Skip to main content

Nanoporous Microsystems for Islet Cell Replacement

  • Chapter
BioMEMS and Biomedical Nanotechnology
  • 1169 Accesses

Abstract

Micro-Electro-Mechanical Systems technology, commonly known with the acronym MEMS, refers to the fabrication of devices with dimensions on the micrometer scale. For comparison, a human hair is about 80 min diameter. The most essential elements of MEMS consist of miniaturized, highly precise, and repeatable structures that can be stationary or moving. These structures are created via fabrication processes and equipment developed for the integrated circuit (IC) industry. The fabrication of MEMS commonly involves bulk or surface machining. Bulk machining defines microstructures by etching directly into the bulk material such as single crystal silicon. The advantage of bulk machining is that it allows the integration of active devices and the use of integrated circuit technology. Surface machining defines the release and movable structure in a polysilicon film or sacrificial layer of silicon dioxide, both deposited on bulk silicon. More complex microchips including multilayer interconnections can be obtained by bonding together and laser drilling of several layers of the components. Typically, microfabrication has a limit of resolution on the order of microns. However, specialized techniques can be used to create features in the nanoscale, as it will be shown later in the fabrication process of the nanoporous membrane. More importantly, the incorporation of new materials and the range of processes now extend far beyond just those found in the IC industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.K. Colton. Implantable hybrid artificial organs. Cell Transplantat., 4(4):415–436, 1995.

    Article  MathSciNet  Google Scholar 

  2. R.P. Lanza, J.L. Hayes, and W.L. Chick Encapsulated cell technology. Nat. Biotechnol., 14(9):1107–1111, Sept. 1996.

    Google Scholar 

  3. R.P. Lanza and W. Chick. Encapsulated cell therapy. Sci. Am. Sci. Med., 2(4):16–25, 1995.

    Google Scholar 

  4. T. Wang, I. Lacik, M. Brissova, A. Anilkumar,A. Prokop, D. Hundeler,R. Green, K. Shahrokhi, and A. Powers. An encapsulation system for the immunoisolation of pancreatic islets, Nat. Biotechnol., 358–362, 15 April, 1997.

    Google Scholar 

  5. R.P. Lanza et al. Xenotransplantation and cell therapy: progress and controversy. Mol. Med. Today, 5(3):105–106, Mar 1999.

    Google Scholar 

  6. R.P. Lanza et al. Xenogenic humoral responses to islets transplanted in biohybrid diffusion chambers. Transplantation, 57(9):1371–1375, 15 May, 1994

    Google Scholar 

  7. B. Kulseng, S. Gudmund, L. Ryan, A. Andersson, A. King, A. Faxvaag, and T. Espevik. Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation, 67(7):978–984, 1999.

    Article  Google Scholar 

  8. H. Iwata, N. Morikawa, T. Fujii, T. Takagi, T. Samejima, and Y. Ikada. Does Immunoisolation Need to Prevent the Passage of Antibodies and Complement? Transplantation Proceedings, Vol. 27(6), pp. 3224–3226, December1995.

    Google Scholar 

  9. T.A. Desai, M. Ferrari, and G. Mazzoni. Silicon microimplants: fabrication and biocompatibility. In T. Kozik (ed.). Materials and Design Technology 1995. ASME, pp. 97–103, 1995.

    Google Scholar 

  10. M. Ferrari, W.H. Chu, T.A. Desai, D. Hansford, T. Huen, G. Mazzoni G, and M. Zhang. Silicon nanotechnology for biofiltration and immunoisolated cell xenografts. C.M Cotell, A.E. Meyer, S.M. Gorbatkin, and G.L. Grobe. Thin Films and Surfaces for Bioactivity and Biomedical Application (eds.), MRS, Vol. 414, pp. 101–106, 1996.

    Google Scholar 

  11. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, and M. Ferrari. Microfabricated immunoisolating biocapsules. Biotechnol. Bioeng., 57:118–120, 1998.

    Article  Google Scholar 

  12. T.A. Desai, J. Tu, G. Rasi, P. Borboni, and M. Ferrari. Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomed. Microdev., 1(2):1999.

    Google Scholar 

  13. M. Zhang, T.A. Desai, and M. Ferrari. Proteins and cells on PEG immobilized silicon surfaces. Biomaterials, 19:953–960, 1998.

    Article  Google Scholar 

  14. T.A. Desai, D. Hansford, and M. Ferrari. Characterization of micromachined membranes for immunoisolation and bioseparation applications. J. Memb. Sci., 4132:1–11, 1999.

    Google Scholar 

  15. R.P. Lanza et al. Transplantation of islets using microencapsulation: studies in diabetic rodents and dogs. J. Mol. Med., 77(1):206–210, Jan 1999.

    Google Scholar 

  16. U. Siebers et al. Alginate-based microcapsules for immunoprotected islet transplantation. Ann. NY Acad. Sci., 831:304–312, Dec 31, 1997.

    Google Scholar 

  17. R. Calafiore et al. Transplantation of allogeneic/xenogeneic pancreatic islets containing coherent microcapsules in adult pigs. Transplant Proc., 30(2):482–483, Mar 1998.

    Google Scholar 

  18. C.J. Weber et al. Encapsulated islet iso-, allo-, and xenografts in diabetic NOD mice. Transplant Proc., 27(6):3308–3311, Dec1995.

    Google Scholar 

  19. R.P. Lanza et al. Xenotransplantation. Sci. Am., 277(1):54–59, Jul 1997.

    Google Scholar 

  20. C.J. Weber et al. Xenografts of microencapsulated rat, canine, porcine, and human islets. In C. Ricordi (ed.), Pancreatic Islet Cell Transplantation, pp. 177–189, 1991.

    Google Scholar 

  21. P. Lacy, O.D. Hegre, A. Gerasimidi-Vazeou, F.T. Gentile, and K.E. Dionne. Maintenance of normoglycemia in diabetic mice by subcutaneous xenograft of encapsulated islets. Science, 254(5039):1728–1784, 1991.

    Article  Google Scholar 

  22. P. Marchetti et al. Prolonged survival of discordant porcine islet xenografts. Transplantation, 61(7):1100–1102, Apr 15, 1996.

    Google Scholar 

  23. R.P. Lanza, W. Kuhtreiber, K. Ecker, W.M. Beyer, and W.L. Chick. Xenotransplantation of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation, 59:1366–1385, 1995.

    Google Scholar 

  24. P. Soon-Shiong et al. An immunologic basis for the fibrotic reaction to implanted microcapsules. Transplant. Proc., 23(1 Pt 1):758–759, Feb1991.

    Google Scholar 

  25. C.K. Colton and E. Avgoustiniatos. Bioengineering in development of the hybrid artificial pancreas. Trans. ASME, 113:152–170, 1991.

    Google Scholar 

  26. D. Chicheportiche et al. In vivo activation of peritoneal macrophages by the implantation of alginatepolylysine microcapsules in the BB/E rat. Diabetologia, 34:A170, 1991.

    Google Scholar 

  27. P. Soon-Shiong, R. Feldman, R. Nelson, Q. Heintz, Z. Yao, T. Yao, N. Zheng, G. Merideth, T. Skjak-Braek, T. Espevik et al. Long-term reversal of diabetes by the injection of immunoprotected islets. Proc. Natl. Acad. Sci. U.S.A., 90(12):5843–5847, Jun 15, 1993.

    Google Scholar 

  28. P. Soon-Shiong, R.E. Heintz, N. Merideth, Q.X. Yao, Z. Yao, T. Zheng, M. Murphy, M.K. Moloney, M. Schmehl, M. Harris et al. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet, 343(8903):950–951, Apr 16, 1994.

    Google Scholar 

  29. R. Calafiore, G. Basta, G. Luca, C. Boselli, A. Bufalari, G.M. Giustozzi, L. Moggi, and P. Brunetti. Alginate/ polyaminoacidic coherent microcapsules for pancreatic islet graft immunoisolation in diabetic recipients. Ann. NY Acad. Sci., 831:313, Dec 31, 1997

    Google Scholar 

  30. J. Brauker, L.A., Martinson S.K., Young and R.C. Johnson Local inflammatory response around diffusion chambers containing xenografts. Nonspecific destruction of tissues and decreased local vascularization. Transplantation, 61(12):1671–1677, Jun 27, 1996.

    Google Scholar 

  31. C.J. Weber et al. The role of CD4+ helper T cells in the destruction of microencapsulated islet xenografts in nod mice. Transplantation, 49(2):396–404, Feb 1990.

    Google Scholar 

  32. C.J. Weber et al. CTLA4-Ig prolongs survival of microencapsulated neonatal porcine islet xenografts in diabetic NOD mice. Cell Transplant., 6(5):505–508, Sep-Oct, 1997.

    Google Scholar 

  33. D.W. Gray. Encapsulated islet cells: the role of direct and indirect presentation and the relevance to xenotransplantation and autoimmune recurrence. Br. Med. Bull., 53(4):777–788, 1997.

    Google Scholar 

  34. K.E. Ellerman et al. Islet cell membrane antigens activate diabetogenic CD4+ T-cells in the BB/Wor rat. Diabetes, 48(5):975–982, May 1999.

    Google Scholar 

  35. U. Siebers, A. Horcher, H. Brandhorst, D. Brandhorst, B. Hering, K. Federlin, R.G. Bretzel, and T. Zekorn. Analysis of the cellular reaction towards microencapsulated xenogeneic islets after intraperitoneal transplantation. J. Mol. Med., 77(1):215–218, Jan 1999.

    Google Scholar 

  36. D.J. Edell, V. Van Toi, V.M. McNeil, and L.D. Clark. Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng., 39(6):635–643, 1992.

    Article  Google Scholar 

  37. K.D. Wise et al. Micromachined Silicon Microprobes for CNS Recording and Stimulation. Annual Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 12, no. 5, pp. 2334–2335, 1990.

    MathSciNet  Google Scholar 

  38. D.J. Edell, J.N. Churchill, and I.M. Gourley. Biocompatibility of a silicon based peripheral nerve electrode. Biomat. Med. Dev. Artif. Org., 10(2):103–122, 1982.

    Google Scholar 

  39. T. Akin, K. Najafi et al. A micromachined silicon sieve electrode for nerve regeneration applications. IEEE Trans. Biomed. Eng., 41(4):305–313, Apr 1994.

    Google Scholar 

  40. G.T.A. Kovacs, C.W. Storment, M. Halks-Miller, C.R. Belczynski, C.C. Della Santina, E.R. Lewis, and N.I. Maluf. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral nerves. IEEE Trans. Biomed. Eng., 41:567–577, 1994.

    Article  Google Scholar 

  41. P.L. Gourley. Semiconductor microlasers: a newapproach to cell-structure analysis. Nat. Med., 2(8):942–944, Aug 1996.

    Google Scholar 

  42. W. Chu, T. Huen, J. Tu, and M. Ferrari, Silicon-micromachined, direct-pore filters for ultrafiltration. In P.L. Gourley (ed.), SPIE Proc. of Micro-and Nanofabricated Structures and Devices for Biomedical Environmental Applications. Vol. 2978, pp. 111–122, 1996.

    Google Scholar 

  43. T.A. Desai. Microfabricated interfaces: new approaches in tissue engineering and biomolecular separation. Biomol. Eng., 17(1):23–36, Oct 2000.

    Google Scholar 

  44. M. Brissova et al. Control and measurement of permeability for design of microcapsule cell delivery system. J. Biomed. Mater. Res., 39(1):61–70, Jan 1998.

    Google Scholar 

  45. I. Lacik et al. New capsule with tailored properties for the encapsulation of living cells. J. Biomed. Mater. Res., 39(1):52–60, Jan 1998.

    Google Scholar 

  46. J.H. Brauker, V.E. Carr-Brendel, L.A. Martinson, J. Crudele, W.D. Johnston, and R.C. Johnson Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res., 29(12):1517–1524, Dec 1995.

    Google Scholar 

  47. T.A. Desai, W.H. Chu, J. Tu, P. Shrewsbury, and M. Ferrari. Microfabricated biocapsules for cell xenografts: a review. Proc. SPIE, 2978:216–226, 1996.

    Article  Google Scholar 

  48. D. Hansford, T. Desai, J. Tu, and M. Ferrari. Biocompatible siliconwafer bonding for biomedical microdevices. Micro and Nanofabricated Electro-Optical-Mechanical Systems for Biomedical and Environmental Application. Vol. 3258, pp. 164–168, 1998.

    Google Scholar 

  49. N. Hellerstrom, J. Lewis, H. Borg, R. Johnson, and N. Freunkel. Method for large scale isolation of pancreatic islets by tissue culture of fetal rat pancreas. Diabetes, 28:766–769, 1979.

    Google Scholar 

  50. S. Efrat, S. Linde, H. Kofod, D. Spector, M. Delannoy, S. grant, D. Hanahan, and S. Baekkeskov. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc. Natl. Acad. Sci. U.S.A., 85:9037–9041, 1988.

    Article  Google Scholar 

  51. W. Tan, R. Krishnaraj, and T. Desai. Evaluation of composite collagen-chitosan matrices for tissue engineering. Tissue Eng., 7(2):2001.

    Google Scholar 

  52. C.J. Weber and K. Reemstma. Microencapsulation in small animals-Xenografts. In R.P. Lanza and W.L. Chick (eds.), Pancreatic Islet transplantation: Vol. III. Immunoisolation of Pancreatic Islets. New York, RG Landes Co., pp. 59–79, 1994.

    Google Scholar 

  53. T.N. Salthouse and B.F. Matlaga. An approach to the numerical quantification of acute tissue response to biomaterials. J. Biomatls. Med. Dev. Art. Orgs., 3(1):47–56, 1975.

    Google Scholar 

  54. T.A. Desai, D.J. Hansford, L. Leoni, M. Essenpreis, and M. Ferrari. Nanoporous antifouling silicon membranes for implantable biosensor applications. Biosen. Bioelect., 15(9–10):453–462, 2000.

    Article  Google Scholar 

  55. T.A. Desai, M. Ferrari and G. Mazzoni. Silicon microimplants: fabrication and biocompatibility. In T. Kozik (ed.), Materials and Design Technology 1995. ASME, pp. 97–103, 1995.

    Google Scholar 

  56. S.K. Aityan and V.I. Portnov. Gen. Physiol. Biophys., 5(4):351–364, 1986.

    Google Scholar 

  57. S.K. Aityan and V.I. Portnov. Gen. Physiol. Biophys., 7(6):591–611, 1988.

    Google Scholar 

  58. K. Hahn, J. Karger, andKukla. Phys. Rev. Lett., 76(15):2762–2765, 1996.

    Article  Google Scholar 

  59. Q.C. Wei, Bechinger, and P. Leiderer. Science, 287(5453):625–627, 2000.

    Article  Google Scholar 

  60. J.A. Hernandez and J. Fischbarg. Biophy. J., 67(3):996–1006, 1994.

    Article  Google Scholar 

  61. K. Dionne, B.M. Cain, R.H. Li,W.J. Bell, E.J. Doherty, D.H. Rein, M.J. Lysaght, and F.T. Gentile. Transport in immunoisolation membranes. Biomaterials, 17(3):1996.

    Google Scholar 

  62. L. Leoni and T.A. Desai. Nanoporous biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations. IEEE Trans. Biomed. Eng., 48(11):Nov 2001.

    Google Scholar 

  63. -K. Tatarkiewicz,-M. Garcia,-M. Lopez-Avalos,-S. Bonner-Weir, and-G.-C. Weir, Porcine neonatal pancreatic cell clusters in tissue culture: benefits of serum and immobilization in alginate hydrogel. Transplantation, 71(11):1518–1526, Jun 15, 2001.

    Google Scholar 

  64. G.M. Beattie, J.S. Rubin M.I. Mally, T. Otonkoski, and A. Hayek. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes, 45(9):1223–1228, 1996.

    Article  Google Scholar 

  65. S.N. Bhatia, M.L. Yarmush and M. Toner Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts fibroblasts. J. Biomed. Mater. Res., 34:189–199, 1997

    Article  Google Scholar 

  66. T. Loudovaris, B. Charlton, R.J. Hodgson, and T.E. Mandel. Destruction of xenografts but not allografts within cell impermeable membranes. Transplant. Proc., 24:2291, 1992.

    Google Scholar 

  67. T. Zekorn, U. Siebers, R.J. Bretzel, M. Renardy, H. Planck, P. Zshcocke, and K. Federlin. Protection of islets of langerhans from IL-1 toxicity by artificial membranes. Transplantation, 50:391–394, 1990.

    Article  Google Scholar 

  68. D.R. Cole, M. Waterfall, M. McIntyre, and J.D. Baird. Microencapsulated islet grafts in the BB/E rat: a possible role for cytokines in graft failure. Diabetologia, 35:231–237, 1992.

    Article  Google Scholar 

  69. J.A. Hunt, P.J. McLaughlin, and B.F. Flanagan. Techniques to investigate the cellular and molecular interactions in the host response to implanted biomaterials. Biomaterials, 18:1449–1459, 1997.

    Article  Google Scholar 

  70. K. Popat, Robert W. Johnson, and T.A. Desai. Vapor deposited thin silane films on silicon substrates for biomedical microdevices. Surf. Coat. Technol., Accepted Dec 2001.

    Google Scholar 

  71. D.W.R. Gray. Pancreatic islet transplantation-open issues. NY Acad. Sci., 2001.

    Google Scholar 

  72. A. Prokop. Bioartificial pancreas: materials, devices, function, and limitations. Diabetes Technol. Therapeut., 3(3):2001.

    Google Scholar 

  73. T. Loudovaris, S. Jacobs, S. Young, D. Maryanov, J. Brauker, and R.C. Johnson. Correction of diabetic NOD mice with insulinomas implanted within Baxter immunoisolation devices. J. Mol. Med., 77:219–222, 1999

    Article  Google Scholar 

  74. K. Suzuki, S. Bonner-Weir, N. Trivedi, K.H. Yoon, J. Hollister-Lock, C.K. Colton, and G.C. Weir. Function and survival of macroencapsulated syngeneic islets transplanted into streptozocin-diabetic mice. Transplantation, 66(1):21–28, Jul 15, 1998.

    Google Scholar 

  75. K. Suzuki, S. Bonner-Weir, J. Hollister-Lock, C.K. Colton, and G.C. Weir. Number and volume of islets transplanted in immunobarrier devices. Cell Transplant., 7(1):47–52,Jan 2, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Desai, T.A., West, T., Cohen, M., Boiarski, T., Rampersaud, A. (2006). Nanoporous Microsystems for Islet Cell Replacement. In: Ferrari, M., Desai, T., Bhatia, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25844-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25844-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25565-1

  • Online ISBN: 978-0-387-25844-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics