Skip to main content

Comprehensive Analysis of Microbial Lipids in Environmental Samples Through HPLC-MS Protocols

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Diversification and fine-tuning of membrane lipids has been a crucial step in allowing taxonomic diversification of microbial life, ecological expansion into new or changing habitats, and exploration of novel resources. This results in a strong association between lipid composition and taxonomy, environmental conditions, and some particular metabolic activities, an association that is the base of the lipid biomarker concept. Applied to environmental and geological samples, lipid biomarkers are able to provide a wealth of information: recalcitrant apolar lipids and relatively labile intact polar lipids can be informative on geological and biological timescales, respectively. We here provide an overview of the current state of lipid biomarker analysis by high-performance liquid chromatography mass spectrometry (HPLC-MS), with an emphasis on applications to complex environmental samples. Coupled to mass spectrometry through electrospray ionization, normal-phase or hydrophilic interaction liquid chromatography provides straightforward analysis of intact polar lipids (IPLs) according to their headgroups. Implementation of reversed-phase separation, on the other hand, offers to dramatically expand the analytical window of LC-MS amenable lipids and besides IPLs may, for example, target apolar glycerolipids, quinones, pigments, and bacteriohopanepolyols. An outlook to the potential of ultrahigh-resolution mass spectrometry to revolutionize several aspects of lipid biomarker analysis in the near future is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APCI:

Atmospheric pressure chemical ionization

ASE:

Accelerated solvent extraction

BHP:

Bacteriohopanepolyol

DCM:

Dichloromethane

ESI:

Electrospray ionization

GDGT:

Glyceroldialkylglyceroltetraether

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

IPA:

Isopropanol

IPL:

Intact polar lipid

IS:

Internal standard

LC:

Liquid chromatography

LDI:

Long-chain diol index

MeCN:

Acetonitrile

MeOH:

Methanol

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NP:

Normal phase

RP:

Reversed phase

SST:

Sea surface temperature

TCA:

Trichloroacetic acid

TEX86 :

Tetraether index of lipids with 86 carbons

TLC:

Thin-layer chromatography

UHPLC:

Ultrahigh-performance liquid chromatography

U K’ 37 :

Alkenone unsaturation index

v:

Volume

wt%:

% Weight

References

  1. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annual Rev Biochem 66:199–232

    Article  CAS  Google Scholar 

  2. Koga Y, Nishihara M, Morii H et al (1993) Ether polar lipids of methanogenic bacteria – structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rossel PE, Lipp JS, Fredricks HF et al (2008) Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Org Geochem 39:992–999

    Article  CAS  Google Scholar 

  4. Van Mooy BAS, Fredricks HF (2010) Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: water-column distribution, planktonic sources, and fatty acid composition. Geochim Cosmochim Acta 74:6499–6516

    Article  CAS  Google Scholar 

  5. Harvey HR, Fallon RD, Patton JS (1986) The effect of organic-matter and oxygen on the degradation of bacterial-membrane lipids in marine-sediments. Geochim Cosmochim Acta 50:795–804

    Article  CAS  Google Scholar 

  6. Xie ST, Lipp JS, Wegener G et al (2013) Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations. Proc Natl Acad Sci USA 110:6010–6014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siegenthaler P-A, Murata N (1998) Lipids in photosynthesis. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  8. Makula RA, Finnerty WR (1974) Phospholipid composition of Desulfovibrio species. J Bacteriol 120:1279–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rütters H, Sass H, Cypionka H et al (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442

    Article  PubMed  Google Scholar 

  10. Shimada H, Nemoto N, Shida Y et al (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190:5404–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshinaga MY, Gagen EJ, Wormer L et al (2015) Methanothermobacter thermautotrophicus modulates s membrane lipids in response to hydrogen and nutrient availability. Front Microbiol 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Popendorf KJ, Tanaka T, Pujo-Pay M et al (2011) Gradients in intact polar diacylglycerolipids across the Mediterranean Sea are related to phosphate availability. Biogeosci 8:3733–3745

    Article  CAS  Google Scholar 

  13. Van Mooy BAS, Fredricks HF, Pedler BE et al (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  14. Langworthy TA, Pond JL (1986) Archaebacterial ether lipids and chemotaxonomy. Syst Appl Microbiol 7:253–257

    Article  CAS  Google Scholar 

  15. Sinninghe Damste JS, Strous M, Rijpstra WIC et al (2002) Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708–712

    Article  CAS  PubMed  Google Scholar 

  16. Bauersachs T, Compaore J, Hopmans EC et al (2009) Distribution of heterocyst glycolipids in cyanobacteria. Phytochem 70:2034–2039

    Article  CAS  Google Scholar 

  17. Wörmer L, Cires S, Velazquez D et al (2012) Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol Oceanogr 57:1775–1788

    Article  Google Scholar 

  18. Popendorf KJ, Lomas MW, Van Mooy BAS (2011) Microbial sources of intact polar diacylglycerolipids in the Western North Atlantic Ocean. Org Geochem 42:803–811

    Article  CAS  Google Scholar 

  19. Schubotz F, Wakeham SG, Lipp JS et al (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734

    Article  CAS  PubMed  Google Scholar 

  20. Pitcher A, Villanueva L, Hopmans EC et al (2011) Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J 5:1896–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moore EK, Villanueva L, Hopmans EC et al (2015) Abundant trimethylornithine lipids and specific gene sequences are indicative of Planctomycete importance at the oxic/anoxic interface in Sphagnum-dominated northern wetlands. Appl Environ Microbiol 81:6333–6344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schubotz F, Meyer-Dombard DR, Bradley AS et al (2013) Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park. Geobiol 11:549–569

    CAS  Google Scholar 

  23. Gibson RA, Van Der Meer MTJ, Hopmans EC et al (2013) Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields. Geobiol 11:72–85

    Article  CAS  Google Scholar 

  24. Reeves EP, Yoshinaga MY, Pjevac P et al (2014) Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys. Environ Microbiol 16:3515–3532

    Article  CAS  PubMed  Google Scholar 

  25. Rossel PE, Elvert M, Ramette A et al (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184

    Article  CAS  Google Scholar 

  26. Schubotz F, Lipp JS, Elvert M et al (2011) Petroleum degradation and associated microbial signatures at the Chapopote asphalt volcano, Southern Gulf of Mexico. Geochim Cosmochim Acta 75:4377–4398

    Article  CAS  Google Scholar 

  27. Biddle JF, Lipp JS, Lever MA et al (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci USA 103:3846–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lipp JS, Morono Y, Inagaki F et al (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994

    Article  CAS  PubMed  Google Scholar 

  29. Hinrichs KU, Hmelo LR, Sylva SP (2003) Molecular fossil record of elevated methane levels in late pleistocene coastal waters. Science 299:1214–1217

    Article  CAS  PubMed  Google Scholar 

  30. Kuypers MMM, Pancost RD, Sinninghe Damste JS (1999) A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature 399:342–345

    Article  CAS  Google Scholar 

  31. Sepulveda J, Wendler JE, Summons RE et al (2009) Rapid resurgence of marine productivity after the cretaceous-paleogene mass extinction. Science 326:129–132

    Article  CAS  PubMed  Google Scholar 

  32. Brassell SC, Eglinton G, Marlowe IT et al (1986) Molecular Stratigraphy – a new tool for climatic assessment. Nature 320:129–133

    Article  CAS  Google Scholar 

  33. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330:367–369

    Article  CAS  Google Scholar 

  34. Schouten S, Hopmans EC, Schefuss E et al (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274

    Article  CAS  Google Scholar 

  35. Reuss N, Conley DJ, Bianchi TS (2005) Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Mar Chem 95:283–302

    Article  CAS  Google Scholar 

  36. Tani Y, Kurihara K, Nara F et al (2002) Temporal changes in the phytoplankton community of the southern basin of Lake Baikal over the last 24,000 years recorded by photosynthetic pigments in a sediment core. Org Geochem 33:1621–1634

    Article  CAS  Google Scholar 

  37. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic-matter. Org Geochem 9:83–99

    Article  CAS  Google Scholar 

  38. Blumenberg M, Berndmeyer C, Moros M et al (2013) Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea. Biogeosci 10:2725–2735

    Article  CAS  Google Scholar 

  39. Summons RE, Jahnke LL, Hope JM et al (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  PubMed  Google Scholar 

  40. White DC, Davis WM, Nickels JS et al (1979) Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40:51–62

    Article  Google Scholar 

  41. Kuypers MMM, Blokker P, Erbacher J et al (2001) Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science 293:92–94

    Article  CAS  PubMed  Google Scholar 

  42. Liu X-L, Lipp JS, Schroeder JM et al (2012) Isoprenoid glycerol dialkanol diethers: a series of novel archaeal lipids in marine sediments. Org Geochem 43:50–55

    Article  CAS  Google Scholar 

  43. Schouten S, Hopmans EC, Forster A et al (2003) Extremely high sea-surface temperatures at low latitudes during the middle Cretaceous as revealed by archaeal membrane lipids. Geology 31:1069–1072

    Article  CAS  Google Scholar 

  44. Schouten S, Hopmans EC, Pancost RD et al (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA 97:14421–14426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Myher JJ, Kuksis A (1995) General strategies in chromatographic analysis of lipids. J Chromatogr B 671:3–33

    Article  CAS  Google Scholar 

  46. Hopmans EC, Schouten S, Pancost RD et al (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Sp 14:585–589

    Article  CAS  Google Scholar 

  47. Rütters H, Sass H, Cypionka H et al (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48:149–160

    Article  PubMed  Google Scholar 

  48. Sturt HF, Summons RE, Smith K et al (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Sp 18:617–628

    Article  CAS  Google Scholar 

  49. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  50. Nishihara M, Koga Y (1987) extraction and composition of polar lipids from the archaebacterium, Methanobacterium-thermoautotrophicum – effective extraction of tetraether lipids by an acidified solvent. J Biochem Tokyo 101:997–1005

    CAS  PubMed  Google Scholar 

  51. Huguet C, Martens-Habbena W, Urakawa H et al (2010) Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples. Limnol Oceanogr Methods 8:127–145

    Article  CAS  Google Scholar 

  52. Lengger SK, Hopmans EC, Sinninghe Damste JS et al (2012) Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments. Org Geochem 47:34–40

    Article  CAS  Google Scholar 

  53. Zhu R, Evans TW, Wormer L et al (2013) Improved sensitivity of sedimentary phospholipid analysis resulting from a novel extract cleanup strategy. Org Geochem 65:46–52

    Article  CAS  Google Scholar 

  54. Lipp JS, Hinrichs KU (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta 73:6816–6833

    Article  CAS  Google Scholar 

  55. Liu X, Lipp JS, Hinrichs K-U (2011) Distribution of intact and core GDGTs in marine sediments. Org Geochem 42:368–375

    Article  CAS  Google Scholar 

  56. Pitcher A, Hopmans EC, Schouten S et al (2009) Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions. Org Geochem 40:12–19

    Article  CAS  Google Scholar 

  57. Heinzelmann SM, Bale NJ, Hopmans EC et al (2014) Critical assessment of glyco- and phospholipid separation by using silica chromatography. Appl Environ Microbiol 80:360–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin YS, Lipp JS, Elvert M et al (2013) Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing. Environ Microbiol 15:1634–1646

    Article  CAS  PubMed  Google Scholar 

  59. Kim HY, Wang TCL, Ma YC (1994) Liquid-chromatography mass-spectrometry of phospholipids using electrospray-ionization. Anal Chem 66:3977–3982

    Article  CAS  PubMed  Google Scholar 

  60. Schouten S, Huguet C, Hopmans EC et al (2007) Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 79:2940–2944

    Article  CAS  PubMed  Google Scholar 

  61. Diaz-Cruz MS, De Alda MJL, Barcelo D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trac-Trend Anal Chem 22:340–351

    Article  CAS  Google Scholar 

  62. Theodoridis G, Gika HG, Wilson ID (2008) LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. Trac-Trend Anal Chem 27:251–260

    Article  CAS  Google Scholar 

  63. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic-acids and other polar compounds. J Chromatogr 499:177–196

    Article  CAS  PubMed  Google Scholar 

  64. Fischbeck A, Krueger M, Blaas N et al (2009) Analysis of sphingomyelin in meat based on hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS). J Agr Food Chem 57:9469–9474

    Article  CAS  Google Scholar 

  65. Schwalbe-Herrmann M, Willmann J, Leibfritz D (2010) Separation of phospholipid classes by hydrophilic interaction chromatography detected by electrospray ionization mass spectrometry. J Chromatogr A 1217:5179–5183

    Article  CAS  PubMed  Google Scholar 

  66. Wörmer L, Lipp JS, Schroeder JM et al (2013) Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Org Geochem 59:10–21

    Article  CAS  Google Scholar 

  67. Becker KW, Lipp JS, Zhu C et al (2013) An improved method for the analysis of archaeal and bacterial ether core lipids. Org Geochem 61:34–44

    Article  CAS  Google Scholar 

  68. Becker KW, Lipp JS, Versteegh GJM et al (2015) Rapid and simultaneous analysis of three molecular sea surface temperature proxies and application to sediments from the Sea of Marmara. Org Geochem 85:42–53

