEJ, Barabási A-L, Watts DJ (eds) (2003) The Structure and Dynamics of Complex Networks. Princeton University Press, Princeton

    Google Scholar 

  5. Ben-Naim E, Frauenfelder H, Toroczkai Z (eds) (2005) Complex Networks, 650, Lecture Notes in Physics. Springer, Secaucus

    Google Scholar 

  6. Bornholdt S, Schuster HG (eds) (2002) Handbook of graphs and networks: from the genome to the internet. Wiley-VCH, Berlin

    Google Scholar 

  7. Bollobás B (1985) Random Graphs. Academic Press, London

    Google Scholar 

  8. Watts DJ (1999) Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton

    Google Scholar 

  9. Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47–97

    Google Scholar 

  10. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

    MathSciNet  ADS  MATH  Google Scholar 

  11. Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079

    ADS  Google Scholar 

  12. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU (2006) Complex networks: Structure and dynamics. Phys Rep 424(4–5):175–308

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Regan, E.R. (2009). Networks: Structure and Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_356

Download citation

Publish with us

Policies and ethics