Skip to main content

Amino Acid-Sensing Mechanisms: Biochemistry and Behavior

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Sensors are crucial components in homeostatic control systems. Amino acids (AAs) are the building blocks of protein; all 20 standard AAs that are used in protein synthesis must be available simultaneously for an organism to maintain homeostasis and survive. Therefore, a sensory system for AAs is essential for protein synthesis and survival. In living organisms, biochemical and behavioral observations demonstrate AA sensing.

Taste receptors that respond to both l- and d-AAs, as well as umami taste, exist in animals and humans; they may signal high dietary protein. The gastrointestinal (GI) tract may taste ingested nutrients as well. Postabsorptively, the conserved mammalian target of rapamycin (mTOR) is activated by increases in nutrients, particularly leucine. These three: taste, gut sensors, and mTOR, may serve as “adequate diet” sensors. In addition, mTOR signals tissue accretion and satiety. Transporters for AAs respond to changes in substrate availability; sodium-dependent transporters can be electrogenic and activate neural feeding systems. Also conserved, the general AA control non-derepressing system (GCN) is activated by AA deprivation via uncharged tRNA, leading to AA biosynthesis in yeast or to diet rejection and increased foraging in animals. Thus, two postabsorptive systems, conserved from yeast to mammals, have recently been reported; the results suggest that there are separate biochemical systems for sensing high and low levels of AAs. These systems demonstrate conservation of AA sensory mechanisms across eukaryotic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAs:

amino acids

APC:

anterior piriform cortex

ATF4:

activating transcription factor 4

CaMKII:

calcium/calmodulin-dependent protein kinase II

CCK:

cholecystokinin

DMH:

dorsomedial hypothalamus

ERK:

extracellular signal related protein kinase

GI:

gastrointestinal

IAA:

indispensable amino acid

LTP:

long-term potentiation

MAPK:

mitogen-activated protein kinase

MeAIB:

2-methyl-aminoisobutryic acid

mGluR:

metabotropic glutamate receptor

MSG:

monosodium glutamate

mTORC1:

mTOR complex 1

mTOR:

mammalian target of rapamycin

PepT1:

protein-coupled oligopeptide transporter

References

  • Aja SM, Barrett JA, Gietzen DW. 1999. CCKA and 5-HT3 receptors cooperate in anorectic responses to amino acid imbalanced diets. Pharmacol Biochem Behav 62: 487–491.

    Article  CAS  PubMed  Google Scholar 

  • Aja SM. 1999. Efferent projections from the region of the anterior piriform cortex involved in aminoprivic feeding. Neural Transmitters and Neural Circuits Supporting Aminoprivic Feeding. Ph.D. dissertation. University of California, Davis, pp. 323–343.

    Google Scholar 

  • Albers A, Bröer A, Wagner CA, Setiawan I, Lang PA, et al. 2001. Na+ transport by the neural glutamine transporter ATA1. Pflügers Arch 443: 92–101. (Provides an electrophysiological demonstration of electrogenic activity in the System A amino acid transporter)

    Article  CAS  PubMed  Google Scholar 

  • Anderson GH. 1977. Regulation of protein intake by plasma amino acids. Advances in Nutritional Research. Vol. 1.Draper HH, editor. New York: Plenum Press; pp. 135–166.

    Google Scholar 

  • Anderson GH, Moore SE. 2004. Dietary proteins in the regulation of food intake and body weight in humans. J Nutr 134: 974S–979S.

    Article  CAS  PubMed  Google Scholar 

  • Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, et al. 2000. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J Nutr 130: 2413–2419. (The first report of the mechanism underlying the stimulation of protein synthesis by leucine in the whole animal)

    Article  CAS  PubMed  Google Scholar 

  • Anthony TG, Anthony JC, Yoshizawa F, Kimball SR, Jefferson LS. 2001a. Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats. J Nutr 131: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  • Anthony TG, Reiter AK, Anthony JC, Kimball SR, Jefferson LS. 2001b. Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats. Am J Physiol 281: E430–E439.

    Article  CAS  Google Scholar 

  • Anthony TG, McDaniel BJ, Byerley RL, McGrath BC, Cavener DR, et al. 2004. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. J Biol Chem 279: 36553–36561.

    Article  CAS  PubMed  Google Scholar 

  • Bellinger LL, Evans JL, Gietzen DW. 1998. Dorsomedial hypothalamic lesions alter intake of an imbalanced amino acid diet in rats. J Nutr 128: 1213–1217.

    Article  CAS  PubMed  Google Scholar 

  • Bellinger LL, Evans JF, Tillberg CM, Gietzen DW. 1999. Effects of dorsomedial hypothalamic nuclei lesions on intake of an imbalanced amino acid diet. Am J Physiol 277: R250–R262.

    CAS  PubMed  Google Scholar 

  • Bellinger LL, Gietzen DW, Williams FE. 1993. Liver denervation, 5-HT3 receptor antagonist, and intake of imbalanced amino acid diet. Brain Res Bull 32: 549–554.

    Article  CAS  PubMed  Google Scholar 

  • Bellinger LL, Williams FE, Rogers QR, Gietzen DW. 1996. Liver denervation attenuates the hypophagia produced by an imbalanced amino acid diet. Physiol Behav 59: 925–929.

    Article  CAS  PubMed  Google Scholar 

  • Bensaid A, Tomé D, Gietzen DW, Even P, Morens C, et al. 2002. Protein is more potent than carbohydrate for reducing appetite in rats. Physiol Behav 75: 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR. 2002. Multiple neural systems controlling food intake and body weight. Neurosci Biobehav Rev 26: 393–428. (A detailed review of the neural systems controlling food intake in response to energy sources and demands. Includes extrahypothalamic structures and circuitry)

    Article  PubMed  Google Scholar 

  • Berthoud HR, Seeley RJ. 2000. Neural and Metabolic Control of Macronutrient Intake. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D. 2004. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol Motil 16(Suppl. 1): 28–33.

    Article  PubMed  Google Scholar 

  • Beverly JL, Gietzen DW, Rogers QR. 1990. Effect of dietary limiting amino acid in prepyriform cortex on food intake. Am J Physiol 259: R709–R715. (First demonstration that nanomoles of the limiting IAA injected into the APC restore feeding of IAA imbalanced diets)

    Article  CAS  PubMed  Google Scholar 

  • Blais A, Huneau JF, Magrum LJ, Koehnle TJ, Sharp JW, et al. 2003. Threonine deprivation rapidly activates the system A amino acid transporter in primary cultures of rat neurons from the essential amino acid sensor in the anterior piriform cortex. J Nutr 133: 2156–2164.

    Article  CAS  PubMed  Google Scholar 

  • Blevins JE, Truong BG, Gietzen DW. 2004. NMDA receptor function within the anterior piriform cortex and lateral hypothalamus in rats on the control of intake of amino acid-deficient diets. Brain Res 1019: 124–144.

    Article  CAS  PubMed  Google Scholar 

  • Bolster DR, Jefferson LS, Kimball SR. 2004. Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid-, and exercise-induced signalling. Proc Nutr Soc 63: 351–356.

    Article  CAS  PubMed  Google Scholar 

  • Brand JG, Teeter JH, Kumazawa T, Huque T, Bayley DL. 1991. Transduction mechanisms for the taste of amino acids. Physiol Behav 49: 899–904. (Covers taste responses for AA in catfish, preliminary studies of similar mechanisms in mouse)

    Article  CAS  PubMed  Google Scholar 

  • Broberger C. 2005. Brain regulation of food intake and appetite: Molecules and networks. J Intern Med 258: 301–327. (Presents neurobiology of feeding from a clinical and basic neuroscience perspective)

    Article  CAS  PubMed  Google Scholar 

  • Cammalleri M, Lütjens R, Berton F, King AR, Simpson C, et al. 2003. Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc Natl Acad Sci USA 100: 14368–14373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter KJ. 2003. A short history of nutritional science: Part 1 (1785–1885). J Nutr 133: 638–645.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari N, Landin AM, Roper SD. 2000. A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3: 113–119.

    Article  CAS  PubMed  Google Scholar 

  • Cherkasova VA, Hinnebusch AG. 2003. Translational control by TOR and TAP42 through dephosphorylation of eIF2α kinase GCN2. Genes Dev 17: 859–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen HN. 1990. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70: 43–77.

    Article  CAS  PubMed  Google Scholar 

  • Conigrave AD, Quinn SJ, Brown EM. 2000. l-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci USA 97: 4814–4819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, et al. 2005. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436: 1166–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cota D, Proulx K, Blake Smith KA, Kozma SC, Thomas G, et al. 2006. Hypothalamic mTOR signaling regulates food intake. Science 312: 927–930. (Demonstrates that rapamycin-sensitive activation of mTOR in the hypothalamus affects food intake)

    Article  CAS  PubMed  Google Scholar 

  • Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, et al. 2003. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301: 850–853.

    Article  CAS  PubMed  Google Scholar 

  • Darcel N, Fromentin G, Raybould HE, Gougis S, Gietzen DW, et al. 2005a. Fos-positive neurons are increased in the nucleus of the solitary tract and decreased in the ventromedial hypothalamus and amygdala by a high-protein diet in rats. J Nutr 135: 1486–1490.

    Article  CAS  PubMed  Google Scholar 

  • Darcel NP, Liou AP, Tomé D, Raybould HE. 2005b. Activation of vagal afferents in the rat duodenum by protein digests requires PepT1. J Nutr 135: 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, et al. 2001. Mammalian TOR: A homeostatic ATP sensor. Science 294: 1102–1105.

    Article  CAS  PubMed  Google Scholar 

  • Dever TE. 2002. Gene-specific regulation by general translation factors. Cell 108: 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Dixon KD, Williams FE, Wiggins RL, Pavelka J, Lucente J, et al. 2000. Differential effects of selective vagotomy and tropisetron in aminoprivic feeding. Am J Physiol 279: R997–R1009.

    CAS  Google Scholar 

  • Doherty J, Gale K, Eagles DA. 2000. Evoked epileptiform discharges in the rat anterior piriform cortex: Generation and local propagation. Brain Res 861: 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Dybdal D, Gale K. 2000. Postural and anticonvulsant effects of inhibition of the rat subthalamic nucleus. J Neurosci 20: 6728–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eylam S, Spector AC. 2004. Stimulus processing of glycine is dissociable from that of sucrose and glucose based on behaviorally measured taste signal detection in Sac ‘taster’ and ‘nontaster’ mice. Chem Senses 29: 639–649.

    Article  CAS  PubMed  Google Scholar 

  • Feurté S, Nicolaïdis S, Berridge KC. 2000. Conditioned taste aversion for a threonine-deficient diet in the rat: Demonstration by the taste reactivity test. Physiol Behav 68: 423–429.

    Article  PubMed  Google Scholar 

  • Firman JD, Kuenzel WJ. 1988. Neuroanatomical regions of the chick brain involved in monitoring amino acid deficient diets. Brain Res Bull 21: 637–642.

    Article  CAS  PubMed  Google Scholar 

  • Flier JS. 2006. Regulating energy balance: The substrate strikes back. Science 312: 861–864.

    Article  CAS  PubMed  Google Scholar 

  • Franchi-Gazzola R, Visigalli R, Dall'Asta V, Gazzola GC. 1999. Adaptive increase of amino acid transport system A requires ERK1/2 activation. J Biol Chem 274: 28922–28928. (Demonstrates a role for MAPK/ERK1/2 in activation of the System A amino acid transporter)

    Article  CAS  PubMed  Google Scholar 

  • Fromentin G, Feurté S, Nicolaïdis S. 1998. Spatial cues are relevant for learned preference/aversion shifts due to amino-acid deficiencies. Appetite 30: 223–234. (Demonstrates that animals can make an association between the place where they sensed repletion of IAA deficiency and the relief of the deficiency: not single trial learning, but place preference.

    Article  CAS  PubMed  Google Scholar 

  • Fromentin G, Gietzen DW, Nicolaïdis S. 1997. Aversion-preference patterns in amino acid- or protein-deficient rats: A comparison with previously reported responses to thiamin-deficient diets. Br J Nutr 77: 299–314.

    Article  CAS  PubMed  Google Scholar 

  • Gaccioli F, Huang CC, Wang C, Bevilacqua E, Franchi-Gazzola R, et al. 2006. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2α phosphorylation and cap-independent translation. J Biol Chem 281: 17929–17940.

    Article  PubMed  CAS  Google Scholar 

  • Gagiano M, Bauer FF, Pretorius IS. 2002. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2: 433–470.

    CAS  PubMed  Google Scholar 

  • Garcia J, Kimeldorf DJ, Koelling RA. 1955. Conditioned aversion to saccharin resulting from exposure to γ radiation. Science 122: 157–158. (This was the first demonstration of single trial learning in animals. Prior to this work, it was believed that all conditioning required repetitive trials. The phenomenon of conditioned taste aversion became known as the Garcia effect.)

    Article  CAS  PubMed  Google Scholar 

  • Garlick PJ. 2001. Assessment of the safety of glutamine and other amino acids. J Nutr 131: 2556S–2561S.

    Article  CAS  PubMed  Google Scholar 

  • Gazzola GC, Franchi R, Saibene V, Ronchi P, Guidotti GG. 1972. Regulation of amino acid transport in chick embryo heart cells. I. Adaptive system of mediation for neutral amino acids. Biochim Biophys Acta 266: 407–421.

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW. 1993. Neural mechanisms in the responses to amino acid deficiency. J Nutr 123: 610–625.

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW. 2000. Amino acid recognition in the central nervous system. Neural and Metabolic Control of Macronutrient Intake, Chapter 23. Berthoud HR, Seeley RJ, editors. New York: CRC Press; pp. 339–357. (Includes pharmacology of neurotransmitter signaling in the APC downstream of AA sensing)

    Google Scholar 

  • Gietzen DW, Magrum LJ. 2001. Molecular mechanisms involved in the anorexia of branched chain amino acid deficiency. J Nutr 131: 851S–855S.

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW, Rogers QR. 2006. Nutritional homeostasis and indispensable amino acid sensing: A new solution to an old puzzle. Trends Neurosci 29: 91–99. (Brief review of the sensing of IAA deficiency from an evolutionary perspective)

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW, Erecius LF, Rogers QR. 1998. Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency. J Nutr 128: 771–781.

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW, Leung PMB, Castonguay TW, Hartman WJ, Rogers QR. 1986. Time course of food intake and plasma and brain amino acid concentrations in rats fed amino acid-imbalanced or-deficient diets. Interactions of the Chemical Senses with Nutrition. Kare MR, Brand JG, editors. Philadelphia: Academic Press; pp. 415–459.

    Chapter  Google Scholar 

  • Gietzen DW, Leung PMB, Rogers QR. 1989. Dietary amino acid imbalance and neurochemical changes in three hypothalamic areas. Physiol Behav 46: 503–511.

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW, McArthur LH, Theisen JC, Rogers QR. 1992. Learned preference for the limiting amino acid in rats fed a threonine-deficient diet. Physiol Behav 51: 909–914.

    Article  CAS  PubMed  Google Scholar 

  • Gietzen DW, Ross CM, Hao S, Sharp JW. 2004. Phosphorylation of eIF2α is involved in the signaling of indispensable amino acid deficiency in the anterior piriform cortex of the brain in rats. J Nutr 134: 717–723. (First demonstration of the phosphorylation of eIF2α in the APC in response to IAA deficiency)

    Article  CAS  PubMed  Google Scholar 

  • Gong R, Park CS, Abbassi NR, Tang SJ. 2006. Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons. J Biol Chem 281: 18802–18815.

    Article  CAS  PubMed  Google Scholar 

  • Haberly LB, Price JL. 1978. Association and commissural fiber systems of the olfactory cortex of the rat: 1. Systems originating in the piriform cortex and adjacent areas. J Comp Neurol 178: 711–740. (Shows broad divergence of output from the piriform cortex)

    Article  CAS  PubMed  Google Scholar 

  • Hansen BS, Vaughan MH, Wang LJ. 1972. Reversible inhibition by histidinol of protein synthesis in human cells at the activation of histidine. J Biol Chem 247: 3854–3857. (Mechanistic study validating the use of amino-alcohols as AA-synthetase inhibitors)

    Article  CAS  PubMed  Google Scholar 

  • Hao S, Ross-Inta CM, Nemanic S, Gietzen DW. 2006. Rapamycin independent responses to amino acid deficiency in the anterior piriform cortex.

    Google Scholar 

  • Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, et al. 2005a. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307: 1776–1778. (First report of the full biochemical pathway from a measured decrease in the limiting IAA to phosphorylation of eIF2α in the brain area that serves as the sensor for IAA depletion)

    Article  CAS  PubMed  Google Scholar 

  • Hao S, Ross-Inta CM, Rudell JB, Sharp JW, Gietzen DW. 2005b. The role of glutamate AMPA receptors in the recognition of amino acid deficiency in the anterior piriform cortex of rats. FASEB J 20: Abstract 970.6.

    Google Scholar 

  • Harper AE. 1976. Protein and amino acids in the regulation of food intake. Hunger: Basic Mechanisms and Clinical Implications. Novin D, Wyrwicka W, Bray G, editors. New York: Raven Press; pp. 103–113.

    Google Scholar 

  • Harper AE, Peters JC. 1983. Amino acid signals and food intake and preference: Relation to body protein metabolism. Experientia 44(Suppl.): 107–134.

    CAS  PubMed  Google Scholar 

  • Harper AE, Peters JC. 1989. Protein intake, brain amino acid and serotonin concentrations and protein self-selection. J Nutr 119: 677–689.

    Article  CAS  PubMed  Google Scholar 

  • Harper AE, Benevenga NJ, Wohlhueter RM. 1970. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev 50: 428–558. (A very thorough, detailed review of the work covering the effects of AA on feeding prior to 1970)

    Article  CAS  PubMed  Google Scholar 

  • Hatzoglou M, Fernandez J, Yaman I. 2004. Regulation of cationic amino acid transport: The story of the CAT-1 transporter. Ann Rev Nutr 24: 377–399.

    Article  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch AG. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes. Translational Control of Gene Expression. Sonenberg N, Hershey JWB, Matthews MB, editors. New York: Cold Spring Harbor Press, Cold Spring Harbor; pp. 185–243. (Review of the role of GCN2 in response to IAA deprivation in yeast)

    Google Scholar 

  • Hinnebusch AG, Natarajan K. 2002. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1: 22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou L, Klann E. 2004. Activation of the phosphoinositide 3-kinase-akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24: 6352–6361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrupka BJ, Lin Y, Gietzen DW, Rogers QR. 1997. Small changes in essential amino acid concentrations dictate diet selection in amino acid-deficient states. J Nutr 127: 777–784. (Shows threshold for discrimination of IAA in the parts-per-million range after basal diet prefeeding)

    Article  CAS  PubMed  Google Scholar 

  • Hrupka BJ, Lin Y, Gietzen DW, Rogers QR. 1999. Lysine deficiency alters diet selection without depressing food intake in rats. J Nutr 129: 424–430. (Shows that one sees dietary choice for the limiting IAA before food intake depression)

    Article  CAS  PubMed  Google Scholar 

  • Hutson SM, Lieth E, La Noue KF. 2001. Function of leucine in excitatory neurotransmitter metabolism in the central nervous system. J Nutr 131: 846S–850S.

    Article  CAS  PubMed  Google Scholar 

  • Hyde R, Taylor PM, Hundal HS. 2003. Amino acid transporters: Roles in amino acid sensing and signalling in animal cells. Biochem J 373: 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iiboshi Y, Papst PJ, Kawasome H, Hosoi H, Abraham RT, et al. 1999. Amino acid-dependent control of p70s6k: Involvement of tRNA aminoacylation in the regulation. J Biol Chem 274: 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Guan KL. 2006. Complexity of the TOR signaling network. Trends Cell Biol 18: 206–212.

    Article  CAS  Google Scholar 

  • Jacinto E, Hall MN. 2003. TOR signaling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4: 117–126. (Comparative review of (yeast) TOR, (drosophila) dTOR and mTOR)

    Article  CAS  PubMed  Google Scholar 

  • Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, et al. 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol (Nov.) 6: 1122–1128.

    Article  CAS  Google Scholar 

  • Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M. 2005. Control of dendritic arborization by the phosphoinositide-3′-kinase-akt-mammalian target of rapamycin pathway. J Neurosci 25: 11300–11312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeanningros R. 1982. Vagal unitary responses to intestinal amino acid infusions in the anesthetized cat: A putative signal for protein induced satiety. Physiol Behav 28: 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Jeanningros R. 1984. Lateral hypothalamic responses to pre-absorptive and post-absorptive signals related to amino acid ingestion. J Auton Nerv Syst 10: 261–268.

    Article  CAS  PubMed  Google Scholar 

  • Jung MW, Larson J, Lynch G. 1990. Role of NMDA and non-NMDA receptors in synaptic transmission in rat piriform cortex. Exp Brain Res 82: 451–455.

    Article  CAS  PubMed  Google Scholar 

  • Kadowaki M, Kanazawa T. 2003. Amino acids as regulators of proteolysis. J Nutr 133: 2052S–2056S.

    Article  CAS  PubMed  Google Scholar 

  • Kilberg MS, Pan YX, Chen H. 2005. Nutritional control of gene expression: How mammalian cells respond to amino acid limitation. Ann Rev Nutr 25: 59–85. (Excellent review of the responses to IAA limitation in terms of the effects on protein synthesis that follow AA sensing)

    Article  CAS  Google Scholar 

  • Kilberg MS, Stevens BR, Novak C. 1993. Recent advances in mammalian amino acid transport. Ann Rev Nutr 13: 137–165.

    Article  CAS  Google Scholar 

  • Kimball SR, Jefferson LS. 2006. New functions for amino acids: Effects on gene transcription and translation. Am J Clin Nutr 83: 500S–507S.

    Article  CAS  PubMed  Google Scholar 

  • Kimball SR, Antonetti DA, Brawley RM, Jefferson LS. 1991. Mechanism of inhibition of peptide chain initiation by amino acid deprivation in perfused rat liver. Regulation involving inhibition of eukaryotic initiation factor 2α phosphatase activity. J Biol Chem 266: 1969–1976.

    Article  CAS  PubMed  Google Scholar 

  • Klann E, Dever TE. 2004. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 5: 931–942.

    Article  CAS  PubMed  Google Scholar 

  • Koehnle TJ, Gietzen DW. 2005. Modulation of feeding behavior by amino acid deficient diets; present findings and future directions. Nutritional Neuroscience, Chapter 10. Lieberman HR, Kanarek RB, Prasad C, editors. Boca Raton, FL: CRC Press; pp. 147–161.

    Google Scholar 

  • Koehnle TJ, Russell MC, Gietzen DW. 2003. Rats rapidly reject diets deficient in essential amino acids. J Nutr 133: 2331–2335.

    Article  CAS  PubMed  Google Scholar 

  • Koehnle TJ, Russell MC, Morin AS, Erecius L, Gietzen DW. 2004a. Diets deficient in indispensable amino acids rapidly decrease the concentration of the limiting amino acid in the anterior piriform cortex of rats. J Nutr 134: 2365–2371.

    Article  CAS  PubMed  Google Scholar 

  • Koehnle TJ, Stephens AL, Gietzen DW. 2004b. Threonine imbalanced diet alters first meal microstructure in rats. Physiol Behav 81: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Kubota H, Obata T, Ota K, Sasaki T, Ito T. 2003. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2α kinase GCN2. J Biol Chem 278: 20457–20460.

    Article  CAS  PubMed  Google Scholar 

  • Kurihara K, Kashiwayanagi M. 2000. Physiological studies on umami taste. J Nutr 130: 931S–934S.

    Article  CAS  PubMed  Google Scholar 

  • Larson J, Jessen RE, Kim D, Fine AK, du Hoffmann J. 2005. Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J Neurosci 25: 9460–9469. (Recent study using the LTP protocol in the APC slice)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Last AR, Wilson SA. 2006. Low-carbohydrate diets. Am Fam Physician 73: 1942–1948.

    PubMed  Google Scholar 

  • Lee CC, Huang CC, Wu MY, Hsu KS. 2005. Insulin stimulates postsynaptic density-95 protein translation via the phosphoinositide 3-kinase-akt-mammalian target of rapamycin signaling pathway. J Biol Chem 280: 18543–18550.

    Article  CAS  PubMed  Google Scholar 

  • Leung PM, Rogers QR. 1979. Effects of hippocampal lesions on adaptive intake of diets with disproportionate amounts of amino acids. Physiol Behav 23: 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Leung PMB, Rogers QR. 1969. Food intake: Regulation by plasma amino acid pattern. Life Sci 8: 1–9. (First indication that IAA-deficiency sensing occurs in the brain)

    Article  CAS  PubMed  Google Scholar 

  • Leung PMB, Rogers QR. 1971. Importance of prepyriform cortex in food-intake response of rats to amino acids. Am J Physiol 221: 929–935. (First report that anterior piriform cortex functions as a sensor for IAA deficiency)

    Article  CAS  PubMed  Google Scholar 

  • Leung PMB, Rogers QR. 1987. The effect of amino acids and protein on dietary choice. Umami: A Basic Taste. Kawamura Y, Kare MR, editors. New York: Marcel Dekker; pp. 565–610.

    Google Scholar 

  • Li X, Staszewski L, Durick K, Zoller M, Adler E. 2002. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99: 4692–4696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling R, Bridges CC, Sugawara M, Fujita T, Leibach FH, et al. 2001. Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochim Biophys Acta 1512: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Lynch CJ, Fox HL, Vary TC, Jefferson LS, Kimball SR. 2000. Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes. J Cell Biochem 77: 234–251.

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie B, Erickson JD. 2004. Sodium-coupled neutral amino acid (system N/A) transporters of the SLC38 gene family. Pflügers Arch 447: 784–795.

    Article  CAS  PubMed  Google Scholar 

  • Magrum LJ, Hickman MA, Gietzen DW. 1999. Increased intracellular calcium in rat anterior piriform cortex in response to threonine after threonine deprivation. J Neurophysiol 81: 1147–1149.

    Article  CAS  PubMed  Google Scholar 

  • Magrum LJ, Teh PS, Kreiter MR, Hickman MA, Gietzen DW. 2002. Transfer ribonucleic acid charging in rat brain after consumption of amino acid-imbalanced diets. Nutr Neurosci 5: 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Makarios-Lahham L, Roseau SM, Fromentin G, Tomé D, Even PC. 2004. Rats free to select between pure protein and a fat-carbohydrate mix ingest high-protein mixed meals during the dark period and protein meals during the light period. J Nutr 134: 618–624.

    Article  CAS  PubMed  Google Scholar 

  • Markison S, Gietzen DW, Spector AC. (1999) Essential amino acid deficiency enhances long-term intake but not short-term licking of the required nutrient. J Nutr 129: 1604–1612.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama Y, Pereira E, Margolskee RJ, Chaudhari N, Roper SD. 2006. Umami responses in mouse taste cells indicate more than one receptor. J Neurosci 26: 2227–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurin AC, Jousse C, Averous J, Parry L, Bruhat A, et al. 2005. The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores. Cell Metab 1: 273–277. (The first use of brain-specific GCN2 knockout mice in the study of IAA-deficiency sensing)

    Article  CAS  PubMed  Google Scholar 

  • McCoy RH, Meyer CE, Rose WC. 1935. Feeding experiments with mixtures of highly purified amino acids. VIII. Isolation and identification of a new essential amino acid. J Biol Chem 112: 283–302. (Reports the discovery of the final IAA, threonine)

    Article  CAS  Google Scholar 

  • Milton K. 2003. The critical role played by animal source foods in human (Homo) evolution. J Nutr 133: 3886S–3892S.

    Article  CAS  PubMed  Google Scholar 

  • Monda M, Sullo A, De Luca V, Pellicano MP, Viggiano A. 1997. l-Threonine injection into PPC modifies food intake, lateral hypothalamic activity, and sympathetic discharge. Am J Physiol 273: R554–R559. (Shows signaling from APC to the lateral hypothalamus with IAA repletion in APC and direct electrophysiological recordings in the lateral hypothalamus)

    CAS  PubMed  Google Scholar 

  • Mori M, Kawada T, Ono T, Torii K. 1991. Taste preference and protein nutrition and l-amino acid homeostasis in male Sprague-Dawley rats. Physiol Behav 49: 987–995.

    Article  CAS  PubMed  Google Scholar 

  • Naito-Hoopes M, McArthur LH, Gietzen DW, Rogers QR. 1993. Learned preference and aversion for complete and isoleucine-devoid diets in the rat. Physiol Behav 53: 485–494.

    Article  CAS  PubMed  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, et al. 2002. An amino-acid taste receptor. Nature 41: 199–202. (Shows that the taste receptor subunits, T1R1 and T1R3, but not their d-isomers, combine to act as sensors for the 20 l-AA that are incorporated into protein)

    Article  CAS  Google Scholar 

  • Nemanic S, Ross CM, Hao S, Rudell JB, Gietzen DW. 2004. The effects of rapamycin injected into the anterior piriform cortex on food intake in rats. FASEB J 19: Abstract 125.3.

    Google Scholar 

  • Niijima A, Meguid MM. 1995. An electrophysiological study on amino acid sensors in the hepatoportal system in the rat. Obes Res 3: 741S–745S.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson O, Ahlman H, Geffard M, Dahlstrom A, Ericson LE. 1987. Bipolarity of duodenal enterochromaffin cells in the rat. Cell Tiss Res 248: 49–54.

    Article  CAS  Google Scholar 

  • Noda K, Chikamori K. 1976. Effect of ammonia via prepyriform cortex on regulation of food intake in the rat. Am J Physiol 231: 1263–1266.

    Article  CAS  PubMed  Google Scholar 

  • Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK. 2005. Structural basis for autoinhibition and mutational activation of eukaryotic initiation factor 2α protein kinase GCN2. J Biol Chem 280: 29289–29299.

    Article  CAS  PubMed  Google Scholar 

  • Page G, Khidir FAL, Pain S, Barrier L, Fauconneau B, et al. 2006. Group 1 metabotropic glutamate receptors activate the p70S6 kinase via both mammalian target of rapamycin (mTOR) and extracellular signal-related kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int 49: 413–421.

    Article  CAS  PubMed  Google Scholar 

  • Palacin M, Estevez R, Bertran J, Zorzano A. 1998. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78: 969–1054. (Thorough review of AA transport studies up to 1998)

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Tews JK, Harper AE. 1972. Amino acid imbalance, protein intake, and changes in rat brain and plasma amino acids. Am J Physiol 222: 314–321.

    Article  CAS  PubMed  Google Scholar 

  • Pereira CM, Sattlegger E, Jiang HY, Longo BM, Jaqueta CB, et al. 2005. IMPACT, a protein preferentially expressed in the mouse brain, binds GCN1 and inhibits GCN2 activation. J Biol Chem 280: 28316–28323. (First report of IMPACT, an inhibitor of GCN2 function in brain)

    Article  CAS  PubMed  Google Scholar 

  • Peters JC, Harper AE. 1984. Influence of dietary protein level on protein self-selection and plasma and brain amino acid concentrations. Physiol Behav 33: 783–790.

    Article  CAS  PubMed  Google Scholar 

  • Pham PTT, Heydrick SJ, Fox HL, Kimball SR, Jefferson LS Jr, et al. 2000. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes. J Cell Biochem 79: 427–441.

    Article  CAS  PubMed  Google Scholar 

  • Powers T, Dilova I, Chen CY, Wedaman K. 2004. Yeast TOR signaling: A mechanism for metabolic regulation. Curr Top Microbiol Immunol 279: 39–51. (Review of TOR signaling in yeast)

    CAS  PubMed  Google Scholar 

  • Powley TL, Berthoud HR. 1986. Participation of the vagus and other autonomic nerves in the control of food intake. Feeding Behavior: Neural and Humoral Controls. Ritter RC, Ritter S, Barnes CD, editors. New York: Academic Press; pp. 67–101.

    Chapter  Google Scholar 

  • Raybould HE. 1998. Does your gut taste? Sensory transduction in the gastrointestinal tract. News Physiol Sci 13: 275–280.

    CAS  PubMed  Google Scholar 

  • Raybould HE, Glatzle J, Freeman SL, Whited K, Darcel N, et al. 2006. Detection of macronutrients in the intestinal wall. Auton Neurosci 125: 28–33. (Review of nutrient sensing in the GI tract)

    Article  CAS  PubMed  Google Scholar 

  • Rogers QR, Leung PMB. 1973. The influence of amino acids on the neuroregulation of food intake. Fed Proc 32: 1709–1719.

    CAS  PubMed  Google Scholar 

  • Rogers QR, Leung PMB. 1977. The control of food intake: When and how are amino acids involved? The Chemical Senses and Nutrition. Kare MR, Maller O, editors. New York: Academic Press; pp. 213–249.

    Chapter  Google Scholar 

  • Round A, Wallis DI. 1986. The depolarizing action of 5-hydroxytryptamine on rabbit vagal afferent and sympathetic neurons in vitro and its selective blockade by ICS 205–930. Br J Pharmacol 88: 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell MC, Koehnle TJ, Barrett JA, Blevins JE, Gietzen DW. 2003. The rapid anorectic response to a threonine imbalanced diet is decreased by injection of threonine into the anterior piriform cortex of rats. Nutr Neurosci 6: 247–251.

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, et al. 2004. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol (Jul.) 14: 1296–1302. (First report of rapamycin-insensitive mTOR complex)

    Article  CAS  Google Scholar 

  • Schwartz GJ, Moran TH. 1998. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat. Am J Physiol 274: R1236–R1242.

    CAS  PubMed  Google Scholar 

  • Scott K. 2005. Taste recognition: Food for thought. Neuron 48: 455–464. (Review of taste mechanisms)

    Article  CAS  PubMed  Google Scholar 

  • Sharp JW, Magrum LJ, Gietzen DW. 2002. Role of MAP kinase in signaling indispensable amino acid deficiency in the brain. Brain Res Mol Brain Res 105: 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Sharp JW, Ross-Inta CM, Hao S, Rudell JB, Gietzen DW. 2006. Co-localization of phosphorylated extracellular signal-related protein kinases 1/2 (ERK1/2) and phosphorylated eukaryotic initiation factor 2α (eIF2α) in response to a threonine-devoid diet. J Comp Neurol 494: 485–494. (Gives A-P dimension and location of APC cells that may be the primary sensory cells for IAA deficiency)

    Article  CAS  PubMed  Google Scholar 

  • Sharp JW, Ross CM, Koehnle TJ, Gietzen DW. 2004. Phosphorylation of Ca2+/calmodulin dependent protein kinase type II and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in response to a threonine-devoid diet. Neuroscience 126: 1053–1062.

    Article  CAS  PubMed  Google Scholar 

  • Shenoy ST, Rogers QR. 1978. Effect of dietary amino acids on transfer ribonucleic acid charging levels in rat liver. J Nutr 108: 1412–1421.

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D. 1999. Assuaging nutritional complexity: A geometrical approach. Proc Nutr Soc 58: 779–789.

    Article  CAS  PubMed  Google Scholar 

  • Simson PC, Booth DA. 1973. Effect of CS-US interval on the conditioning of odour preferences by amino acid loads. Physiol Behav 11: 801–808.

    Article  CAS  PubMed  Google Scholar 

  • Smith DV, Boughter JD. 2007. Neurochemistry of the gustatory system, Chapter 5. Neurochemistry and Molecular Neurobiology of the Sensory Systems. D. Johnson, editor. Springer-Verlag: New York.

    Google Scholar 

  • Smith GP, Jerome C, Cushin BJ, Eterno R, Simansky KJ. 1981. Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science 213: 1036–1037.

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi E, Ono T, Nishijo H, Torii K. 1991. Amino acid and NaCl appetite, LHA neuron responses of lysine-deficient rat. Physiol Behav 49: 951–964.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Inoue S, Nagase H, Takamura Y, Niijima A. 1990. Amino acid sensors sensitive to alanine and leucine exist in the hepato-portal system in the rat. J Auton Nerv Syst 31: 41–46.

    Article  CAS  PubMed  Google Scholar 

  • Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, et al. 2002. A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci USA 99: 467–472.

    Article  CAS  PubMed  Google Scholar 

  • Taylor-Burds CC, Westburg AM, Wilfall TC, Delay ER. 2004. Behavioral comparisons of the tastes of l-alanine and monosodium glutamate in rats. Chem Senses 29: 807–814.

    Article  PubMed  Google Scholar 

  • Tomé D. 2004. Protein, amino acids and the control of food intake. Br J Nutr 92: S27–S30.

    Article  PubMed  CAS  Google Scholar 

  • Torii K, Niijima A. 2001. Effect of lysine on afferent activity of the hepatic branch of the vagus nerve in normal and l-lysine-deficient rats. Physiol Behav 72: 685–690.

    Article  CAS  PubMed  Google Scholar 

  • Torii K, Yokawa T, Tabuchi E, Hawkins RL, Mori M, et al. 1996. Recognition of deficient nutrient intake in the brain of rat with l-lysine deficiency monitored by functional magnetic resonance imaging, electrophysiologically and behaviorally. Amino Acids 10: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Tsokas P, Grace EA, Chan PM, Ma T, Sealfon SC, et al. 2005. Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J Neurosci 25: 5833–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uneyama H, Niijima A, San Gabriel A, Torii K. 2006. Luminal amino acid sensing in the rat gastric mucosa. Am J Physiol 291: G1163-1170. (This paper reports a glutamate sensing system in the stomach, acting via the serotonin 3 receptor on vagal afferents.)

    Google Scholar 

  • Vinade L, Dosemeci A. 2000. Regulation of the phosphorylation state of the AMPA receptor GluR1 subunit in the postsynaptic density. Cell Mol Neurobiol 20: 451–463.

    Article  CAS  PubMed  Google Scholar 

  • Walch-Liu P, Ivanov. II, Filleur S, Gan Y, Remans T, et al. 2006. Nitrogen regulation of root branching. Ann Botany 97: 875–881.

    Article  CAS  Google Scholar 

  • Wang Y, Cummings SL, Gietzen DW. 1996. Temporal-spatial pattern of c-Fos expression in the rat brain in response to amino acid deficiency I. The initial recognition phase. Mol Brain Res 40: 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Washburn BS, Jiang JC, Cummings SL, Dixon K, Gietzen DW. 1994. Anorectic responses to dietary amino acid imbalance: Effects of vagotomy and tropisetron. Am J Physiol 266: R1922–R1927. (Shows that the vagally-mediated responses to IAA deficiency occur too late to be involved in AA sensing)

    CAS  PubMed  Google Scholar 

  • Wek RC, Jiang HY, Anthony TG. 2006. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34: 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Wek SA, Zhu S, Wek RC. 1995. The histidyl-tRNA synthetase-related sequence in the eIF-2α protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15: 4497–4506. (Demonstrates the mechanism of transduction of the uncharged tRNA signal by the eIF2α kinase, GCN2)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerterp-Plantenga MS. 2003. The significance of protein in food intake and body weight regulation. Curr Opin Clin Nutr Metab Care 6: 635–638.

    Article  CAS  PubMed  Google Scholar 

  • White BD, Du F, Higgenbotham DA. 2003. Low dietary protein is associated with an increase in food intake and a decrease in the in vitro release of radiolabeled glutamate and GABA from the lateral hypothalamus. Nutr Neurosci 6: 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124: 471–484. (Good review of TOR, including the recently discovered mammalian TOR complexes, mTORC1, and the rapamycin-insensitive mTORC2)

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Staszewski L, Tang H, Adler E, Zoller M, et al. 2004. Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101: 13972–13973.

    Article  Google Scholar 

  • Yao D, Mackenzie B, Ming H, Varoqui H, Zhu H, et al. 2000. A novel system A isoform mediating Na+/neutral amino acid cotransport. J Biol Chem 275: 22790–22797.

    Article  CAS  PubMed  Google Scholar 

  • Yeshao W, Gu J, Peng X, Nairn AC, Nadler JL. 2005. Elevated glucose activates protein synthesis in cultured cardiac myocytes. Metabolism 54: 1453–1460. (Shows that mTOR can be activated by glucose)

    Article  CAS  PubMed  Google Scholar 

  • Yox DP, Stokesberry H, Ritter RC. 1991. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol 260: R503–R508.

    Article  CAS  PubMed  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115: 255–266.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the helpful comments of Drs. Beatriz Castilho, Evelyn Sattlegger, and Mauro Costa-Mattioli about the manuscript. The work was supported by NIH grants NS 043210 and NS 33347 to D.W.G. Portions of this material, reviewed also in trends in neurosciences 2006, 29: 91-99 and Ann Rev Natl, 2007, in press, are used here with permission.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Gietzen, D.W., Hao, S., Anthony, T.G. (2007). Amino Acid-Sensing Mechanisms: Biochemistry and Behavior. In: Lajtha, A., Johnson, D.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30374-1_10

Download citation

Publish with us

Policies and ethics