Skip to main content

Multiphysics Computational Modeling in Cartilage Tissue Engineering

  • Chapter
  • First Online:
Computational Modeling in Tissue Engineering

Abstract

A common technique for in vitro cartilage regeneration is to seed a porous matrix with cartilage cells and to culture the construct in static conditions or under medium perfusion in a bioreactor. An essential step toward the development of functional cartilage is to understand and control the tissue growth phenomenon in such systems. The growth process depends on various space- and time-varying biophysical variables of the environment surrounding the cartilage cells, primarily mass transport and mechanical variables, all involved in the cell biological response. Moreover, the growth process is inherently multiscale, since cell size (10 μm), scaffold pore size (100 μm), and cellular construct size (10 mm) pertain to three separate spatial scales. To obtain a quantitative understanding of cartilage growth in this complex multiphysics and multiscale system, advanced mathematical models and efficient scientific computing techniques have been developed. In this chapter, we discuss the existing knowledge in this field and we present the most recent advancements for the numerical simulation of cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boschetti, F., Raimondi, M.T., Migliavacca, F., Dubini, G.: Prediction of the micro-fluid dynamic environment imposed to three-dimensional engineered cell systems in bioreactors. J. Biomech. 39(3), 418–425 (2006)

    Article  Google Scholar 

  2. Botchwey, E.A., Pollack, S.R., El-Amin, S., Levine, E.M., Tuan, R.S., Laurencin, C.T.: Human osteoblast-like cells in three-dimensional culture with fluid flow. Biorheology 40, 299–306 (2003)

    Google Scholar 

  3. Botchwey, E.A., Dupree, M.A., Pollack, S.R., Levine, E.M., Laurencin, C.T.: Tissue-engineered bone: measurement of nutrient transport in three-dimensional matrices. J. Biomed. Mater. Res. A 67(1), 357–367 (2003)

    Article  Google Scholar 

  4. Burman, E., Hansbo. P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. (2011). doi:10.1016/j.apnum.2011.01.008

  5. Burman, E., Zunino, P.: Numerical approximation of large contrast problems with the unfitted Nitsche method, frontiers in numerical analysis––Durham 2010. In: Blowey, J., Jensen, M. (eds.) Lecture Notes in Computational Science and Engineering, vol. 85, Springer, Heidelberg, Germany, (2012). ISBN 978-3-642-23913-7

    Google Scholar 

  6. Byrne, H.M., King, J.R., McElwain, D.L.S., Preziosi, L.: A two-phase model of solid tumor growth. Appl. Math. Lett. 16(4), 567–573 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, G., Youssef, B.B., Markenscoff, P., Zygourakis, K.: Cell population dynamics modulate the rates of tissue growth processes. Biophys. J. 90(3), 713–724 (2006)

    Article  Google Scholar 

  8. Chung, C.A., Yang, C.W., Chen, C.W.: Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering. Biotechnol. Bioeng. 94(6), 1138–1146 (2006)

    Article  Google Scholar 

  9. Chung, C.A., Chen, C.W., Chen, C.P., Tseng, C.S.: Enhancement of cell growth in tissue-engineering constructs under direct perfusion: modeling and simulation. Biotechnol. Bioeng. 97(6), 1603–1616 (2007)

    Article  Google Scholar 

  10. Cioffi, M., Boschetti, F., Raimondi, M.T., Dubini, G.: Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: a micro-CT based model. Biotechnol. Bioeng. 93(3), 500–510 (2006)

    Article  Google Scholar 

  11. Cioffi, M., Küffer, J., Ströbel, S., Dubini, G., Martin, I., Wendt, D.: Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models. J. Biomech. 41(14), 2918–2925 (2008)

    Article  Google Scholar 

  12. D’Angelo, C., Zunino, P.: Robust numerical approximation of coupled Stokes and Darcy flows applied to vascular hemodynamics and biochemical transport. ESAIM: Math. Model. Numer. Anal. (M2AN) 45(3), 447–476 (2011)

    Google Scholar 

  13. DiMicco, M.A., Sah, R.L.: Dependence of cartilage matrix composition on biosynthesis, diffusion, and reaction. Transp. Porous Media 50(1–2), 57–73 (2003)

    Article  Google Scholar 

  14. El Haj, A.J., Wood, M.A., Thomas, P., Yang, Y.: Controlling cell biomechanics in orthopaedic tissue engineering and repair. Pathol. Biol. 53(10), 581–589 (2005)

    Article  Google Scholar 

  15. Galban, C.J., Locke, B.R.: Analysis of cell growth kinetics and substrate diffusion in a polymer scaffold. Biotech. Bioeng. 65(2), 121–132 (1999)

    Article  Google Scholar 

  16. Galbusera, F., Cioffi, M., Raimondi, M.T., Pietrabissa, R.: Computational modelling of combined cell population dynamics and oxygen transport in engineered tissue subject to interstitial perfusion. Comput. Methods. Biomech. Biomed. Eng. 10(4), 279–287 (2007)

    Article  Google Scholar 

  17. Galbusera, F., Cioffi, M., Raimondi, M.T.: An in silico bioreactor for simulating laboratory experiments in tissue engineering. Biomed. Microdevice 10(4), 547–554 (2008)

    Article  Google Scholar 

  18. Glowinski, R., Pan, T.W., Périaux, J.: A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Eng. 111(3-4), 283–303 (1994)

    Article  MATH  Google Scholar 

  19. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47-48), 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer 33(8), 1587–1597 (1990)

    Article  MATH  Google Scholar 

  21. Klein, T.J., Sah, R.L.: Modulation of depth-dependent properties in tissue-engineered cartilage with a semi-permeable membrane and perfusion: a continuum model of matrix metabolism and transport. Biomech. Model Mechanobiol. 6, 21–32 (2007)

    Article  Google Scholar 

  22. Laganà, M., Raimondi, M.T.: (2011) A miniaturized, optically accessible bioreactor for systematic 3D tissue engineering research. Biomedical Microdevices. doi:10.1007/s10544-011-9600-0

  23. Lemon, G., King, J.R., Byrne, H.M., Jensen, O.E., Shakesheff, K.M.: Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. J. Math. Biol. 52(5), 571–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marle, C.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. Int. J. Eng. Sci. 20(5), 643–662 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mizuno, S., Tateishi, T., Ushida, T., Glowacki, J.: Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J. cell physiol. 193, 319–327 (2002)

    Article  Google Scholar 

  26. Moretti, M., Freed, L.E., Padera, R.F., Laganà, K., Boschetti, F., Raimondi, M.T.: An integrated experimental–computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion. Bio-Med. Mater. Eng. 18(4–5), 273–278 (2008)

    Google Scholar 

  27. Obradovic, B., Meldon, J.H., Lisa, E.F., Vunjak-Novakovic, G.: Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. AIChE J. 46, 1860–1871 (2000)

    Article  Google Scholar 

  28. Palsson, E.: A three-dimensional model of cell movement in multicellular systems. Future Gener. Comput. Sys. 17, 835–852 (2001)

    Article  MATH  Google Scholar 

  29. Pisu, M., Lai, N., Cincotti, A., Concas, A., Cao, G.: Modeling of engineered cartilage growth in rotating bioreactors. Chem. Eng. Sci. 59, 5035–5040 (2004)

    Article  Google Scholar 

  30. Plank, M.J., Sleeman, B.D., Jones, P.F.: A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. J. Theor. Biol. 229(4), 435–454 (2004)

    Article  MathSciNet  Google Scholar 

  31. Porter, B., Zauel, R., Stockman, H., Guldberg, R., Fyhrie, D.: 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J. Biomech. 38(3), 543–549 (2005)

    Article  Google Scholar 

  32. Potter, H.G., Linklater, J.M., Allen, A.A., Hannafin, J., Haas, S.: Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J. Bone Joint Surg. (Am.) 80, 1276–1284 (1998)

    Google Scholar 

  33. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1999), ISBN: 0-19-850178-1

    Google Scholar 

  34. Quarteroni, A., Veneziani, A., Zunino, P.: Mathematical and numerical modelling of solute dynamics in blood flow and arterial walls. SIAM J. Numer. Anal 39(2), 1488–1511 (2002)

    Article  MathSciNet  Google Scholar 

  35. Quarteroni, A., Veneziani, A., Zunino, P.: Domain decomposition methods for blood solute dynamics. SIAM J. Sci. Comput. 23(6), 1959–1980 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Raimondi, M.T., Boschetti, F., Falcone, L., Fiore, G.B., Remuzzi, A., Marinoni, E., Marazzi, M., Pietrabissa, R.: Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Biomech. Model. Mechanobiol. 1, 69–82 (2002)