    Article  CAS  Google Scholar 

  69. Bühring SI, Kamp A, Wormer L et al (2014) Functional structure of laminated microbial sediments from a supratidal sandy beach of the German Wadden Sea (St. Peter-Ording). J Sea Res 85:463–473

    Article  Google Scholar 

  70. Schubotz F, Hays LE, Meyer-Dombard DR et al (2015) Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kaufmann P, Olsson NU (1993) Determination of intact molecular-species of bovine-milk 1, 2-diacyl-sn-glycero-3-phosphocholine and 1, 2-diacyl-sn-glycero-3-phosphoethanolamine by reversed-phase hplc, a multivariate optimization. Chromatographia 35:517–523

    Article  CAS  Google Scholar 

  72. Zhu C, Lipp JS, Wormer L et al (2013) Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol. Org Geochem 65:53–62

    Article  CAS  Google Scholar 

  73. Talbot HM, Rohmer M, Farrimond P (2007) Rapid structural elucidation of composite bacterial hopanoids by atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry. Rapid Commun Mass Sp 21:880–892

    Article  CAS  Google Scholar 

  74. Talbot HM, Watson DF, Murrell JC et al (2001) Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 921:175–185

    Article  CAS  PubMed  Google Scholar 

  75. Neubauer C, Dalleska NF, Cowley ES et al (2015) Lipid remodeling in Rhodopseudomonas palustris TIE-1 upon loss of hopanoids and hopanoid methylation. Geobiol 13:443–453

    Article  CAS  Google Scholar 

  76. Lanekoff I, Karlsson R (2010) Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS. Anal Bioanal Chem 397:3543–3551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang JI, Talaty N, Costa AB et al (2011) Rapid direct lipid profiling of bacteria using desorption electrospray ionization mass spectrometry. Int J Mass Spec 301:37–44

    Article  CAS  Google Scholar 

  78. Zhang YG, Zhang CL, Liu X-L et al (2011) Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett 307:525–534

    Article  CAS  Google Scholar 

  79. Elling FJ, Konneke M, Lipp JS et al (2014) Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment. Geochim Cosmochim Acta 141:579–597

    Article  CAS  Google Scholar 

  80. Zhu C, Yoshinaga MY, Peters CA et al (2014) Identification and significance of unsaturated archaeal tetraether lipids in marine sediments. Rapid Commun Mass Sp 28:1144–1152

    Article  CAS  Google Scholar 

  81. Zhu C, Meador TB, Dummann W et al (2014) Identification of unusual butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in marine sediments. Rapid Commun Mass Sp 28:332–338

    Article  CAS  Google Scholar 

  82. Meador TB, Bowles M, Lazar CS et al (2015) The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. Environ Microbiol 17:2441–2458

    Article  CAS  PubMed  Google Scholar 

  83. Souverain S, Rudaz S, Veuthey JL (2004) Matrix effect in LC-ESI-MS and LC-APCI-MS with off-line and on-line extraction procedures. J Chromatogr A 1058:61–66

    Article  CAS  PubMed  Google Scholar 

  84. Escala M, Rosell-Mele A, Masque P (2007) Rapid screening of glycerol dialkyl glycerol tetraethers in continental Eurasia samples using HPLC/APCI-ion trap mass spectrometry. Org Geochem 38:161–164

    Article  CAS  Google Scholar 

  85. Yang H, Lu XX, Ding WH et al (2015) The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT ') in soils from an altitudinal transect at Mount Shennongjia. Org Geochem 82:42–53

    Article  CAS  Google Scholar 

  86. Liu XL, Summons RE, Hinrichs KU (2012) Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns. Rapid Commun Mass Sp 26:2295–2302

    Article  CAS  Google Scholar 

  87. De Jonge C, Hopmans EC, Stadnitskaia A et al (2013) Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS. Org Geochem 54:78–82

    Article  CAS  Google Scholar 

  88. Huguet C, Fietz S, Rosell-Mele A (2013) Global distribution patterns of hydroxy glycerol dialkyl glycerol tetraethers. Org Geochem 57:107–118

    Article  CAS  Google Scholar 

  89. Liu XL, Zhu C, Wakeham SG et al (2014) In situ production of branched glycerol dialkyl glycerol tetraethers in anoxic marine water columns. Mar Chem 166:1–8

    Article  CAS  Google Scholar 

  90. Rampen SW, Willmott V, Kim JH et al (2012) Long chain 1,13-and 1,15-diols as a potential proxy for palaeotemperature reconstruction. Geochim Cosmochim Acta 84:204–216

    Article  CAS  Google Scholar 

  91. Brugger B, Erben G, Sandhoff R et al (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fang JS, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography electrospray ionization mass spectrometry. J Microbiol Methods 33:23–35

    Article  CAS  Google Scholar 

  93. Knappy CS, Chong JPJ, Keely BJ (2009) Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry. J Am Soc Mass Spectr 20:51–59

    Article  CAS  Google Scholar 

  94. Yoshinaga MY, Kellermann MY, Rossel PE et al (2011) Systematic fragmentation patterns of archaeal intact polar lipids by high-performance liquid chromatography/electrospray ionization ion-trap mass spectrometry. Rapid Commun Mass Sp 25:3563–3574

    Article  CAS  Google Scholar 

  95. Popendorf KJ, Fredricks HF, Van Mooy BAS (2013) Molecular ion-independent quantification of polar glycerolipid classes in marine plankton using triple quadrupole MS. Lipids 48:185–195

    Article  CAS  PubMed  Google Scholar 

  96. Huguet C, Hopmans EC, Febo-Ayala W et al (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem 37:1036–1041

    Article  CAS  Google Scholar 

  97. Zink KG, Wilkes H, Disko U et al (2003) Intact phospholipids – microbial “life markers” in marine deep subsurface sediments. Org Geochem 34:755–769

    Article  CAS  Google Scholar 

  98. Han XL, Gross RW (2005) Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev Proteom 2:253–264

    Article  CAS  Google Scholar 

  99. Jensen SM, Brandl M, Treusch AH et al (2015) Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics. J Mass Spectrom 50:476–487

    Article  CAS  PubMed  Google Scholar 

  100. Jones JJ, Stump MJ, Fleming RC et al (2004) Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. J Am Soc Mass Spectr 15:1665–1674

    Article  CAS  Google Scholar 

  101. Van Baar BLM (2000) Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol Rev 24:193–219

    Article  PubMed  Google Scholar 

  102. Meetani MA, Shin YS, Zhang SF et al (2007) Desorption electrospray ionization mass spectrometry of intact bacteria. J Mass Spectrom 42:1186–1193

    Article  CAS  PubMed  Google Scholar 

  103. Heim C, Sjovall P, Lausmaa J et al (2009) Spectral characterisation of eight glycerolipids and their detection in natural samples using time-of-flight secondary ion mass spectrometry. Rapid Commun Mass Sp 23:2741–2753

    Article  CAS  Google Scholar 

  104. Leefmann T, Heim C, Kryvenda A et al (2013) Biomarker imaging of single diatom cells in a microbial mat using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Org Geochem 57:23–33

    Article  CAS  Google Scholar 

  105. Thiel V, Toporski J, Schumann G et al (2007) Analysis of archaeal core ether lipids using time of flight-secondary ion mass spectrometry (ToF-SIMS): exploring a new prospect for the study of biomarkers in geobiology. Geobiol 5:75–83

    Article  CAS  Google Scholar 

  106. Wörmer L, Elvert M, Fuchser J et al (2014) Ultra-high-resolution paleoenvironmental records via direct laser-based analysis of lipid biomarkers in sediment core samples. Proc Natl Acad Sci USA 111:15669–15674

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hayes JM (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. Rev Mineral Geochem 43:225–277

    Article  CAS  Google Scholar 

  108. Boschker HTS, Nold SC, Wellsbury P et al (1998) Direct linking of microbial populations to specific biogeochemical processes by C-13-labelling of biomarkers. Nature 392:801–805

    Article  CAS  Google Scholar 

  109. Jehmlich N, Schmidt F, Hartwich M et al (2008) Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Commun Mass Sp 22:2889–2897

    Article  CAS  Google Scholar 

  110. Justice NB, Li Z, Wang YF et al (2014) N-15- and H-2 proteomic stable isotope probing links nitrogen flow to archaeal heterotrophic activity. Environ Microbiol 16:3224–3237

    Article  CAS  PubMed  Google Scholar 

  111. Pan CL, Fischer CR, Hyatt D et al (2011) Quantitative tracking of isotope flows in proteomes of microbial communities. Mol Cell Proteom 10: M110-006049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Wörmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Wörmer, L., Lipp, J.S., Hinrichs, KU. (2015). Comprehensive Analysis of Microbial Lipids in Environmental Samples Through HPLC-MS Protocols. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_183

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_183

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52791-7

  • Online ISBN: 978-3-662-52793-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics