Skip to main content

The Non-invasive Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability

  • Chapter
  • First Online:
Handbook of Behavioral Medicine

Abstract

A major goal of the present chapter is to try to provide a comprehensive framework that researchers can use to generate testable hypotheses about the autonomic influences on the heart. This will include a brief discussion of the differential autonomic influences on different cardiac effector tissues including sympathetic–parasympathetic interactions as well as the discussion of cardiovascular activation components and the baroreflex. In addition, we will briefly overview the genetics as well as the neural concomitants of impedance derived indices and heart rate variability (HRV). Another goal will be to expose researchers to the range of phenomena that might be related to measures of impedance cardiography and HRV. These include aspects of physiological regulation, emotional regulation, and cognitive regulation. Finally, we will try to present what we perceive to be some of the future challenges in using these important techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note: This is an updated and expanded version of a previous chapter, Thayer JF, Hansen AL, Johnsen BH: Non-invasive assessment of autonomic influences on the heart: Impedance cardiography and heart rate variability. In Luecken LJ, Gallo LC (eds.), Handbook of Physiological Research Methods in Health Psychology. Newbury Park, CA: Sage Publications, 2008, 183-209.

References

  • Ahern, G. L., Sollers, J. J., Lane, R. D., Labiner, D. M., Herring, A. M. et al (2001). Heart rate and heart rate variability changes in the intracarotid sodium amobarbital (ISA) test. Epilepsia, 42, 912–921.

    Article  PubMed  CAS  Google Scholar 

  • Akay, M. (1997). Time Frequency and Wavelets in Biomedical Signal Processing. New York: IEEE Press.

    Google Scholar 

  • Allen, J. J. B., Chambers, A. S., and Towers, D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biol Psychol, 74, 243–262.

    Article  PubMed  Google Scholar 

  • Appelhans, B. M., and Luecken, L. J. (2006). Heart rate variability as an index of regulated emotional responding. Rev Gen Psychol, 10, 229–240.

    Article  Google Scholar 

  • Arnett, D. K., Devereux, R. B., Kitzman, D., Oberman, A., Hopkins, P. et al (2001). Linkage of left ventricular contractility to chromosome 11 in humans: The HyperGEN study. Hypertension, 38, 767–772.

    Article  PubMed  CAS  Google Scholar 

  • Arnsten, A. F. T., and Goldman-Rakic, P. S. (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch Gen Psychiatry, 55, 362–369.

    Article  PubMed  CAS  Google Scholar 

  • Benarroch, E. E. (1997). The central autonomic network. In P. A. Low (Ed.), Clinical Autonomic Disorders, 2nd Ed (pp. 17–23). Philadelphia, PA: Lippincott-Raven.

    Google Scholar 

  • Benarroch, E. E. (2008). The arterial baroreflex: functional organization and involvement in neurologic disease. Neurology, 71, 1733–1738.

    Article  PubMed  Google Scholar 

  • Berne, R. M., and Levy, M. N. (2001). Cardiovascular Physiology. London: Mosby Press.

    Google Scholar 

  • Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G. et al (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.

    Article  PubMed  CAS  Google Scholar 

  • Bogert, L. W. J., and van Lieshout, J. J. (2005). Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp Physiol, 90.4, 437–446.

    Article  Google Scholar 

  • Boomsma, D. I., van Baal, G. C., and Orlebeke, J. F. (1990). Genetic influences on respiratory sinus arrhythmia across different task conditions. Acta Genet Med Gemellol (Roma), 39, 181–191.

    CAS  Google Scholar 

  • Brook, R. D., and Julius, S. (2000). Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens, 13, 112S–122S.

    Article  PubMed  CAS  Google Scholar 

  • Busjahn, A., Voss, A., Knoblauch, H., Knoblauch, M., Jeschke, E. et al (1998). Angiotensin-converting enzyme and angiotensinogen gene polymorphisms and heart rate variability in twins. Am J Cardiol, 81, 755–60.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, T. G., Guyton, A. C., Cowley, A. W. Jr, Bower, J. D. et al (1977). Feedback mechanisms of arterial pressure control. Contrib Nephrol, 8, 5–12.

    PubMed  CAS  Google Scholar 

  • Coleman, W. M. (1921). On the correlation of the rate of heart beat, breathing, bodily movement, and sensory stimuli. J Physiol, 54, 213–217.

    Google Scholar 

  • Cybulski, G., Michalak, E., Kozluk, E., Piatkowska, A., and Niewiadomski, W. (2004). Stroke volume and systolic time intervals: beat-to-beat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions. Med Biol Eng Comput, 42, 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Doerr, D. F., Ratliff, D. A., Sithole, J., and Convertino, V. A. (2005). Stroke volume during orthostatic challenge: comparison of two non-invasive methods. Aviat, Space Environ Med, 76, 935–939.

    Google Scholar 

  • Duschek, S., and Reyes del Paso, G. A. (2007). Quantification of cardiac baroreflex function at rest and during autonomic stimulation. J Physiol Sci, 57, 259–268.

    Article  PubMed  Google Scholar 

  • Eckberg, D. L. (1997). Sympathovagal balance—a critical appraisal. Circulation, 96, 3224–3232.

    Article  PubMed  CAS  Google Scholar 

  • Fagard, R. H., Pardaens, K., Staessen, J. A., and Thijs, L. (1996). Prognostic value of invasive hemodynamic measurements at rest and during exercise in hypertensive men. Hypertension, 28, 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Frijda, N. H. (1988). The laws of emotion. Am Psychol, 43, 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Giardino, N. D., Lehrer, P. M., and Edelberg, R. (2002). Comparison of finger plethysmograph to ECG in the measurement of heart rate variability. Psychophysiology, 35, 246–253.

    Article  Google Scholar 

  • Hesse, C., Charkoudian, N., Liu, Z., Joyner, M. J., and Eisenach, J. H. (2007). Baroreflex sensitivity inversely correlates with ambulatory blood pressure in healthy normotensive humans. Hypertension, 50, 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Hill, L. K., Siebenbrock, A., Sollers, J. J., and Thayer, J. F. (2009). All are measures created equal? Heart rate variability and respiration. Biomed Sci Instrum, 45, 71–76.

    PubMed  Google Scholar 

  • Hon, E. H. (1958). The electronic evaluation of the fetal heart rate. Am J Obstet Gynecol, 75, 1215–1230.

    PubMed  CAS  Google Scholar 

  • Houtveen, J. H., Rietveld, S., and de Geus, E. J. (2002). Contribution of tonic vagal modulation of heart rate, central respiratory drive, respiratory depth, and respiratory frequency to respiratory sinus arrhythmia during mental stress and physical exercise. Psychophysiology, 39, 427–436.

    Article  PubMed  Google Scholar 

  • Jensen, L., Yakimets, J., and Teo, K. K. (1995). A review of impedance cardiography. Heart Lung, 24, 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Jose, A. D., and Collison, D. (1970). The normal range and determinants of the intrinsic heart rate in man. Cardiovasc Res, 4, 160–167.

    Article  PubMed  CAS  Google Scholar 

  • Kay, S. M., and Marple, S. L. (1981). Spectral analysis—a modern perspective. Proc IEEE Inst Electr Electron Eng, 69, 1380–1419.

    Google Scholar 

  • Kitney, R. I. (1980). An analysis of thermoregulatory influences on heart-rate variability. In R. I. Kitney & O. Rompelman (Eds.), The study of heart-rate variability (pp. 81–106). Oxford: Clarendon Press.

    Google Scholar 

  • Kupper, N., Willemsen, G., Boomsma, D., and De Geus, E. J. C. (2006). Heritability of indices of cardiac contractility in ambulatory recordings. J Cardiovasc Electrophysiol, 17, 877–883.

    Article  PubMed  Google Scholar 

  • Kupper, N., Willemsen, G., van den Berg, M., de Boer, D., Posthuma, D., et al (2004). Heritability of ambulatory heart rate variability. Circulation, 110, 2792–2796.

    Google Scholar 

  • LaRover, M. T., and the ATRAMI investigators (1998). Baroreflex sensitivity and heart rate variability in prediction of total mortality after myocardial infarction. Lancet, 351, 478–484.

    Article  Google Scholar 

  • Levy, M. N. (1997). Neural control of cardiac function. Baillieres Clin Neurol, 6, 227–244.

    PubMed  CAS  Google Scholar 

  • Levy, M. N., and Martin, P. J. (1996). Autonomic control of cardiac conduction and automaticity. In J. T. Shepard & S. J. Vatner (Eds.), Nervous Control of the Heart (pp. 201–225). Amsterdam: Harwood Academic Publishers .

    Google Scholar 

  • Levy, M. N., and Zieske, H. (1969). Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol, 27, 465–470.

    PubMed  CAS  Google Scholar 

  • Lohmeier, T. E. (2001). The sympathetic nervous system and long-term blood pressure regulation. Am J Hypertens, 14, 147S–154S.

    Article  PubMed  CAS  Google Scholar 

  • Lohmeier, T. E., Irwin, E. D., Rossing, M. A., Serdar, D. J., and Kieval, R. S. (2004). Prolonged activation of the baroreflex produces sustained hypotension. Hypertension, 43, 306–311.

    Article  PubMed  CAS  Google Scholar 

  • Mamivuo, J., and Plonsey, R. (1995). Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press.

    Book  Google Scholar 

  • McGrath, J. J., O’Brien, W. H., Hassinger, H. J., and Shah, P. (2005). Comparability of spot versus band electrodes for impedance cardiography. J Psychophysiol, 19, 195–203.

    Article  Google Scholar 

  • McKinley, P. S., Shapiro, P. A., Bagiella, E., Myers, M. M., DeMeersman, R. E. et al (2003). Deriving heart rate variability from blood pressure waveforms. J Appl Physiol, 95, 1431–1438.

    PubMed  Google Scholar 

  • Mensah, G. A., Pappas, T. W., Koren, M. J., Ulin, R. J. et al (1993). Comparison of the classification of the severity of hypertension by blood pressure level and by WHO criteria in the prediction of concurrent cardiac abnormalities and subsequent complications in essential hypertension. J Hypertens, 11, 1429–1440.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. B., and Ditto, B. (1988). Cardiovascular responses to an extended aversive video game task. Psychophysiology, 25, 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Moak, J. P., Goldstein, D. S., Eldadah, B. A., Saleem, A., Holmes, C. et al (2007). Supine low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm, 4, 1523–1529.

    Article  PubMed  Google Scholar 

  • Neumann, S. A., Lawrence, E. C., Jennings, J. R., Ferrell, R. E., and Manuck, S. B. (2005). Heart rate variability is associated with polymorphic variation in the choline transporter gene. Psychosom Med, 67, 168–171.

    Article  PubMed  CAS  Google Scholar 

  • Niskanen, J. P., Tarvainen, M. P., Ranta-aho, P. O., and Karjalainen, P. A. (2004). Software for advanced HRV analysis. Comput Methods Programs Biomed, 76, 73–81

    Article  PubMed  Google Scholar 

  • Ottaviani, C., Shapiro, D., Goldstein, I. B., James, J. E., and Weiss, R. (2006). Hemodynamic profile, compensation deficit, and ambulatory blood pressure. Psychophysiology, 43, 46–56.

    Article  PubMed  Google Scholar 

  • Pagani, M. Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R. et al (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res, 59, 178–193.

    Article  PubMed  CAS  Google Scholar 

  • Parati, G., Di Rienzo, M., and Mancia, G. (2000). How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. J Hypertens, 18, 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Penaz, J. (1978). Mayer waves: history and methodology. Automedica, 2, 135–141.

    Google Scholar 

  • Penttila, J., Helminen, A., Jartti,T., Kuusela, T., Huikuri, H. V. et al (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Physiol, 21, 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Pincus, S. M. (2001). Assessing serial irregularity and its implications for health. Ann New York Acad Sci, 954, 245–267.

    Article  CAS  Google Scholar 

  • Porges, S. W. (1995). Orienting in a defensive world: mammalian modification of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32, 301–318.

    Article  PubMed  CAS  Google Scholar 

  • Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., and Greenspan, S. I. (1996). Infant regulation of the vagal “brake” predicts child behavior problems: a psychobiological model of social. Dev Psychobiol, 29, 697–712.

    Article  PubMed  CAS  Google Scholar 

  • Porges, S. W., Doussard-Roosevelt, J. A., Stifter, C. A., McClenny, B. D., and Riniolo, T. C.(1999). Sleep state and vagal regulation of heart period patterns in the human newborn: an extension of the polyvagal theory. Psychophysiology, 36, 14–21.

    Article  PubMed  CAS  Google Scholar 

  • Ring, C., Burns, V. E., and Carroll, D. (2002). Shifting hemodynamics of blood pressure control during prolonged mental stress. Psychophysiology, 39, 585–590.

    Article  PubMed  Google Scholar 

  • Roach, D., Wilson, W., Ricthie, D., and Sheldon, R. (2004) Dissection of long-range heart rate variability. J Am Coll Cardiol, 43, 2271–2277.

    Article  PubMed  Google Scholar 

  • Saul, J. P. (1990). Beat-to beat variations of heart rate reflect modulation of cardiac autonomic outflow. News Physiol Sci, 5, 32–37.

    Google Scholar 

  • Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R. et al (1990a). Methodological guidelines for impedance cardiography. Psychophysiology, 27, 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Sherwood, A., Dolan, C. A., and Light, K. C. (1990b). Hemodynamics of blood pressure responses during active and passive coping. Psychophysiology, 27, 656–668.

    Article  PubMed  CAS  Google Scholar 

  • Snieder, H., Dong, Y., Barbeau, P., Harshfield, G. A., Dalageogou, C. et al (2002). Beta 2-adrenergic receptor gene and resting hemodynamics in European and African American youth. Am J Hypertens, 15, 973–979.

    Article  PubMed  CAS  Google Scholar 

  • Snieder, H., Harshfield, G. A., and Treiber, F. A. (2003). Heritability of blood pressure and hemodynamics in African- and European-American youth. Hypertension, 41, 1196–1201.

    Article  PubMed  CAS  Google Scholar 

  • Snieder, H., van Doornen, L. J. P., Boomsma, D., and Thayer, J. F. (2007). Sex differences and heritability of two indices of heart rate dynamics: a twin study. Twin Res Hum Genet, 10, 364–372.

    Article  PubMed  Google Scholar 

  • Sollers, J. J., Sanford, T. A., Nabors-Oberg, R. E., Anderson, C. A., and Thayer, J. F. (2002). Examining changes in HRV in response to varying ambient temperature. IEEE Eng Med Biol Mag, 21, 30–34.

    Article  PubMed  Google Scholar 

  • Stein, P. K., and Kleiger, R. E. (1999). Insights from the study of heart rate variability. Annu Rev Med, 50, 249–261.

    Article  PubMed  CAS  Google Scholar 

  • Stemmler, G., Grossman, P., Schmid, H., and Foerster, F. (1991). A model of cardiovascular activation components for studies using autonomic receptor antagonists. Psychophysiology, 28, 367–382.

    Article  PubMed  CAS  Google Scholar 

  • Sztajzel, J. (2004). Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med Wkly, 134, 514–522.

    PubMed  Google Scholar 

  • Tang, W., Arnett, D. K., Devereux, R. B., Province, M. A., Atwood, L. et al (2002). Sibling resemblance for left ventricular structure, contractility, and diastolic filling. Hypertension, 40, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.

    Article  Google Scholar 

  • Thayer, J. F., Hansen, A. L., Saus-Rose E., and Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function and cognitive performance: the Neurovisceral Integration perspective on self-regulation, adapttion, and health. Ann Behavl Med, 37, 141–153.

    Article  Google Scholar 

  • Thayer, J. F., and Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. J Affect Disord, 61, 201–216.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, J. F., and Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol, 74, 224–242.

    Article  PubMed  Google Scholar 

  • Thayer, J. F., and Lane, R. D. (2009). Claude Bernard and the heart-brain connection: further elaboration of a model of Neurovisceral Integration. Neurosci Biobehav Rev, 33, 81–88.

    Article  PubMed  Google Scholar 

  • Thayer, J. F., Merritt, M. M., Sollers, J. J., Zonderman, A. B., Evans, M. K. et al (2003). Effect of angiotensin-converting enzyme insertion/deletion polymorphism DD genotype on high-frequency heart rate variability in African Americans. Am J Cardiol, 92, 1487–1490.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, J. F., Sollers, J. J., Ruiz-Padial, E., and Vila, J. (2002). Estimating respiratory frequency from autoregressive spectral analysis of heart period. IEEE Eng Med Biol Mag, 21, 41–45.

    Article  PubMed  Google Scholar 

  • Thayer, J. F., and Uijtdehaage, S. H. J. (2001). Derivation of chronotropic indices of autonomic nervous system activity using impedance cardiography. Biomed Sci Instrum, 37, 331–336.

    PubMed  CAS  Google Scholar 

  • Thrasher, T. N. (2006). Arterial baroreceptor input contributes to long-term control of blood pressure. Curr Hypertens Rep, 8, 249–254.

    Article  PubMed  Google Scholar 

  • Tzeng, Y. C., Larsen, P. D., and Galletly, D. C. (2003). Cardioventilatory coupling in resting human subjects. Exp Physiol, 88.6, 775–782.

    Article  Google Scholar 

  • Uijtdehaage, S. B. H., and Thayer, J. F. (2000). Accentuated antagonism in the control of human heart rate. Clin Auton Res, 10, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Wallin, B. G. (2006). Regulation of sympathetic nerve traffic to skeletal muscle in resting humans. Clin Auton Res, 16, 262–269.

    Article  PubMed  Google Scholar 

  • Wang, X., Ding, X., Su, S., Li, Z., Riese, H. et al (2009). Genetic influences on heart rate variability at rest and during stress. Psychophysiology, 46, 458–465.

    Article  PubMed  Google Scholar 

  • Wang, X., Thayer, J. F., Treiber, F., and Snieder, H. (2005) Ethnic differences and heritability of heart rate variability in African- and European American youth. Am J Cardiol, 96, 1166–1172.

    Article  PubMed  Google Scholar 

  • Wesseling, K. H., Jansen, J. R., Settels, J. J., and Schreuder, J. J. (1993). Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol, 74, 2566–2573.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. Thayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thayer, J.F., Hansen, A.L., Johnsen, B.H. (2010). The Non-invasive Assessment of Autonomic Influences on the Heart Using Impedance Cardiography and Heart Rate Variability. In: Steptoe, A. (eds) Handbook of Behavioral Medicine. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09488-5_47

Download citation

Publish with us

Policies and ethics