    Article  Google Scholar 

  37. Raimondi, M.T., Boschetti, F., Falcone, L., Migliavacca, F., Remuzzi, A., Dubini, G.: The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Biorheology 41(3–4), 401–410 (2004)

    Google Scholar 

  38. Raimondi, M.T.: Engineered tissue as a model to study cell and tissue function from a biophysical perspective. Curr. Drug Discov. Technol. 3(4), 245–268 (2006a)

    Article  Google Scholar 

  39. Raimondi, M.T., Moretti, M., Cioffi, M., Giordano, C., Boschetti, F., Laganà, K., Pietrabissa, R.: The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion. Biorheology 43(3–4), 215–222 (2006b)

    Google Scholar 

  40. Raimondi, M.T., Candiani, G., Cabras, M., Cioffi, M., Laganà, K., Moretti, M., Pietrabissa, R.: Engineered cartilage constructs subject to very low regimens of interstitial perfusion. Biorheology 45(3–4), 471–478 (2008)

    Google Scholar 

  41. Raimondi, M.T., Bridgen, D.T., Laganà, M., Tonnarelli, B., Cioffi, M., Boschetti, F., Wendt, D.: In-tegration of experimental and computational microfluidics in 3D tissue engineering. In: Berthiaume, F., Morgan, J. (eds.) Methods in Bioengineering––3D Tissue Engineering. Artech House, Boston, London (2010). ISBN: 978-1-59693-458

    Google Scholar 

  42. Raimondi, M.T., Bonacina, E., Candiani, G., Laganà, M., Rolando, E., Talò, G., Pezzoli, D., D’Anchise, R., Pietrabissa, R., Moretti, M.: Comparative chondrogenesis of human cells in a 3D integrated experimental-computational mechanobiology model. Biomech. Model. Mechanobiol. 10(2), 259–268 (2011a)

    Article  Google Scholar 

  43. Raimondi, M.T., Causin, P., Mara, A., Nava, M., Laganà, M., Sacco, R.: Breakthroughs in computational modeling of cartilage regeneration in perfused bioreactors. IEEE Trans. Biomed. Eng. 58(12) (2011b). doi:10.1109/TBME.2011.2163405

  44. Sacco, R., Causin, P., Zunino, P., Raimondi, M.T.: A multiphysics/multiscale numerical simulation of scaffold-based cartilage regeneration under interstitial perfusion in a bioreactor. Biomech. Model. Mechanobiol. 10(4), 577–589 (2011)

    Article  Google Scholar 

  45. Sengers, B.G., van Donkelaar, C.C., Oomens, C.W., Baaijens, F.P.: Computational study of culture conditions and nutrient supply in cartilage tissue engineering. Biotechnol. Prog. 21(4), 1252–1261 (2005)

    Article  Google Scholar 

  46. Schulz, R.M., Bader, A.: Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J. 36, 539–568 (2007)

    Article  Google Scholar 

  47. Singh, H., Teoh, S.H., Low, H.T., Hutmacher, D.W.: Flow modeling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation. J. Biotechnol. 119, 181–196 (2005)

    Article  Google Scholar 

  48. Whitaker, S.: The Method of Volume Averaging Theory and Application of Transport in Porous Media. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  49. Williams, K.A., Saini, S., Wick, T.M.: Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Prog. 18(5), 951–963 (2002)

    Article  Google Scholar 

  50. Wood, B.D., Quintard, M., Whitaker, S.: Calculation of effective diffusivities for bio films and tissues. Biotech. Bioeng. 77(5), 495–514 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Politecnico di Milano, under grant 5 per Mille Junior 2009 CUPD41J10000490001 “Computational Models for Heterogeneous Media. Application to Micro Scale Analysis of Tissue-engineered Constructs”, by the Italian Institute of Technology (IIT-Genoa), under grant “Biosensors and Artificial Bio-systems”, and by the Cariplo Foundation (Milano), under grant 2010 “3D Micro structuring and Functionalisation of Polymeric Materials for Scaffolds in Regenerative Medicine”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Teresa Raimondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raimondi, M.T., Causin, P., Laganà, M., Zunino, P., Sacco, R. (2011). Multiphysics Computational Modeling in Cartilage Tissue Engineering. In: Geris, L. (eds) Computational Modeling in Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8415_2011_112

Download citation

  • DOI: https://doi.org/10.1007/8415_2011_112

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32562-5

  • Online ISBN: 978-3-642-32563-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics