Skip to main content

Janus Face of Phospholipase A2: Role of Phospholipase A2 in Neural Cell Survival and Death

  • Chapter
  • First Online:
Hot Topics in Neural Membrane Lipidology
  • 410 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Raya S., Bloch-Shilderman E., Shohami E., Trembovler V., Shai Y., Weidenfeld J., Yedgar S., Gutman Y., and Lazarovici P. (1998). Pardaxin, a new pharmacological tool to stimulate the arachidonic acid cascade in PC12 cells. J. Pharmacol. Exp. Ther. 287:889–896.

    PubMed  CAS  Google Scholar 

  • Ackermann E. J. and Dennis E. A. (1995). Mammalian calcium-independent phospholipase A2. Biochim. Biophys. Acta Lipids Lipid Metab. 1259:125–136.

    Google Scholar 

  • Akaneya Y. and Tsumoto T. (2006). Bidirectional trafficking of prostaglandin E2 receptors involved in long-term potentiation in visual cortex. J. Neurosci. 26:10209–10221.

    PubMed  CAS  Google Scholar 

  • Akbar M. and Kim H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.

    PubMed  CAS  Google Scholar 

  • André A., Juanéda P., Sébédio J. L., and Chardigny J. M. (2005). Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: Focus on plasmalogens. Lipids 40:799–806.

    PubMed  Google Scholar 

  • Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a specific receptor activation mediated with retinoic acid. Molec. Brain Res. 115:187–195.

    PubMed  CAS  Google Scholar 

  • Ascherio A., Katan M. B., Zock P., Stampfer M. J., and Willett W. C. (1999). Trans fatty acids and coronary heart disease. N. Engl. J. Med. 340:1994–1998.

    PubMed  CAS  Google Scholar 

  • Asai K., Hirabayashi T., Houjou T., Uozumi N., Taguchi R., and Shimizu T. (2003) Human group IVC phospholipase A2 (cPLA2γ) – Roles in the membrane remodeling and activation induced by oxidative stress. J. Biol. Chem. 278:8809–8814.

    PubMed  CAS  Google Scholar 

  • Ates M., Hamza M., Seidel K., Kotalla C. E., Ledent C., and Guhring H. (2003). Intrathecally applied flurbiprofen produces an endocannabinoid-dependent antinociception in the rat formalin test. Eur. J. Neurosci. 17:597–604.

    PubMed  Google Scholar 

  • Atsumi G., Murakami M., Kojima K., Hadano A., Tajima M., and Kudo I. (2000). Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A2α inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J. Biol. Chem. 275:18248–18258.

    PubMed  CAS  Google Scholar 

  • Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J. Biol. Chem. 273:13870–13877.

    PubMed  CAS  Google Scholar 

  • Balboa M. A., Varela-Nieto I., Lucas K. K., and Dennis E. A. (2002). Expression and function of phospholipase A2 in brain. FEBS Lett. 531:12–17.

    PubMed  CAS  Google Scholar 

  • Balsinde J., Pérez R., and Balboa M. A. (2006). Calcium-independent phospholipase A2 and apoptosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1761:1344–1350.

    CAS  Google Scholar 

  • Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.

    Google Scholar 

  • Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Google Scholar 

  • Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272:20313–20316.

    PubMed  CAS  Google Scholar 

  • Bernard J., Lahsaini A., and Massicotte G. (1994). Potassium-induced long-term potentiation in area CA1 of the hippocampus involves phospholipase activation. Hippocampus 4:447–453.

    PubMed  CAS  Google Scholar 

  • Bliss T. V. P. and Collingridge G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    PubMed  CAS  Google Scholar 

  • Bloch-Shilderman E., Abu-Raya S., Trembovler V., Boschwitz H., Gruzman A., Linial M., and Lazarovici P. (2002). Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC-12 cells. J. Pharmacol. Exp. Ther. 301:953–962.

    PubMed  CAS  Google Scholar 

  • Boilard E., Bourgoin S. G., Bernatchez C., Poubelle P. E., and Surette M. E. (2003). Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J. 17:1068–1080.

    PubMed  CAS  Google Scholar 

  • Bramham C. R., Alkon D. L., and Lester D. S. (1994). Arachidonic acid and diacylglycerol act synergistically through protein kinase C to persistently enhance synaptic transmission in the hippocampus. Neuroscience 60:737–743.

    PubMed  CAS  Google Scholar 

  • Brown W. J., Chambers K., and Doody A. (2003). Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221.

    PubMed  CAS  Google Scholar 

  • Brustovetsky T., Antonsson B., Jemmerson R., Dubinsky J. M., and Brustovesky N. (2005). Activation of calcium-independent phospholipase A (iPLA) in brain mitochondria and release of apoptogenic factors by BAX and truncated BID. J. Neurochem. 94:980–994.

    PubMed  CAS  Google Scholar 

  • Burke J. R., Witmer M. R., Tredup J., Micanovic R., Gregor K. R., Lahiri J., Tramposch K. M., and Villafranca J. J. (1995). Cooperativity and binding in the mechanism of cytosolic phospholipase A2. Biochemistry 34:15165–15174.

    PubMed  CAS  Google Scholar 

  • Calderon F. and Kim H. Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90:979–988.

    PubMed  CAS  Google Scholar 

  • Calignano A., Piomelli D., Sacktor T. C., and Schwartz J. H. (1991). A phospholipase A2-stimulating protein regulated by protein kinase C in Aplysia neurons. Mol. Brain Res. 9:347–351.

    PubMed  CAS  Google Scholar 

  • Chen C. and Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20:157–184.

    PubMed  CAS  Google Scholar 

  • Chiba H., Michibata H., Wakimoto K., Seishima M., Kawasaki S., Okubo K., Mitsui H., Torii H., and Imai Y. (2004). Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2δ, induced in psoriatic skin. J. Biol. Chem. 279:12890–12897.

    PubMed  CAS  Google Scholar 

  • Choukroun G. J., Marshansky V., Gustafson C. E., McKee M., Hajjar R. J., Rosenzweig A., Brown D., and Bonventre J. V. (2000). Cytosolic phospholipase A2 regulates Golgi structure and modulates intracellular trafficking of membrane proteins. J. Clin. Invest. 106:983–993.

    PubMed  CAS  Google Scholar 

  • Clark J. D., Schievella A. R., Nalefski E. A., and Lin L.-L. (1995). Cytosolic phospholipase A2. J. Lipid Mediat. Cell Signal. 12:83–117.

    PubMed  CAS  Google Scholar 

  • Clark M. A., Conway T. M., Shorr R. G. L., and Crooke S. T. (1987). Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J. Biol. Chem. 262:4402–4406.

    PubMed  CAS  Google Scholar 

  • Clemen C. S., Herr C., Lie A. A., Noegel A. A., and Schroder R. (2001). Annexin VII: an astroglial protein exhibiting a Ca2+-dependent subcellular distribution. NeuroReport 12:1139–1144.

    PubMed  CAS  Google Scholar 

  • Camandola S., Poli G., and Mattson M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal inhibits constitutive and inducible activity of nuclear factor kappa B in neurons. Brain Res Mol Brain Res. 85:53–60.

    PubMed  CAS  Google Scholar 

  • Cummings B. S., McHowat J., and Schnellmann R. G. (2004). Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J. Pharmacol. Exp. Ther. 308:921–928.

    PubMed  CAS  Google Scholar 

  • de Figueiredo P., Drecktrah D., Katzenellenbogen J. A., Strang M., and Brown W. J. (1998). Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc. Natl. Acad. Sci. USA 95:8642–8647.

    PubMed  Google Scholar 

  • de Figueiredo P., Polizotto R. S., Drecktrah D., and Brown W. J. (1999). Membrane tubule-mediated reassembly and maintenance of the Golgi complex is disrupted by phospholipase A2 antagonists. Mol. Biol. Cell 10:1763–1782.

    PubMed  Google Scholar 

  • DeCoster M. A., Lambeau G., Lazdunski M., and Bazan N. G. (2002). Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J. Neurosci. Res. 67:634–645.

    PubMed  CAS  Google Scholar 

  • DeMar J. C., Jr., Ma K., Bell J. M., Igarashi M., Greenstein D., and Rapoport S. I. (2006). One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J. Lipid Res. 47:172–180.

    PubMed  CAS  Google Scholar 

  • DeVries G. H., Chalifour R. J., and Kanfer J. N. (1983). The presence of phospholipase D in rat central nervous system axolemma. J. Neurochem. 40:1189–1191.

    PubMed  CAS  Google Scholar 

  • Diaz-Arrastia R. and Scott K. S. (1999). Expression of cPLA2-β and cPLA2-γ, novel paralogs of group IV cytosolic phospholipase A2 in mammalian brain. Soc. Neurosci. Abs. 25:2206.

    Google Scholar 

  • Drecktrah D. and Brown W. J. (1999). Phospholipase A2 antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling. Mol. Biol. Cell 10:4021–4032.

    PubMed  CAS  Google Scholar 

  • Ellison G., See R., Levin E., and Kinney J. (1987) Tremorous mouth movements in rats administered chronic neuroleptics. Psychopharmacology (Berl). 92:122–126.

    CAS  Google Scholar 

  • Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004a). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.

    Google Scholar 

  • Farooqui A. A., Haun S. E., and Horrocks L. A. (1994b). Ischemia and hypoxia. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp. 867–883.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.

    PubMed  CAS  Google Scholar 

  • Farooqui, A. A. and Horrocks, L. A. (1994) Involvement of glutamate receptors, lipases, and phospholipases in long-term potentiation and neurodegeneration. J. Neurosci. Res. 38:6–11.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (1994b). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001a). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001b). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2009). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry Lajtha, A. Springer, New York (In Press).

    Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L. A. (2008). Neurochemical Aspects of Excitotoxicity, pp. 1–290. Springer, New York.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2007). Glycerophospholipids in the Brain: phospholipases A2 in neurological disorders, pp. 1–394. Springer, New York.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2007). Modulation of inflammation in brain: a matter of fat. J. Neurochem. 101:577–599.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.

    Google Scholar 

  • Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.

    Google Scholar 

  • Farooqui A. A., Yang H.C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2 and signal transduction. Brain Res. Brain Res. Rev. 21:152–161.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997). Phospholipase A2 and its role in brain tissue. J. Neurochem. 69:889–901.

    PubMed  CAS  Google Scholar 

  • Farooqui A. A., Yang H.-C., and Horrocks L. A. (1994c). Purification of lipases, phospholipases and kinases by heparin-Sepharose chromatography. J. Chromatogr. 673:149–158.

    Google Scholar 

  • Fitzpatrick J. S. and Baudry M. (1994). Blockade of long-term depression in neonatal hippocampal slices by a phospholipase A2 inhibitor. Dev. Brain Res. 78:81–86.

    CAS  Google Scholar 

  • Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Brit. J. Pharmacol. 132:1417–1422.

    CAS  Google Scholar 

  • Fujita S., Ikegaya Y., Nishiyama N., and Matsuki N. (2000). Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn. J. Pharmacol. 83:277–278.

    PubMed  CAS  Google Scholar 

  • Garcia-Estrada J., Gonzalez-Perez O., Gonzalez-Castaneda R. E., Martinez-Contreras A., Luquin S., de la Mora P. G., and Navarro-Ruiz A. (2003) An α-lipoic acid-vitamin E mixture reduces post-embolism lipid peroxidation, cerebral infarction, and neurological deficit in rats. Neurosci Res. 47:219–224.

    PubMed  CAS  Google Scholar 

  • Geddis M. S. and Rehder V. (2003). Initial stages of neural regeneration in Helisoma trivolvis are dependent upon PLA2 activity. J. Neurobiol. 54:555–565.

    PubMed  CAS  Google Scholar 

  • Geddis M. S., Tornieri K., Giesecke A., and Rehder V. (2004). PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones. Cell Motil. Cytoskeleton 57:53–67.

    PubMed  CAS  Google Scholar 

  • Gelb M. H., Jain M. K., and Berg O. G. (1994). Inhibition of phospholipase A2. FASEB J. 8:916–924.

    PubMed  CAS  Google Scholar 

  • Gerke V. and Moss S. E. (1997). Annexins and membrane dynamics. Biochim. Biophys. Acta Mol. Cell Res. 1357:129–154.

    CAS  Google Scholar 

  • Ghijsen W. E., Leenders A. G., and Lopes da Silva F. H. (2003). Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem. Res. 28:1443–1452.

    PubMed  CAS  Google Scholar 

  • Ghosh M., Loper R., Gelb M. H., and Leslie C. C. (2006). Identification of the expressed form of human cytosolic phospholipase A2β (cPLA2β) – cPLA2β3 is a novel variant localized to mitochondria and early endosomes. J. Biol. Chem. 281:16615–16624.

    PubMed  CAS  Google Scholar 

  • Grewal S., Herbert S. P., Ponnambalam S., and Walker J. H. (2005). Cytosolic phospholipase A2-α and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926 endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J. 272:1278–1290.

    PubMed  CAS  Google Scholar 

  • Hanasaki K. and Arita H. (2002). Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat. 68-69:71–82.

    Google Scholar 

  • Herbert S. P., Ponnambalam S., and Walker J. H. (2005). Cytosolic phospholipase A2-α mediates endothelial cell proliferation and is inactivated by association with the Golgi apparatus. Mol. Biol. Cell 16:3800–3809.

    PubMed  CAS  Google Scholar 

  • Herbert S. P. and Walker J. H. (2006). Group VIA calcium-independent phospholipase A2 mediates endothelial cell S phase progression. J. Biol. Chem. 281:35709–35716.

    PubMed  CAS  Google Scholar 

  • Hernández M., Bayón Y., Sánchez Crespo M., and Nieto M. L. (1999). Signaling mechanisms involved in the activation of arachidonic acid metabolism in human astrocytoma cells by tumor necrosis factor-α: phosphorylation of cytosolic phospholipase A2 and transactivation of cyclooxygenase-2. J. Neurochem. 73:1641–1649.

    PubMed  Google Scholar 

  • Hernández M., Nieto M. L., and Sánchez Crespo M. (2000). Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci. 23:259–264.

    PubMed  Google Scholar 

  • Hirabayashi T., Murayama T., and Shimizu T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27:1168–1173.

    PubMed  CAS  Google Scholar 

  • Hirabayashi T. and Shimizu T. (2000). Localization and regulation of cytosolic phospholipase A2. Biochim. Biophys. Acta 1488:124–138.

    PubMed  CAS  Google Scholar 

  • Hornfelt M., Ekström P. A. R., and Edström A. (1999). Involvement of axonal phospholipase A2 activity in the outgrowth of adult mouse sensory axons in vitro. Neuroscience 91:1539–1547.

    PubMed  CAS  Google Scholar 

  • Huang Z., Payette P., Abdullah K., Cromlish W. A., and Kennedy B. P. (1996). Functional identification of the active-site nucleophile of the human 85-kDa cytosolic phospholipase A2. Biochemistry 35:3712–3721.

    PubMed  CAS  Google Scholar 

  • Hulo S., Alberi S., Laux T., Muller D., and Caroni P. (2002). A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity. Eur. J. Neurosci. 15:1976–1982.

    PubMed  CAS  Google Scholar 

  • Ikeno Y., Konno N., Cheon S. H., Bolchi A., Ottonello S., Kitamoto K., and Arioka M. (2005). Secretory phospholipases A2 induce neurite outgrowth in PC12 cells through lysophosphatidylcholine generation and activation of G2A receptor. J. Biol. Chem. 280:28044–28052.

    PubMed  CAS  Google Scholar 

  • Iversen, S. D., Howells, R. B., and Hughes R. P. (1980). Behavioral consequences of long-term treatment with neuroleptic drugs. Adv. Biochem. Psychopharmacol. 24:305–313.

    PubMed  CAS  Google Scholar 

  • Izquierdo I. and Medina J. H. (1995). Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol. Learn. Mem. 63:19–32.

    PubMed  CAS  Google Scholar 

  • Jenkins C. M., Mancuso D. J., Yan W., Sims H. F., Gibson B., and Gross R. W. (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279:48968–48975.

    PubMed  CAS  Google Scholar 

  • Kaetzel M. A. and Dedman J. R. (1995). Annexins: novel Ca2+-dependent regulators of membrane function. News in Physiol. Sci. 10:171–176.

    CAS  Google Scholar 

  • Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.

    PubMed  CAS  Google Scholar 

  • Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.

    PubMed  CAS  Google Scholar 

  • Kim H. Y., Akbar M., Lau A., and Edsall L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem. 275:35215–35223.

    CAS  Google Scholar 

  • Kim S. W., Ko J., Kim J. H., Choi E. C., and Na D. S. (2001a). Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. FEBS Lett. 489:243–248.

    Google Scholar 

  • Kim S. W., Rhee H. J., Ko J. S., Kim Y. J., Kim H. G., Yang J. M., Choi E. C., and Na D. S. (2001b). Inhibition of cytosolic phospholipase A2 by annexin I - Specific interaction model and mapping of the interaction site. J. Biol. Chem. 276:15712–15719.

    Google Scholar 

  • Kishimoto K., Matsumura K., Kataoka Y., Morii H., and Watanabe Y. (1999). Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077.

    PubMed  CAS  Google Scholar 

  • Kita Y., Kimura K. D., Kobayashi M., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U., Nagata S., and Fukui Y. (1998). Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J. Cell Sci. 111 (Pt 7):907–915.

    PubMed  CAS  Google Scholar 

  • Kobayashi M., Nagata S., Kita Y., Nakatsu N., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U., Saitoh I., and Fukui Y. (1997). Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat PC12 cells. Use of Cre/loxP recombination system. J. Biol. Chem. 272:16089–16092.

    CAS  Google Scholar 

  • Kokotos G., Six D. A., Loukas V., Smith T., Constantinou-Kokotou V., Hadjipavlou-Litina D., Kotsovolou S., Chiou A., Beltzner C. C., and Dennis E. A. (2004). Inhibition of group IVA cytosolic phospholipase A2 by novel 2-oxoamides in vitro, in cells, and in vivo. J. Medicinal Chem. 47:3615–3628.

    CAS  Google Scholar 

  • Kolko M., Christoffersen N. R., Barreiro S. G., and Bazan N. G. (2004). Expression and location of mRNAs encoding multiple forms of secretory phospholipase A2 in the rat retina. J. Neurosci. Res. 77:517–524.

    Google Scholar 

  • Kolko M., Christoffersen N. R., Barreiro S. G., Miller M. L., Pizza A. J., and Bazan N. G. (2006). Characterization and location of secretory phospholipase A2 groups IIE, V, and X in the rat brain. J. Neurosci. Res. 83:874–882.

    PubMed  CAS  Google Scholar 

  • Kolko M., Rodriguez de Turco E. B., Diemer N. H., and Bazan N. G. (2002). Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors. NeuroReport 13:1963–1966.

    PubMed  CAS  Google Scholar 

  • Kudo I., and Murakami, M. (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68-69:3–58.

    Google Scholar 

  • Kuroiwa N., Nakamura M., Tagaya M., and Takatsuki A. (2001). Arachidonyltrifluoromethyl ketone, a phospholipase A2 antagonist, induces dispersal of both Golgi stack- and trans Golgi network-resident proteins throughout the cytoplasm. Biochem. Biophys. Res. Commun. 281:582–588.

    PubMed  CAS  Google Scholar 

  • Kuwata H., Fujimoto C., Yoda E., Shimbara S., Nakatani Y., Hara S., Murakami M., and Kudo I. (2007). A novel role of group VIB calcium-independent phospholipase A2 (iPLA2γ) in the inducible expression of group IIA secretory PLA2 in rat fibroblastic cells. J. Biol. Chem. 282:20124–20132.

    PubMed  CAS  Google Scholar 

  • Lambert I. H. and Pedersen S. F. (2006). Multiple PLA2 isoforms regulate taurine release in NIH3T3 mouse fibroblasts. In: Oja S. S. and Saransaari P. (eds.), Taurine 6. Advances in Experimental Medicine and Biology Springer-Verlag Berlin, Berlin, pp. 99–108.

    Google Scholar 

  • Larsson Forsell P. K. A., Runarsson G., Ibrahim M., Björkholm M., and Claesson H. E. (1998). On the expression of cytosolic calcium-independent phospholipase A2 (88 kDa) in immature and mature myeloid cells and its role in leukotriene synthesis in human granulocytes. FEBS Lett. 434:295–299.

    PubMed  CAS  Google Scholar 

  • Larsson P. K. A., Claesson H. E., and Kennedy B. P. (1998). Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J. Biol. Chem. 273:207–214.

    PubMed  CAS  Google Scholar 

  • Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.

    PubMed  CAS  Google Scholar 

  • Lauber K., Bohn E., Krober S. M., Xiao Y.-J., Blumenthal S. G., Lindemann R. K., Marini P., Wiedig C., Zobywalski A., Baksh S., xu Y., Autenrieth I. B., Schulze-Osthoff K., Belka C., Stuhler G., and Wesselborg S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730.

    PubMed  CAS  Google Scholar 

  • Lazarewicz J. W., Wroblewski J. T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55:1875–1881.

    PubMed  CAS  Google Scholar 

  • Le Berre L., Takano T., Papillon J., Lemay S., and Cybulsky A. V. (2006). Role of phosphatidylinositol 4,5-bisphosphate in the activation of cytosolic phospholipase A2-α. Prostaglandins Other Lipid Mediat. 81:113–125.

    PubMed  Google Scholar 

  • Ledeen R. W. and Wu G. S. (2004). Nuclear lipids: key signaling effectors in the nervous system and other tissues. J. Lipid Res. 45:1–8.

    PubMed  CAS  Google Scholar 

  • Lee C. H., Park D. W., Lee J. G., Lee T. I., Kim Y. J., Lee Y. S., and Baek S. H. (2006). Secretory phospholipase A2 induces apoptosis through TNF-alpha and cytochrome c-mediated caspase cascade in murine macrophage RAW 264.7 cells. Eur. J. Pharmacol. 536:47–53.

    PubMed  CAS  Google Scholar 

  • Lee L.-Y., Ong W.-Y., Farooqui A. A., Burgunder J.-M. (2007). Role of brain calcium-independent phospholipase A2 (iPLA2) in motor function-induction of vacuous chewing movements in rats after brain injections of the iPLA2 inhibitor, bromoenol lactone. Psychopharmacology 195: 387–395.

    PubMed  CAS  Google Scholar 

  • Lengqvist J., Mata de Urquiza A., Bergman A. C., Willson T. M., Sjövall J., Perlmann T., and Griffiths W. J. (2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.

    PubMed  CAS  Google Scholar 

  • Levy R. (2006). The role of cytosolic phospholipase A2-alfa in regulation of phagocytic functions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1761:1323–1334.

    CAS  Google Scholar 

  • Linden D. J. and Routtenberg A. (1989). The role of protein kinase C in long-term potentiation: a testable model. Brain Res. Rev. 14:279–296.

    PubMed  CAS  Google Scholar 

  • Lucas K. K. and Dennis E. A. (2004). The ABC's of group IV cytosolic phospholipase A2. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1636:213–218.

    CAS  Google Scholar 

  • Macchioni L., Corazzi L., Nardicchi V., Mannucci R., Arcuri C., Porcellati S., Sposini T., Donato R., and Goracci G. (2004). Rat brain cortex mitochondria release group II secretory phospholipase A2 under reduced membrane potential. J. Biol. Chem. 279:37860–37869.

    PubMed  CAS  Google Scholar 

  • Malaviya R., Ansell J., Hall L., Fahmy M., Argentieri R. L., Olini G. C. J., Pereira D. W., Sur R., and Cavender D. (2006). Targeting cytosolic phospholipase A2 by arachidonyl trifluoromethyl ketone prevents chronic inflammation in mice. Eur. J. Pharmacol. 539:195–204.

    PubMed  CAS  Google Scholar 

  • Manguikian A. D. and Barbour S. E. (2004). Cell cycle dependence of group VIA calcium-independent phospholipase A2 activity. J. Biol. Chem. 279:52881–52892.

    PubMed  CAS  Google Scholar 

  • Massicotte G. (2000). Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol. Life Sci. 57:1542–1550.

    PubMed  CAS  Google Scholar 

  • Masuda S., Murakami M., Takanezawa Y., Aoki J., Arai H., Ishikawa Y., Ishii T., Arioka M., and Kudo I. (2005). Neuronal expression and neuritogenic action of group X secreted phospholipase A2. J. Biol. Chem. 280:23203–23214.

    PubMed  CAS  Google Scholar 

  • Masuda S., Yamamoto K., Hirabayashi T., Ishikawa Y., Ishii T., Kudo I., and Murakami M. (2008). Human group III secreted phospholipase A2 promotes neuronal outgrowth and survival. Biochem. J. 409:429–438.

    PubMed  CAS  Google Scholar 

  • Matsuzawa A., Murakami M., Atsumi G., Imai K., Prados P., Inoue K., and Kudo I. (1996). Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J. 318:701–709.

    PubMed  CAS  Google Scholar 

  • Mayorga L. S., Colombo M. I., Lennartz M., Brown E. J., Rahman K. H., Weiss R., Lennon P. J., and Stahl P. D. (1993). Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. Proc. Natl. Acad. Sci. USA 90:10255–10259.

    PubMed  CAS  Google Scholar 

  • McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.

    PubMed  CAS  Google Scholar 

  • Ménard C., Patenaude C., and Massicotte G. (2005a). Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neurosci. Lett. 389:51–56.

    Google Scholar 

  • Ménard C., Valastro B., Martel M. A., Chartier T., Marineau A., Baudry M., and Massicotte G. (2005b). AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2 and 5-lipoxygenase activities. Hippocampus 15:370–380.

    Google Scholar 

  • Meyer M. C., Rastogi P., Beckett C. S., and McHowat J. (2005). Phospholipase A2 inhibitors as potential anti-inflammatory agents. Curr. Pharmaceut. Design 11:1301–1312.

    CAS  Google Scholar 

  • Mishra R. S., Carnevale K. A., and Cathcart M. K. (2008). iPLA2β: front and center in human monocyte chemotaxis to MCP-1. J Exp Med. 205:347–359.

    PubMed  CAS  Google Scholar 

  • Molloy G. Y., Rattray M., and Williams R. J. (1998). Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci. Lett. 258:139–142.

    PubMed  CAS  Google Scholar 

  • Mosior M., Six D. A., and Dennis E. A. (1998). Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273:2184–2191.

    PubMed  CAS  Google Scholar 

  • Moskowitz N., Puszkin S., and Schook W. (1983). Characterization of brain synaptic vesicle phospholipase A2 activity and its modulation by calmodulin, prostaglandin E2, prostaglandin F2α, cyclic AMP and ATP. J. Neurochem. 41:1576–1586.

    PubMed  CAS  Google Scholar 

  • Moskowitz N., Schook W., and Puszkin S. (1982). Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2. Science 216:305–307.

    PubMed  CAS  Google Scholar 

  • Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp. 77–92.

    Google Scholar 

  • Murakami M. and Kudo I. (2002). Phospholipase A2. J. Biochem. 131:285–292.

    PubMed  CAS  Google Scholar 

  • Murakami M., Masuda S., Shimbara S., Ishikawa Y., Ishii T., and Kudo I. (2005a). Cellular distribution, post-translational modification, and tumorigenic potential of human group III secreted phospholipase A2. J. Biol. Chem. 280:24987–24998.

    Google Scholar 

  • Murakami M., Masuda S., Ueda-Semmyo K., Yoda E., Kuwata H., Takanezawa Y., Aoki J., Arai H., Sumimoto H., Ishikawa Y., Ishii T., Nakatani Y., and Kudo I. (2005b). Group VIB Ca2+-independent phospholipase A2γ promotes cellular membrane hydrolysis and prostaglandin production in a manner distinct from other intracellular phospholipases A2. J. Biol. Chem. 280:14028–14041.

    Google Scholar 

  • Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.

    PubMed  CAS  Google Scholar 

  • Ng C. H. and Ong W. Y. (2001). Increased expression of γ-aminobutyric acid transporters GAT-1 and GAT-3 in the spinal trigeminal nucleus after facial carrageenan injections. Pain 92:29–40.

    PubMed  CAS  Google Scholar 

  • Ng M. N. P., Kitos T. E., and Cornell R. B. (2004). Contribution of lipid second messengers to the regulation of phosphatidylcholine synthesis during cell cycle re-entry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1686:85–99.

    CAS  Google Scholar 

  • Nomura T., Nishizaki T., Enomoto T., and Itoh H. (2001). A long-lasting facilitation of hippocampal neurotransmission via a phospholipase A2 signaling pathway. Life Sci. 68:2885–2891.

    PubMed  CAS  Google Scholar 

  • O'Regan M. H., Perkins L. M., and Phillis J. W. (1995). Arachidonic acid and lysophosphatidylcholine modulate excitatory transmitter amino acid release from the rat cerebral cortex. Neurosci. Lett. 193:85–88.

    PubMed  Google Scholar 

  • Obermeier H., Hrboticky N., and Sellmayer A. (1995). Differential effects of polyunsaturated fatty acids on cell growth and differentiation of premonocytic U937 cells. Biochim. Biophys. Acta 1266:179–185.

    PubMed  Google Scholar 

  • Ohto T., Uozumi N., Hirabayashi T., and Shimizu T. (2005). Identification of novel cytosolic phospholipase A2s, murine cPLA2δ, ε, and ζ, which form a gene cluster with cPLA2β. J. Biol. Chem. 280:24576–24583.

    PubMed  CAS  Google Scholar 

  • Okada D., Yamagishi S., and Sugiyama H. (1989). Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fiber synapses and Schaffer/commissural synapses. Neurosci. Lett. 100:141–146.

    PubMed  CAS  Google Scholar 

  • Osada-Oka M., Takahashi M., Akiba S., and Sato T. (2006). Involvement of Ca2+-independent phospholipase A2 in the translocation of hypoxia-inducible factor-1α to the nucleus under hypoxic conditions. Eur. J. Pharmacol. 549:58–62.

    PubMed  CAS  Google Scholar 

  • Pardue S., Rapoport S. I., and Bosetti F. (2003). Co-localization of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey cerebellum. Molec. Brain Res. 116:106–114.

    PubMed  CAS  Google Scholar 

  • Parente L. and Solito E. (2004). Annexin 1:more than an anti-phospholipase protein. Inflamm Res. 53:125–132.

    PubMed  CAS  Google Scholar 

  • Pedersen S. F., Poulsen K. A., and Lambert I. H. (2006). Roles of phospholipase A2 isoforms in swelling- and melittin-induced arachidonic acid release and taurine efflux in NIH3T3 fibroblasts. Am. J. Physiol. Cell Physiol. 291:C1286–C1296.

    PubMed  CAS  Google Scholar 

  • Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J. H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J. Biol. Chem. 279:11320–11326.

    PubMed  CAS  Google Scholar 

  • Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    PubMed  CAS  Google Scholar 

  • Phillis J. W. and O'Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.

    PubMed  CAS  Google Scholar 

  • Pickard R. T., Strifler B. A., Kramer R. M., and Sharp J. D. (1999). Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J. Biol. Chem. 274:8823–8831.

    PubMed  CAS  Google Scholar 

  • Pirianov G., Danielsson C., Carlberg C., James S. Y., and Colston K. W. (1999). Potentiation by vitamin D analogs of TNFα and ceramide-induced apoptosis in MCF-7 cells is associated with activation of cytosolic phospholipase A2. Cell Death Differ. 6:890–901.

    PubMed  CAS  Google Scholar 

  • Polizotto R. S., de Figueiredo P., and Brown W. J. (1999). Stimulation of Golgi membrane tubulation and retrograde trafficking to the ER by phospholipase A2 activating protein (PLAP) peptide. J. Cell Biochem. 74:670–683.

    PubMed  CAS  Google Scholar 

  • Ray P., Ray R., Broomfield C. A., and Berman J. D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.

    PubMed  CAS  Google Scholar 

  • Reynolds L. J., Hughes L. L., Louis A. I., Kramer R. M., and Dennis E. A. (1993). Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim. Biophys. Acta Lipids Lipid Metab. 1167:272–280.

    CAS  Google Scholar 

  • Rintala J., Seemann R., Chandrasekaran K., Rosenberger T. A., Chang L., Contreras M. A., Rapoport S. I., and Chang M. C. J. (1999). 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. NeuroReport 10:3887–3890.

    PubMed  CAS  Google Scholar 

  • Roshak A. K., Capper E. A., Stevenson C., Eichman C., and Marshall L. A. (2000). Human calcium-independent phospholipase A2 mediates lymphocyte proliferation. J. Biol. Chem. 275:35692–35698.

    PubMed  CAS  Google Scholar 

  • Saavedra G., Zhang W. L., Peterson B., and Cummings B. S. (2006). Differential roles for cytosolic and microsomal Ca2+-independent phospholipase A2 in cell growth and maintenance of phospholipids. J. Pharmacol. Exp. Ther. 318:1211–1219.

    PubMed  CAS  Google Scholar 

  • Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.

    PubMed  CAS  Google Scholar 

  • Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J. Neurochem. 74:1–20.

    PubMed  CAS  Google Scholar 

  • Schaeffer E. L., Bassi F. J., and Gattaz W. F. (2005). Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J. Neural Transm. 112:641–647.

    PubMed  CAS  Google Scholar 

  • Schaeffer E. L. and Gattaz W. F. (2005). Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berl) 181:392–400.

    CAS  Google Scholar 

  • Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., and Söling H. D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.

    PubMed  CAS  Google Scholar 

  • Seashols S. J., del Castillo Olivares A., Gil G., and Barbour S. E. (2004). Regulation of group VIA phospholipase A2 expression by sterol availability. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1684:29–37.

    CAS  Google Scholar 

  • Seleznev K., Zhao C., Zhang X. H., Song K., and Ma Z.A. (2006). Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J. Biol. Chem. 281:22275–22288.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2004). A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol. 122:305–321.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    PubMed  CAS  Google Scholar 

  • Serhan C. N. and Savill J. (2005). Resolution of inflammation: the beginning programs the end. Nature Immunol. 6:1191–1197.

    CAS  Google Scholar 

  • Shirai Y., Balsinde J., and Dennis E. A. (2005). Localization and functional interrelationships among cytosolic Group IV, secreted Group V, and Ca2+-independent group VI phospholipase A2s in P388D1 macrophages using GFP/RFP constructs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1735:119–129.

    CAS  Google Scholar 

  • Shirai Y. and Ito M. (2004). Specific differential expression of phospholipase A2 subtypes in rat cerebellum. J. Neurocytol. 33:297–307.

    PubMed  CAS  Google Scholar 

  • Shmelzer Z., Haddad N., Admon E., Pessach I., Leto T. L., Eitan-Hazan Z., Hershfinkel M., and Levy R. (2003). Unique targeting of cytosolic phospholipase A2 to plasma membranes mediated by the NADPH oxidase in phagocytes. J. Cell Biol. 162:683–692.

    PubMed  CAS  Google Scholar 

  • Slomiany A., Nowak P., Piotrowski E., and Slomiany B. L. (1998). Effect of ethanol on intracellular vesicular transport from Golgi to the apical cell membrane: role of phosphatidylinositol 3-kinase and phospholipase A2 in Golgi transport vesicles association and fusion with the apical membrane. Alcohol Clin. Exp. Res. 22:167–175.

    PubMed  CAS  Google Scholar 

  • Smalheiser N. R., Dissanayake S., and Kapil A. (1996). Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites. Brain Res. 721:39–48.

    PubMed  CAS  Google Scholar 

  • Song C., Chang X. J., Bean K. M., Proia M. S., Knopf J. L., and Kriz R. W. (1999). Molecular characterization of cytosolic phospholipase A2-β. J. Biol. Chem. 274:17063–17067.

    PubMed  CAS  Google Scholar 

  • Song H.W., Ramanadham S., Bao S. Z., Hsu F. F., and Turk J. (2006a). A bromoenol lactone suicide substrate inactivates group VIA phospholipase A2 by generating a diffusible bromomethyl keto acid that alkylates cysteine thiols. Biochemistry 45:1061–1073.

    Google Scholar 

  • Song H. W., Bao S. Z., Ramanadham S., and Turk J. (2006b). Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2. Biochemistry 45:6392–6406.

    Google Scholar 

  • Stahelin R. V., Rafter J. D., Das S., and Cho W. (2003). The molecular basis of differential subcellular localization of C2 domains of protein kinase C-α and group IVa cytosolic phospholipase A2. J. Biol. Chem. 278:12452–12460.

    Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003a). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Brit. J. Pharmacol. 139:1014–1022.

    Google Scholar 

  • Strokin M., Sergeeva M., and Reiser G. (2003b). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J. Pharmacol. 139:1014–1022.

    PubMed  CAS  Google Scholar 

  • Suburo A. and Cei de Job C. (1986). The biphasic effect of phospholipase A2 inhibitors on axon elongation. Int. J. Devl. Neurosci. 4:363–367.

    CAS  Google Scholar 

  • Sun G. Y., Horrocks L. A., and Farooqui A. A. (2007). The role of NADPH oxidase and phospholipases A2 in mediating oxidative and inflammatory responses in neurodegenerative diseases. J. Neurochem. 103:1–16.

    PubMed  CAS  Google Scholar 

  • Sun G. Y. and MacQuarrie R. A. (1989). Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann. N. Y. Acad. Sci. 559:37–55.

    PubMed  CAS  Google Scholar 

  • Sun G. Y., Xu J., Jensen M. D., and Simonyi A. (2004a). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res. 45:205–213.

    Google Scholar 

  • Sun G. Y., Xu J. F., Jensen M. D., and Simonyi A. (2004b). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J. Lipid Res. 45:205–213.

    Google Scholar 

  • Sun G. Y., Xu J. F., Jensen M. D., Yu S., Wood W. G., Gonzalez F. A., Simonyi A., Sun A. Y., and Weisman G. A. (2005). Phospholipase A2 in astrocytes - Responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol. Neurobiol. 31:27–41.

    PubMed  CAS  Google Scholar 

  • Tagaya M., Henomatsu N., Yoshimori T., Yamamoto A., Tashiro Y., and Fukui T. (1993). Correlation between phospholipase A2 activity and intra-Golgi protein transport reconstituted in a cell-free system. FEBS Lett. 324:201–204.

    PubMed  CAS  Google Scholar 

  • Tay A., Maxwell P., Li Z., Goldberg H., and Skorecki K. (1994). Isolation of promoter for cytosolic phospholipase A2 (cPLA2). Biochim. Biophys. Acta 1217:345–347.

    PubMed  CAS  Google Scholar 

  • Thwin M. M., Ong W. Y., Fong C. W., Sato K., Kodama K., Farooqui A. A., and Gopalakrishnakone P. (2003). Secretory phospholipase A2 activity in the normal and kainate injected rat brain, and inhibition by a peptide derived from python serum. Exp. Brain Res. 150:427–-433.

    PubMed  CAS  Google Scholar 

  • Tjonahen E., Oh S. F., Siegelman J., Elangovan S., Percarpio K. B., Hong S., Arita M., and Serhan C. N. (2006). Resolvin E2: Identification and anti-inflammatory actions: pivotal role of human 5-lipoxygenase in resolvin E series biosynthesis. Chemistry & Biology 13:1193–1202.

    CAS  Google Scholar 

  • Tucker D. E., Stewart A., Nallan L., Bendale P., Ghomashchi F., Gelb M. H., and Leslie C. C. (2005). Group IVC cytosolic phospholipase A2γ is farnesylated and palmitoylated in mammalian cells. J. Lipid Res. 46:2122–2133.

    PubMed  CAS  Google Scholar 

  • van Rossum G. S. A. T., Bijvelt J. J. M., van den Bosch H., Verkleij A. J., and Boonstra J. (2002). Cytosolic phospholipase A2 and lipoxygenase are involved in cell cycle progression in neuroblastoma cells. Cell. Mol. Life Sci. 59:181–188.

    PubMed  Google Scholar 

  • van Tienhoven M., Atkins J., Li Y., and Glynn P. (2002). Human neuropathy target esterase catalyzes hydrolysis of membrane lipids. J. Biol. Chem. 277:20942–20948.

    PubMed  Google Scholar 

  • Walters E. T. (1994). Injury-related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia, and analgesia. Int. Rev. Neurobiol. 36:325–427.

    PubMed  CAS  Google Scholar 

  • Weber G. F. (1999). Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle. Neurosci. Biobehav. Rev. 23:1079–1086.

    PubMed  CAS  Google Scholar 

  • Wei S., Ong W. Y., Thwin M. M., Fong C. W., Farooqui A. A., Gopalakrishnakone P., and Hong W. J. (2003). Differential activities of secretory phospholipase A2 (sPLA2) in rat brain and effects of sPLA2 on neurotransmitter release. Neuroscience 121:891–898.

    PubMed  CAS  Google Scholar 

  • Wilton D. C. (2005). Phospholipases A2: structure and function. Eur. J. Lipid Sci. Technol. 107:193–205.

    CAS  Google Scholar 

  • Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997). Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl. Acad. Sci. USA 94:5073–5077.

    PubMed  CAS  Google Scholar 

  • Wolf M. J., Izumi Y., Zorumski C. F., and Gross R. W. (1995). Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 377:358–362.

    PubMed  CAS  Google Scholar 

  • Wullner U., Seyfried J., Groscurth P., Beinroth S., Winter S., Gleichmann M., Heneka M., Loschmann P., Schulz J. B., Weller M., and Klockgether T. (1999). Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 826:53–62.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Asakura K., Hayasaki-Kajiwara Y., Nakazato H., Sakaeda T., Hata S., Kuroda T., Takasu N., and Hori Y. (2002). Group IB secretory phospholipase A2 induces neuronal cell death via apoptosis. J. Neurochem. 81:449–461.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Asakura K., Sakaeda T., Hata S., Kuroda T., Sakaguchi G., Itoh N., Hashimoto Y., and Hori Y. (2003). Porcine pancreatic group IB secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels. Brain Res. 960:71–80.

    PubMed  CAS  Google Scholar 

  • Yagami T., Ueda K., Hata S., Kuroda T., Itoh N., Sakaguchi G., Okamura N., Sakaeda T., and Fujimoto M. (2005). S-2474, a novel nonsteroidal anti-inflammatory drug, rescues cortical neurons from human group IIA secretory phospholipase A2-induced apoptosis. Neuropharmacology 49:174–184.

    PubMed  CAS  Google Scholar 

  • Yagi K., Shirai Y., Hirai M., Sakai N., and Saito N. (2004). Phospholipase A2 products retain a neuron specific γ isoform of PKC on the plasma membrane through the C1 domain - a molecular mechanism for sustained enzyme activity. Neurochem. Int. 45:39–47.

    PubMed  CAS  Google Scholar 

  • Yamashita A., Kamata R., Kawagishi N., Nakanishi H., Suzuki H., Sugiura T., and Waku K. (2005). Roles of C-terminal processing, and involvement in transacylation reaction of human group IVC phospholipase A2 (cPLA2γ). J. Biochem. 137:557–567.

    PubMed  CAS  Google Scholar 

  • Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994a). Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem. J. 299:91–95.

    Google Scholar 

  • Yang H. C., Mosior M., Ni B., and Dennis E. A. (1999). Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J. Neurochem. 73:1278–1287.

    PubMed  CAS  Google Scholar 

  • Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994b). Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem. Biophys. Res. Commun. 199:1158–1166.

    Google Scholar 

  • Yedgar S., Cohen Y., and Shoseyov D. (2006). Control of phospholipase A2 activities for the treatment of inflammatory conditions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1761:1373–1382.

    CAS  Google Scholar 

  • Yeo J. F., Ong W. Y., Ling S. F., and Farooqui A. A. (2004). Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain 112:148–155.

    PubMed  CAS  Google Scholar 

  • Zaleska M.M. and Wilson D.F. (1989) Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52:255–260.

    PubMed  CAS  Google Scholar 

  • Zanassi P., Paolillo M., and Schinelli S. (1998). Coexpression of phospholipase A2 isoforms in rat striatal astrocytes. Neurosci. Lett. 247:83–86.

    PubMed  CAS  Google Scholar 

  • Zhao S., Du X. Y., Chai M. Q., Chen J. S., Zhou Y. C., and Song J. G. (2002). Secretory phospholipase A2 induces apoptosis via a mechanism involving ceramide generation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1581:75–88.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2009). Janus Face of Phospholipase A2: Role of Phospholipase A2 in Neural Cell Survival and Death. In: Hot Topics in Neural Membrane Lipidology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09693-3_3

Download citation

Publish with us

Policies and ethics