Skip to main content

The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 409))

Abstract

Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other’s expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.

This is a preview of subscription content, log in via an institution.

Abbreviations

AMP:

Antimicrobial peptide

CAMP:

Cationic antimicrobial peptide

CA-MRSA:

Community-associated methicillin-resistant S. aureus

HA-MRSA:

Healthcare-associated methicillin-resistant S. aureus

HDP:

Host defence cationic antimicrobial peptides

HK:

Histidine kinase

MSSA:

Methicillin-sensitive S. aureus

PMNs:

Polymorphonuclear leucocytes

SSL:

Staphylococcus superantigen-like

TCS:

Two-component signal transduction system

VISA:

Vancomycin-intermediate S. aureus

VRSA:

Vancomycin-resistant S. aureus

VSSA:

Vancomycin-susceptible S. aureus

References

  • Adhikari RP, Novick RP (2008) Regulatory organization of the staphylococcal sae locus. Microbiology 154(Pt 3):949–959. doi:10.1099/mic.0.2007/012245-0

    Article  CAS  PubMed  Google Scholar 

  • Arvidson S, Tegmark K (2001) Regulation of virulence determinants in Staphylococcus aureus. Int J Med Microbiol 291(2):159–170. doi:10.1078/1438-4221-00112

    Article  CAS  PubMed  Google Scholar 

  • Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101(33):12312–12317. doi:10.1073/pnas.0404728101

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Bagnoli F, Fontana MR, Soldaini E, Mishra RP, Fiaschi L, Cartocci E, Nardi-Dei V, Ruggiero P, Nosari S, De Falco MG, Lofano G, Marchi S, Galletti B, Mariotti P, Bacconi M, Torre A, Maccari S, Scarselli M, Rinaudo CD, Inoshima N, Savino S, Mori E, Rossi-Paccani S, Baudner B, Pallaoro M, Swennen E, Petracca R, Brettoni C, Liberatori S, Norais N, Monaci E, Bubeck Wardenburg J, Schneewind O, O’Hagan DT, Valiante NM, Bensi G, Bertholet S, De Gregorio E, Rappuoli R, Grandi G (2015) Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc Natl Acad Sci USA. doi:10.1073/pnas.1424924112

    PubMed Central  Google Scholar 

  • Balaban N, Goldkorn T, Gov Y, Hirshberg M, Koyfman N, Matthews HR, Nhan RT, Singh B, Uziel O (2001) Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J Biol Chem 276(4):2658–2667

    Article  CAS  PubMed  Google Scholar 

  • Ballal A, Basu B, Apte SK (2007) The Kdp-ATPase system and its regulation. J Biosci 32(3):559–568

    Article  CAS  PubMed  Google Scholar 

  • Batzilla CF, Rachid S, Engelmann S, Hecker M, Hacker J, Ziebuhr W (2006) Impact of the accessory gene regulatory system (Agr) on extracellular proteins, codY expression and amino acid metabolism in Staphylococcus epidermidis. Proteomics 6(12):3602–3613. doi:10.1002/pmic.200500732

    Article  CAS  PubMed  Google Scholar 

  • Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186(14):4665–4684. doi:10.1128/JB.186.14.4665-4684.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belcheva A, Golemi-Kotra D (2008) A close-up view of the VraSR two-component system. A mediator of Staphylococcus aureus response to cell wall damage. J Biol Chem 283(18):12354–12364. doi:10.1074/jbc.M710010200

    Article  CAS  PubMed  Google Scholar 

  • Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F (2000) Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6(5):668–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benson MA, Lilo S, Wasserman GA, Thoendel M, Smith A, Horswill AR, Fraser J, Novick RP, Shopsin B, Torres VJ (2011) Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner. Mol Microbiol 81(3):659–675. doi:10.1111/j.1365-2958.2011.07720.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benson MA, Lilo S, Nygaard T, Voyich JM, Torres VJ (2012) Rot and SaeRS cooperate to activate expression of the staphylococcal superantigen-like exoproteins. J Bacteriol 194(16):4355–4365. doi:10.1128/JB.00706-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benton BM, Zhang JP, Bond S, Pope C, Christian T, Lee L, Winterberg KM, Schmid MB, Buysse JM (2004) Large-scale identification of genes required for full virulence of Staphylococcus aureus. J Bacteriol 186(24):8478–8489. doi:10.1128/JB.186.24.8478-8489.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blake KL, Randall CP, O’Neill AJ (2011) In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrob Agents Chemother 55(5):2362–2368. doi:10.1128/AAC.01077-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blevins JS, Beenken KE, Elasri MO, Hurlburt BK, Smeltzer MS (2002) Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect Immun 70(2):470–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21(11):1353–1366. doi:10.1101/gad.423507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS ONE 5(4):e10146. doi:10.1371/journal.pone.0010146

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  • Botella E, Devine SK, Hubner S, Salzberg LI, Gale RT, Brown ED, Link H, Sauer U, Codee JD, Noone D, Devine KM (2014) PhoR autokinase activity is controlled by an intermediate in wall teichoic acid metabolism that is sensed by the intracellular PAS domain during the PhoPR-mediated phosphate limitation response of Bacillus subtilis. Mol Microbiol 94(6):1242–1259. doi:10.1111/mmi.12833

    Article  CAS  PubMed  Google Scholar 

  • Boyle-Vavra S, Yin S, Daum RS (2006) The VraS/VraR two-component regulatory system required for oxacillin resistance in community-acquired methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 262(2):163–171. doi:10.1111/j.1574-6968.2006.00384.x

    Article  CAS  PubMed  Google Scholar 

  • Bronner S, Monteil H, Prevost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28(2):183–200. doi:10.1016/j.femsre.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  • Brunskill EW, Bayles KW (1996a) Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J Bacteriol 178(3):611–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunskill EW, Bayles KW (1996b) Identification of LytSR-regulated genes from Staphylococcus aureus. J Bacteriol 178(19):5810–5812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burnside K, Lembo A, de Los Reyes M, Iliuk A, Binhtran NT, Connelly JE, Lin WJ, Schmidt BZ, Richardson AR, Fang FC, Tao WA, Rajagopal L (2010) Regulation of hemolysin expression and virulence of Staphylococcus aureus by a serine/threonine kinase and phosphatase. PLoS ONE 5(6):e11071. doi:10.1371/journal.pone.0011071

    Article  PubMed Central  ADS  CAS  PubMed  Google Scholar 

  • Canova MJ, Baronian G, Brelle S, Cohen-Gonsaud M, Bischoff M, Molle V (2014) A novel mode of regulation of the Staphylococcus aureus vancomycin-resistance-associated response regulator VraR mediated by Stk1 protein phosphorylation. Biochem Biophys Res Commun 447(1):165–171. doi:10.1016/j.bbrc.2014.03.128

    Article  CAS  PubMed  Google Scholar 

  • Casino P, Rubio V, Marina A (2010) The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 20(6):763–771. doi:10.1016/j.sbi.2010.09.010

    Article  CAS  PubMed  Google Scholar 

  • Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13(5):509–519. doi:10.1016/j.chom.2013.04.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaffin DO, Taylor D, Skerrett SJ, Rubens CE (2012) Changes in the Staphylococcus aureus transcriptome during early adaptation to the lung. PLoS ONE 7(8):e41329. doi:10.1371/journal.pone.0041329

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Chen J, Novick RP (2007) svrA, a multi-drug exporter, does not control agr. Microbiology 153(Pt 5):1604–1608. doi:10.1099/mic.0.2007/006247-0

    Article  CAS  PubMed  Google Scholar 

  • Cheung AL, Eberhardt K, Heinrichs JH (1997) Regulation of protein A synthesis by the sar and agr loci of Staphylococcus aureus. Infect Immun 65(6):2243–2249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Cheung GY, Wang R, Khan BA, Sturdevant DE, Otto M (2011) Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun 79(5):1927–1935. doi:10.1128/IAI.00046-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung AL, Bayer AS, Yeaman MR, Xiong YQ, Waring AJ, Memmi G, Donegan N, Chaili S, Yang SJ (2014) Site-specific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect Immun 82(12):5336–5345. doi:10.1128/IAI.02480-14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P (2010) Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 6(3):e1000809. doi:10.1371/journal.ppat.1000809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cho H, Jeong DW, Liu Q, Yeo WS, Vogl T, Skaar EP, Chazin WJ, Bae T (2015) Calprotectin increases the activity of the SaeRS two component system and murine mortality during Staphylococcus aureus infections. PLoS Pathog 11(7):e1005026. doi:10.1371/journal.ppat.1005026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coumes-Florens S, Brochier-Armanet C, Guiseppi A, Denizot F, Foglino M (2011) A new highly conserved antibiotic sensing/resistance pathway in firmicutes involves an ABC transporter interplaying with a signal transduction system. PLoS ONE 6(1):e15951. doi:10.1371/journal.pone.0015951

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Cue D, Junecko JM, Lei MG, Blevins JS, Smeltzer MS, Lee CY (2015) SaeRS-dependent inhibition of biofilm formation in Staphylococcus aureus Newman. PLoS ONE 10(4):e0123027. doi:10.1371/journal.pone.0123027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui L, Lian JQ, Neoh HM, Reyes E, Hiramatsu K (2005) DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49(8):3404–3413. doi:10.1128/AAC.49.8.3404-3413.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui L, Neoh HM, Shoji M, Hiramatsu K (2009) Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 53(3):1231–1234. doi:10.1128/AAC.01173-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dassy B, Hogan T, Foster TJ, Fournier JM (1993) Involvement of the accessory gene regulator (agr) in expression of type 5 capsular polysaccharide by Staphylococcus aureus. J Gen Microbiol 139(Pt 6):1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Delaune A, Poupel O, Mallet A, Coic YM, Msadek T, Dubrac S (2011) Peptidoglycan crosslinking relaxation plays an important role in Staphylococcus aureus WalKR-dependent cell viability. PLoS ONE 6(2):e17054. doi:10.1371/journal.pone.0017054

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Delaune A, Dubrac S, Blanchet C, Poupel O, Mader U, Hiron A, Leduc A, Fitting C, Nicolas P, Cavaillon JM, Adib-Conquy M, Msadek T (2012) The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. Infect Immun 80(10):3438–3453. doi:10.1128/iai.00195-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubrac S, Msadek T (2004) Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol 186(4):1175–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubrac S, Msadek T (2008) Tearing down the wall: peptidoglycan metabolism and the WalK/WalR (YycG/YycF) essential two-component system. Adv Exp Med Biol 631:214–228. doi:10.1007/978-0-387-78885-2_15

    Article  CAS  PubMed  Google Scholar 

  • Dubrac S, Boneca IG, Poupel O, Msadek T (2007) New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189(22):8257–8269. doi:10.1128/JB.00645-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, Shopsin B, Unutmaz D, Voyich JM, Torres VJ (2011) Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79(3):814–825. doi:10.1111/j.1365-2958.2010.07490.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183(24):7341–7353. doi:10.1128/JB.183.24.7341-7353.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fabret C, Hoch JA (1998) A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol 180(23):6375–6383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falord M, Mader U, Hiron A, Debarbouille M, Msadek T (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE 6(7):e21323. doi:10.1371/journal.pone.0021323

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Falord M, Karimova G, Hiron A, Msadek T (2012) GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother 56(2):1047–1058. doi:10.1128/AAC.05054-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fedtke I, Kamps A, Krismer B, Gotz F (2002) The nitrate reductase and nitrite reductase operons and the narT gene of Staphylococcus carnosus are positively controlled by the novel two-component system NreBC. J Bacteriol 184(23):6624–6634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Felden B, Vandenesch F, Bouloc P, Romby P (2011) The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog 7(3):e1002006. doi:10.1371/journal.ppat.1002006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fischer J, Lee JC, Peters G, Kahl BC (2014) Acapsular clinical Staphylococcus aureus isolates lack agr function. Clin Microbiol Infect 20(7):O414–417. doi:10.1111/1469-0691.12429

    Article  CAS  PubMed  Google Scholar 

  • Flack CE, Zurek OW, Meishery DD, Pallister KB, Malone CL, Horswill AR, Voyich JM (2014) Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. Proc Natl Acad Sci U S A 111(19):E2037–2045. doi:10.1073/pnas.1322125111

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Foster TJ (2009) Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet Dermatol 20(5–6):456–470. doi:10.1111/j.1365-3164.2009.00825.x

    Article  PubMed  Google Scholar 

  • Fournier B, Hooper DC (2000) A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J Bacteriol 182(14):3955–3964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fournier B, Klier A (2004) Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. Microbiology 150(Pt 11):3807–3819. doi:10.1099/mic.0.27194-0

    Article  CAS  PubMed  Google Scholar 

  • Fournier B, Aras R, Hooper DC (2000) Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol 182(3):664–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fournier B, Klier A, Rapoport G (2001) The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 41(1):247–261

    Article  CAS  PubMed  Google Scholar 

  • Freeman ZN, Dorus S, Waterfield NR (2013) The KdpD/KdpE two-component system: integrating K(+) homeostasis and virulence. PLoS Pathog 9(3):e1003201. doi:10.1371/journal.ppat.1003201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fridman M, Williams GD, Muzamal U, Hunter H, Siu KW, Golemi-Kotra D (2013) Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 52(45):7975–7986. doi:10.1021/bi401177n

    Article  CAS  PubMed  Google Scholar 

  • Friedman DB, Stauff DL, Pishchany G, Whitwell CW, Torres VJ, Skaar EP (2006) Staphylococcus aureus redirects central metabolism to increase iron availability. PLoS Pathog 2(8):e87. doi:10.1371/journal.ppat.0020087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuchs S, Pane-Farre J, Kohler C, Hecker M, Engelmann S (2007) Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 189(11):4275–4289. doi:10.1128/JB.00081-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Galbusera E, Renzoni A, Andrey DO, Monod A, Barras C, Tortora P, Polissi A, Kelley WL (2011) Site-specific mutation of Staphylococcus aureus VraS reveals a crucial role for the VraR-VraS sensor in the emergence of glycopeptide resistance. Antimicrob Agents Chemother 55(3):1008–1020. doi:10.1128/AAC.00720-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50(10):3424–3434. doi:10.1128/AAC.00356-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C (2008) The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J Bacteriol 190(10):3419–3428. doi:10.1128/JB.01927-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, Schrenzel J, Lalk M, Wolz C (2012) The stringent response of Staphylococcus aureus and its impact on survival after phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog 8(11):e1003016. doi:10.1371/journal.ppat.1003016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • George Cisar EA, Geisinger E, Muir TW, Novick RP (2009) Symmetric signalling within asymmetric dimers of the Staphylococcus aureus receptor histidine kinase AgrC. Mol Microbiol 74(1):44–57. doi:10.1111/j.1365-2958.2009.06849.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giraud C, Hausmann S, Lemeille S, Prados J, Redder P, Linder P (2015) The C-terminal region of the RNA helicase CshA is required for the interaction with the degradosome and turnover of bulk RNA in the opportunistic pathogen Staphylococcus aureus. RNA Biol:0. doi:10.1080/15476286.2015.1035505

  • Giraudo AT, Raspanti CG, Calzolari A, Nagel R (1994) Characterization of a Tn551-mutant of Staphylococcus aureus defective in the production of several exoproteins. Can J Microbiol 40(8):677–681

    Article  CAS  PubMed  Google Scholar 

  • Giraudo AT, Rampone H, Calzolari A, Nagel R (1996) Phenotypic characterization and virulence of a sae- agr-mutant of Staphylococcus aureus. Can J Microbiol 42(2):120–123

    Article  CAS  PubMed  Google Scholar 

  • Giraudo AT, Cheung AL, Nagel R (1997) The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level. Arch Microbiol 168(1):53–58

    Article  CAS  PubMed  Google Scholar 

  • Giraudo AT, Calzolari A, Cataldi AA, Bogni C, Nagel R (1999) The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett 177(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Goerke C, Fluckiger U, Steinhuber A, Zimmerli W, Wolz C (2001) Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during device-related infection resolved by direct quantitative transcript analysis. Mol Microbiol 40(6):1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Goerke C, Fluckiger U, Steinhuber A, Bisanzio V, Ulrich M, Bischoff M, Patti JM, Wolz C (2005) Role of Staphylococcus aureus global regulators sae and sigmaB in virulence gene expression during device-related infection. Infect Immun 73(6):3415–3421. doi:10.1128/IAI.73.6.3415-3421.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gov Y, Borovok I, Korem M, Singh VK, Jayaswal RK, Wilkinson BJ, Rich SM, Balaban N (2004) Quorum sensing in Staphylococci is regulated via phosphorylation of three conserved histidine residues. J Biol Chem 279(15):14665–14672. doi:10.1074/jbc.M311106200

    Article  CAS  PubMed  Google Scholar 

  • Groicher KH, Firek BA, Fujimoto DF, Bayles KW (2000) The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182(7):1794–1801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall JW, Yang J, Guo H, Ji Y (2015) The AirSR two-component system contributes to Staphylococcus aureus survival in human blood and transcriptionally regulates sspABC operon. Front Microbiol 6:682. doi:10.3389/fmicb.2015.00682

    PubMed Central  PubMed  Google Scholar 

  • Harraghy N, Kormanec J, Wolz C, Homerova D, Goerke C, Ohlsen K, Qazi S, Hill P, Herrmann M (2005) sae is essential for expression of the staphylococcal adhesins Eap and Emp. Microbiology 151(Pt 6):1789–1800. doi:10.1099/mic.0.27902-0

    Article  CAS  PubMed  Google Scholar 

  • Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Gotz F (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3(7):e102. doi:10.1371/journal.ppat.0030102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiron A, Falord M, Valle J, Debarbouille M, Msadek T (2011) Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Mol Microbiol 81(3):602–622. doi:10.1111/j.1365-2958.2011.07735.x

    Article  CAS  PubMed  Google Scholar 

  • Howden BP, Stinear TP, Allen DL, Johnson PD, Ward PB, Davies JK (2008) Genomic analysis reveals a point mutation in the two-component sensor gene graS that leads to intermediate vancomycin resistance in clinical Staphylococcus aureus. Antimicrob Agents Chemother 52(10):3755–3762. doi:10.1128/AAC.01613-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howden BP, McEvoy CR, Allen DL, Chua K, Gao W, Harrison PF, Bell J, Coombs G, Bennett-Wood V, Porter JL, Robins-Browne R, Davies JK, Seemann T, Stinear TP (2011) Evolution of multidrug resistance during Staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLoS Pathog 7(11):e1002359. doi:10.1371/journal.ppat.1002359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu J, Zhang X, Liu X, Chen C, Sun B (2015) Mechanism of reduced vancomycin susceptibility conferred by walK mutation in community-acquired methicillin-resistant Staphylococcus aureus strain MW2. Antimicrob Agents Chemother 59(2):1352–1355. doi:10.1128/AAC.04290-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P (2005) Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24(4):824–835. doi:10.1038/sj.emboj.7600572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iwatsuki K, Yamasaki O, Morizane S, Oono T (2006) Staphylococcal cutaneous infections: invasion, evasion and aggression. J Dermatol Sci 42(3):203–214. doi:10.1016/j.jdermsci.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  • Janzon L, Arvidson S (1990) The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9(5):1391–1399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janzon L, Lofdahl S, Arvidson S (1989) Identification and nucleotide sequence of the delta-lysin gene, hld, adjacent to the accessory gene regulator (agr) of Staphylococcus aureus. Mol Gen Genet 219(3):480–485

    Article  CAS  PubMed  Google Scholar 

  • Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, Bae T (2011) Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol 193(18):4672–4684. doi:10.1128/JB.00353-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeong DW, Cho H, Jones MB, Shatzkes K, Sun F, Ji Q, Liu Q, Peterson SN, He C, Bae T (2012) The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol Microbiol 86(2):331–348. doi:10.1111/j.1365-2958.2012.08198.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ji G, Beavis RC, Novick RP (1995) Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc Natl Acad Sci USA 92(26):12055–12059

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276(5321):2027–2030

    Article  CAS  PubMed  Google Scholar 

  • Jo DS, Montgomery CP, Yin S, Boyle-Vavra S, Daum RS (2011) Improved oxacillin treatment outcomes in experimental skin and lung infection by a methicillin-resistant Staphylococcus aureus isolate with a vraSR operon deletion. Antimicrob Agents Chemother 55(6):2818–2823. doi:10.1128/AAC.01704-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson M, Sengupta M, Purves J, Tarrant E, Williams PH, Cockayne A, Muthaiyan A, Stephenson R, Ledala N, Wilkinson BJ, Jayaswal RK, Morrissey JA (2011) Fur is required for the activation of virulence gene expression through the induction of the Sae regulatory system in Staphylococcus aureus. Int J Med Microbiol 301(1):44–52. doi:10.1016/j.ijmm.2010.05.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamps A, Achebach S, Fedtke I, Unden G, Gotz F (2004) Staphylococcal NreB: an O(2)-sensing histidine protein kinase with an O(2)-labile iron–sulphur cluster of the FNR type. Mol Microbiol 52(3):713–723. doi:10.1111/j.1365-2958.2004.04024.x

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Suzuki T, Ida T, Maebashi K (2010) Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR. J Antimicrob Chemother 65(1):37–45. doi:10.1093/jac/dkp394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato F, Kadomoto N, Iwamoto Y, Bunai K, Komatsuzawa H, Sugai M (2011) Regulatory mechanism for exfoliative toxin production in Staphylococcus aureus. Infect Immun 79(4):1660–1670. doi:10.1128/IAI.00872-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawada-Matsuo M, Yoshida Y, Nakamura N, Komatsuzawa H (2011) Role of two-component systems in the resistance of Staphylococcus aureus to antibacterial agents. Virulence 2(5):427–430. doi:10.4161/viru.2.5.17711

    Article  PubMed  Google Scholar 

  • Kiedrowski MR, Kavanaugh JS, Malone CL, Mootz JM, Voyich JM, Smeltzer MS, Bayles KW, Horswill AR (2011) Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS ONE 6(11):e26714. doi:10.1371/journal.pone.0026714

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O (2010) Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med 207(9):1863–1870. doi:10.1084/jem.20092514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinkel TL, Roux CM, Dunman PM, Fang FC (2013) The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio 4(6):e00696–00613. doi:10.1128/mBio.00696-13

  • Kiran MD, Balaban N (2009) TRAP plays a role in stress response in Staphylococcus aureus. Int J Artif Organs 32(9):592–599

    Article  CAS  PubMed  Google Scholar 

  • Koenig RL, Ray JL, Maleki SJ, Smeltzer MS, Hurlburt BK (2004) Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 186(22):7549–7555. doi:10.1128/JB.186.22.7549-7555.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolar SL, Nagarajan V, Oszmiana A, Rivera FE, Miller HK, Davenport JE, Riordan JT, Potempa J, Barber DS, Koziel J, Elasri MO, Shaw LN (2011) NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology 157(Pt 8):2206–2219. doi:10.1099/mic.0.049692-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korem M, Sheoran AS, Gov Y, Tzipori S, Borovok I, Balaban N (2003) Characterization of RAP, a quorum sensing activator of Staphylococcus aureus. FEMS Microbiol Lett 223(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Kraus D, Herbert S, Kristian SA, Khosravi A, Nizet V, Gotz F, Peschel A (2008) The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses. BMC Microbiol 8:85. doi:10.1186/1471-2180-8-85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuroda M, Kuwahara-Arai K, Hiramatsu K (2000) Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun 269(2):485–490. doi:10.1006/bbrc.2000.2277

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240

    Article  CAS  PubMed  Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49(3):807–821

    Article  CAS  PubMed  Google Scholar 

  • Kuroda H, Kuroda M, Cui L, Hiramatsu K (2007) Subinhibitory concentrations of beta-lactam induce haemolytic activity in Staphylococcus aureus through the SaeRS two-component system. FEMS Microbiol Lett 268(1):98–105. doi:10.1111/j.1574-6968.2006.00568.x

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa K, Kaito C, Sekimizu K (2007) Two-component signaling in the virulence of Staphylococcus aureus: a silkworm larvae-pathogenic agent infection model of virulence. Methods Enzymol 422:233–244. doi:10.1016/S0076-6879(06)22011-1

    Article  CAS  PubMed  Google Scholar 

  • Lehman MK, Bose JL, Sharma-Kuinkel BK, Moormeier DE, Endres JL, Sadykov MR, Biswas I, Bayles KW (2015) Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression. Mol Microbiol 95(4):723–737. doi:10.1111/mmi.12902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leonard PG, Golemi-Kotra D, Stock AM (2013) Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc Natl Acad Sci USA 110(21):8525–8530. doi:10.1073/pnas.1302819110

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Levinger O, Bikels-Goshen T, Landau E, Fichman M, Shapira R (2012) Epigallocatechin gallate induces upregulation of the two-component VraSR system by evoking a cell wall stress response in Staphylococcus aureus. Appl Environ Microbiol 78(22):7954–7959. doi:10.1128/AEM.02253-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC (2015) Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 96(3):651–669. doi:10.1111/mmi.12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Cheung A (2008) Repression of hla by rot is dependent on sae in Staphylococcus aureus. Infect Immun 76(3):1068–1075. doi:10.1128/IAI.01069-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147. doi:10.1111/j.1365-2958.2007.05986.x

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zheng L, Landwehr C, Lunsford D, Holmes D, Ji Y (2005) Global regulation of gene expression by ArlRS, a two-component signal transduction regulatory system of Staphylococcus aureus. J Bacteriol 187(15):5486–5492. doi:10.1128/JB.187.15.5486-5492.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang X, Yu C, Sun J, Liu H, Landwehr C, Holmes D, Ji Y (2006) Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus. Infect Immun 74(8):4655–4665. doi:10.1128/IAI.00322-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luong TT, Lee CY (2006) The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology 152(Pt 10):3123–3131. doi:10.1099/mic.0.29177-0

    Article  CAS  PubMed  Google Scholar 

  • Luong T, Sau S, Gomez M, Lee JC, Lee CY (2002) Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA. Infect Immun 70(2):444–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY (2006) Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol 188(5):1899–1910. doi:10.1128/JB.188.5.1899-1910.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mainiero M, Goerke C, Geiger T, Gonser C, Herbert S, Wolz C (2010) Differential target gene activation by the Staphylococcus aureus two-component system saeRS. J Bacteriol 192(3):613–623. doi:10.1128/JB.01242-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makhlin J, Kofman T, Borovok I, Kohler C, Engelmann S, Cohen G, Aharonowitz Y (2007) Staphylococcus aureus ArcR controls expression of the arginine deiminase operon. J Bacteriol 189(16):5976–5986. doi:10.1128/JB.00592-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maroti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162(4):363–374. doi:10.1016/j.resmic.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  • Martin PK, Li T, Sun D, Biek DP, Schmid MB (1999) Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 181(12):3666–3673

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264(2):133–144. doi:10.1111/j.1574-6968.2006.00444.x

    Article  CAS  PubMed  Google Scholar 

  • Matsuo M, Kato F, Oogai Y, Kawai T, Sugai M, Komatsuzawa H (2010) Distinct two-component systems in methicillin-resistant Staphylococcus aureus can change the susceptibility to antimicrobial agents. J Antimicrob Chemother 65(7):1536–1537. doi:10.1093/jac/dkq141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCallum N, Meier PS, Heusser R, Berger-Bachi B (2011) Mutational analyses of open reading frames within the vraSR operon and their roles in the cell wall stress response of Staphylococcus aureus. Antimicrob Agents Chemother 55(4):1391–1402. doi:10.1128/AAC.01213-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McEvoy CR, Tsuji B, Gao W, Seemann T, Porter JL, Doig K, Ngo D, Howden BP, Stinear TP (2013) Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS256 tempering of WalKR expression. Antimicrob Agents Chemother 57(7):3240–3249. doi:10.1128/AAC.00279-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meehl M, Herbert S, Gotz F, Cheung A (2007) Interaction of the GraRS two-component system with the VraFG ABC transporter to support vancomycin-intermediate resistance in Staphylococcus aureus. Antimicrob Agents Chemother 51(8):2679–2689. doi:10.1128/AAC.00209-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meier S, Goerke C, Wolz C, Seidl K, Homerova D, Schulthess B, Kormanec J, Berger-Bachi B, Bischoff M (2007) σB and the σB-dependent arlRS and yabJ-spoVG loci affect capsule formation in Staphylococcus aureus. Infect Immun 75(9):4562–4571. doi:10.1128/IAI.00392-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Memmi G, Nair DR, Cheung A (2012) Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. J Bacteriol 194(4):759–767. doi:10.1128/JB.06261-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mensa B, Howell GL, Scott R, DeGrado WF (2014) Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob Agents Chemother 58(9):5136–5145. doi:10.1128/AAC.02955-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mike LA, Dutter BF, Stauff DL, Moore JL, Vitko NP, Aranmolate O, Kehl-Fie TE, Sullivan S, Reid PR, DuBois JL, Richardson AR, Caprioli RM, Sulikowski GA, Skaar EP (2013) Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus. Proc Natl Acad Sci USA 110(20):8206–8211. doi:10.1073/pnas.1303674110

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Miyazaki S, Matsumoto Y, Sekimizu K, Kaito C (2012) Evaluation of Staphylococcus aureus virulence factors using a silkworm model. FEMS Microbiol Lett 326(2):116–124. doi:10.1111/j.1574-6968.2011.02439.x

    Article  CAS  PubMed  Google Scholar 

  • Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Tavares AC, Ferreira MT, Pereira PM, Veiga H, Kuru E, VanNieuwenhze MS, Brun YV, Filipe SR, Pinho MG (2015) Cell shape dynamics during the staphylococcal cell cycle. Nat Commun 6:8055. doi:10.1038/ncomms9055

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14(18):4569–4577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Grundling A (2015) Binding of c-di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the USP domain and down-regulates the expression of the Kdp potassium transporter. J Bacteriol. doi:10.1128/JB.00480-15

    PubMed Central  PubMed  Google Scholar 

  • Mullner M, Hammel O, Mienert B, Schlag S, Bill E, Unden G (2008) A PAS domain with an oxygen labile [4Fe–4S]2+ cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus. Biochemistry 47(52):13921–13932. doi:10.1021/bi8014086

    Article  CAS  PubMed  Google Scholar 

  • Muzamal U, Gomez D, Kapadia F, Golemi-Kotra D (2014) Diversity of two-component systems: insights into the signal transduction mechanism by the Staphylococcus aureus two-component system GraSR. F1000Res 3:252. doi:10.12688/f1000research.5512.2

    Google Scholar 

  • Nanra JS, Buitrago SM, Crawford S, Ng J, Fink PS, Hawkins J, Scully IL, McNeil LK, Aste-Amezaga JM, Cooper D, Jansen KU, Anderson AS (2012) Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum Vaccines Immunotherapeutics 9(3):480–487

    Article  Google Scholar 

  • Neoh HM, Cui L, Yuzawa H, Takeuchi F, Matsuo M, Hiramatsu K (2008) Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrob Agents Chemother 52(1):45–53. doi:10.1128/AAC.00534-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemann V, Koch-Singenstreu M, Neu A, Nilkens S, Gotz F, Unden G, Stehle T (2014) The NreA protein functions as a nitrate receptor in the staphylococcal nitrate regulation system. J Mol Biol 426(7):1539–1553. doi:10.1016/j.jmb.2013.12.026

    Article  CAS  PubMed  Google Scholar 

  • Nilkens S, Koch-Singenstreu M, Niemann V, Gotz F, Stehle T, Unden G (2014) Nitrate/oxygen co-sensing by an NreA/NreB sensor complex of Staphylococcus carnosus. Mol Microbiol 91(2):381–393. doi:10.1111/mmi.12464

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. doi:10.1146/annurev.genet.42.110807.091640

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Jiang D (2003) The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149(Pt 10):2709–2717

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Muir TW (1999) Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Curr Opin Microbiol 2(1):40–45

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12(10):3967–3975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novick RP, Projan SJ, Kornblum J, Ross HF, Ji G, Kreiswirth B, Vandenesch F, Moghazeh S (1995) The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol Gen Genet 248(4):446–458

    Article  CAS  PubMed  Google Scholar 

  • Nygaard TK, Pallister KB, Ruzevich P, Griffith S, Vuong C, Voyich JM (2010) SaeR binds a consensus sequence within virulence gene promoters to advance USA300 pathogenesis. J Infect Dis 201(2):241–254. doi:10.1086/649570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohki R, Giyanto Tateno K, Masuyama W, Moriya S, Kobayashi K, Ogasawara N (2003) The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol Microbiol 49(4):1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Olson ME, Nygaard TK, Ackermann L, Watkins RL, Zurek OW, Pallister KB, Griffith S, Kiedrowski MR, Flack CE, Kavanaugh JS, Kreiswirth BN, Horswill AR, Voyich JM (2013) Staphylococcus aureus nuclease is an SaeRS-dependent virulence factor. Infect Immun 81(4):1316–1324. doi:10.1128/IAI.01242-12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oun S, Redder P, Didier JP, Francois P, Corvaglia AR, Buttazzoni E, Giraud C, Girard M, Schrenzel J, Linder P (2013) The CshA DEAD-box RNA helicase is important for quorum sensing control in Staphylococcus aureus. RNA Biol 10(1):157–165. doi:10.4161/rna.22899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Painter KL, Krishna A, Wigneshweraraj S, Edwards AM (2014) What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. doi:10.1016/j.tim.2014.09.002

    PubMed  Google Scholar 

  • Palazzolo-Ballance AM, Reniere ML, Braughton KR, Sturdevant DE, Otto M, Kreiswirth BN, Skaar EP, DeLeo FR (2008) Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus. J Immunol 180(1):500–509

    Article  CAS  PubMed  Google Scholar 

  • Pantrangi M, Singh VK, Wolz C, Shukla SK (2010) Staphylococcal superantigen-like genes, ssl5 and ssl8, are positively regulated by Sae and negatively by Agr in the Newman strain. FEMS Microbiol Lett 308(2):175–184. doi:10.1111/j.1574-6968.2010.02012.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pantrangi M, Singh VK, Shukla SK (2015) Regulation of Staphylococcal superantigen-like gene, ssl8, expression in Staphylococcus aureus strain, RN6390. Clin Med Res 13(1):7–11. doi:10.3121/cmr.2014.1226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, Stoker NG (2003) Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun 71(3):1134–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park SY, Chong YP, Park HJ, Park KH, Moon SM, Jeong JY, Kim MN, Kim SH, Lee SO, Choi SH, Woo JH, Kim YS (2013) agr dysfunction and persistent methicillin-resistant Staphylococcus aureus bacteremia in patients with removed eradicable foci. Infection 41(1):111–119. doi:10.1007/s15010-012-0348-0

    Article  PubMed  Google Scholar 

  • Patton TG, Yang SJ, Bayles KW (2006) The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. Mol Microbiol 59(5):1395–1404. doi:10.1111/j.1365-2958.2006.05034.x

    Article  CAS  PubMed  Google Scholar 

  • Paulander W, Nissen Varming A, Baek KT, Haaber J, Frees D, Ingmer H (2013) Antibiotic-mediated selection of quorum-sensing-negative Staphylococcus aureus. MBio 3 (6):e00459–00412. doi:10.1128/mBio.00459-12

  • Peschel A, Otto M (2013) Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11(10):667–673. doi:10.1038/nrmicro3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietiainen M, Francois P, Hyyrylainen HL, Tangomo M, Sass V, Sahl HG, Schrenzel J, Kontinen VP (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genom 10:429. doi:10.1186/1471-2164-10-429

    Article  CAS  Google Scholar 

  • Pozzi C, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, Loftus BJ, Pier GB, Fey PD, Massey RC, O’Gara JP (2012) Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog 8(4):e1002626. doi:10.1371/journal.ppat.1002626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pozzi C, Lofano G, Mancini F, Soldaini E, Speziale P, De Gregorio E, Rappuoli R, Bertholet S, Grandi G, Bagnoli F (2015) Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to Staphylococcus aureus. FEMS Microbiol Rev. doi:10.1093/femsre/fuv024

    PubMed  Google Scholar 

  • Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM (2004) Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol 186(8):2430–2438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pragman AA, Herron-Olson L, Case LC, Vetter SM, Henke EE, Kapur V, Schlievert PM (2007a) Sequence analysis of the Staphylococcus aureus srrAB loci reveals that truncation of srrA affects growth and virulence factor expression. J Bacteriol 189(20):7515–7519. doi:10.1128/JB.00547-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pragman AA, Ji Y, Schlievert PM (2007b) Repression of Staphylococcus aureus SrrAB using inducible antisense srrA alters growth and virulence factor transcript levels. Biochemistry 46(1):314–321. doi:10.1021/bi0603266

    Article  CAS  PubMed  Google Scholar 

  • Qin Z, Zhang J, Xu B, Chen L, Wu Y, Yang X, Shen X, Molin S, Danchin A, Jiang H, Qu D (2006) Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections. BMC Microbiol 6:96. doi:10.1186/1471-2180-6-96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin Z, Lee B, Yang L, Zhang J, Yang X, Qu D, Jiang H, Molin S (2007) Antimicrobial activities of YycG histidine kinase inhibitors against Staphylococcus epidermidis biofilms. FEMS Microbiol Lett 273(2):149–156. doi:10.1111/j.1574-6968.2007.00749.x

    Article  CAS  PubMed  Google Scholar 

  • Qiu R, Pei W, Zhang L, Lin J, Ji G (2005) Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide. J Biol Chem 280(17):16695–16704. doi:10.1074/jbc.M411372200

    Article  CAS  PubMed  Google Scholar 

  • Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32(1):150–158. doi:10.1016/j.molcel.2008.08.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rampone H, Martinez GL, Giraudo AT, Calzolari A, Nagel R (1996) In vivo expression of exoprotein synthesis with a Sae mutant of Staphylococcus aureus. Can J Vet Res 60(3):237–240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravcheev DA, Best AA, Tintle N, Dejongh M, Osterman AL, Novichkov PS, Rodionov DA (2011) Inference of the transcriptional regulatory network in Staphylococcus aureus by integration of experimental and genomics-based evidence. J Bacteriol 193(13):3228–3240. doi:10.1128/JB.00350-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Recsei P, Kreiswirth B, Oreilly M, Schlievert P, Gruss A, Novick RP (1986) Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol Gen Genet 202(1):58–61. doi:10.1007/Bf00330517

    Article  CAS  PubMed  Google Scholar 

  • Reed SB, Wesson CA, Liou LE, Trumble WR, Schlievert PM, Bohach GA, Bayles KW (2001) Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect Immun 69(3):1521–1527. doi:10.1128/IAI.69.3.1521-1527.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regassa LB, Betley MJ (1992) Alkaline pH decreases expression of the accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol 174(15):5095–5100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Regassa LB, Novick RP, Betley MJ (1992) Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun 60(8):3381–3388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinhart F, Huber A, Thiele R, Unden G (2010) Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing Staphylococcus carnosus. J Bacteriol 192(1):86–93. doi:10.1128/JB.01248-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes D, Andrey DO, Monod A, Kelley WL, Zhang G, Cheung AL (2011) Coordinated regulation by AgrA, SarA, and SarR to control agr expression in Staphylococcus aureus. J Bacteriol 193(21):6020–6031. doi:10.1128/JB.05436-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson AR, Dunman PM, Fang FC (2006) The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61(4):927–939. doi:10.1111/j.1365-2958.2006.05290.x

    Article  CAS  PubMed  Google Scholar 

  • Rietkotter E, Hoyer D, Mascher T (2008) Bacitracin sensing in Bacillus subtilis. Mol Microbiol 68(3):768–785. doi:10.1111/j.1365-2958.2008.06194.x

    Article  CAS  PubMed  Google Scholar 

  • Rogasch K, Ruhmling V, Pane-Farre J, Hoper D, Weinberg C, Fuchs S, Schmudde M, Broker BM, Wolz C, Hecker M, Engelmann S (2006) Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188(22):7742–7758. doi:10.1128/JB.00555-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, van Wamel WJ (2006) Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol 8(8):1282–1293. doi:10.1111/j.1462-5822.2006.00709.x

    Article  CAS  PubMed  Google Scholar 

  • Rudkin JK, Edwards AM, Bowden MG, Brown EL, Pozzi C, Waters EM, Chan WC, Williams P, O’Gara JP, Massey RC (2012) Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 205(5):798–806. doi:10.1093/infdis/jir845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saenz HL, Augsburger V, Vuong C, Jack RW, Gotz F, Otto M (2000) Inducible expression and cellular location of AgrB, a protein involved in the maturation of the staphylococcal quorum-sensing pheromone. Arch Microbiol 174(6):452–455

    Article  CAS  PubMed  Google Scholar 

  • Salgado-Pabon W, Schlievert PM (2014) Models matter: the search for an effective Staphylococcus aureus vaccine. Nat Rev Microbiol 12(8):585–591. doi:10.1038/nrmicro3308

    Article  CAS  PubMed  Google Scholar 

  • Schafer D, Lam TT, Geiger T, Mainiero M, Engelmann S, Hussain M, Bosserhoff A, Frosch M, Bischoff M, Wolz C, Reidl J, Sinha B (2009) A point mutation in the sensor histidine kinase SaeS of Staphylococcus aureus strain Newman alters the response to biocide exposure. J Bacteriol 191(23):7306–7314. doi:10.1128/JB.00630-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41(2):463–476

    Article  CAS  PubMed  Google Scholar 

  • Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Gotz F (2008) Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol 190(23):7847–7858. doi:10.1128/JB.00905-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroder W, Bernhardt J, Marincola G, Klein-Hitpass L, Herbig A, Krupp G, Nieselt K, Wolz C (2014) Altering gene expression by aminocoumarins: the role of DNA supercoiling in Staphylococcus aureus. BMC Genom 15:291. doi:10.1186/1471-2164-15-291

    Article  CAS  Google Scholar 

  • Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM, Bayles KW (2009) The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. J Bacteriol 191(15):4767–4775. doi:10.1128/JB.00348-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheehan BJ, Foster TJ, Dorman CJ, Park S, Stewart GS (1992) Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Mol Gen Genet 232(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Shoji M, Cui L, Iizuka R, Komoto A, Neoh HM, Watanabe Y, Hishinuma T, Hiramatsu K (2011) walK and clpP mutations confer reduced vancomycin susceptibility in Staphylococcus aureus. Antimicrob Agents Chemother 55(8):3870–3881. doi:10.1128/AAC.01563-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh R, Ray P (2014) Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol 9(5):669–681. doi:10.2217/fmb.14.31

    Article  CAS  PubMed  Google Scholar 

  • Smyth DS, Kafer JM, Wasserman GA, Velickovic L, Mathema B, Holzman RS, Knipe TA, Becker K, von Eiff C, Peters G, Chen L, Kreiswirth BN, Novick RP, Shopsin B (2012) Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. J Infect Dis 206(8):1168–1177. doi:10.1093/infdis/jis483

    Article  PubMed Central  PubMed  Google Scholar 

  • Srivastava SK, Rajasree K, Fasim A, Arakere G, Gopal B (2014) Influence of the AgrC-AgrA complex on the response time of Staphylococcus aureus quorum sensing. J Bacteriol 196(15):2876–2888. doi:10.1128/JB.01530-14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stauff DL, Torres VJ, Skaar EP (2007) Signaling and DNA-binding activities of the Staphylococcus aureus HssR-HssS two-component system required for heme sensing. J Biol Chem 282(36):26111–26121. doi:10.1074/jbc.M703797200

    Article  CAS  PubMed  Google Scholar 

  • Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, Kuechenmeister L, Dunman PM, Skaar EP (2008) Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 190(10):3588–3596. doi:10.1128/JB.01921-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su J, Iehara M, Yasukawa J, Matsumoto Y, Hamamoto H, Sekimizu K (2015) A novel mutation in the vraS gene of Staphylococcus aureus contributes to reduce susceptibility against daptomycin. J Antibiot (Tokyo). doi:10.1038/ja.2015.42

    Google Scholar 

  • Sun J, Zheng L, Landwehr C, Yang J, Ji Y (2005) Identification of a novel essential two-component signal transduction system, YhcSR Staphylococcus aureus. J Bacteriol 187(22):7876–7880. doi:10.1128/JB.187.22.7876-7880.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun F, Li C, Jeong D, Sohn C, He C, Bae T (2010) In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. J Bacteriol 192(8):2111–2127. doi:10.1128/JB.01524-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun F, Ji Q, Jones MB, Deng X, Liang H, Frank B, Telser J, Peterson SN, Bae T, He C (2012) AirSR, a [2Fe–2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus. J Am Chem Soc 134(1):305–314. doi:10.1021/ja2071835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szurmant H, Nelson K, Kim EJ, Perego M, Hoch JA (2005) YycH regulates the activity of the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 187(15):5419–5426. doi:10.1128/JB.187.15.5419-5426.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szurmant H, Zhao H, Mohan MA, Hoch JA, Varughese KI (2006) The crystal structure of YycH involved in the regulation of the essential YycFG two-component system in Bacillus subtilis reveals a novel tertiary structure. Protein Sci 15(4):929–934. doi:10.1110/ps.052064406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szurmant H, Mohan MA, Imus PM, Hoch JA (2007) YycH and YycI interact to regulate the essential YycFG two-component system in Bacillus subtilis. J Bacteriol 189(8):3280–3289. doi:10.1128/JB.01936-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thakker M, Park JS, Carey V, Lee JC (1998) Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect Immun 66(11):5183–5189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR (2011) Peptide signaling in the staphylococci. Chem Rev 111(1):117–151. doi:10.1021/cr100370n

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomsen LE, Gottlieb CT, Gottschalk S, Wodskou TT, Kristensen HH, Gram L, Ingmer H (2010) The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin. BMC Microbiol 10:307. doi:10.1186/1471-2180-10-307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Throup JP, Zappacosta F, Lunsford RD, Annan RS, Carr SA, Lonsdale JT, Bryant AP, McDevitt D, Rosenberg M, Burnham MK (2001) The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry 40(34):10392–10401

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Arana A, Merino N, Vergara-Irigaray M, Debarbouille M, Penades JR, Lasa I (2005) Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187(15):5318–5329. doi:10.1128/JB.187.15.5318-5329.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, Anderson KL, Dunman PM, Joyce S, Skaar EP (2007) A Staphylococcus aureus regulatory system that responds to host heme and modulates virulence. Cell Host Microbe 1(2):109–119. doi:10.1016/j.chom.2007.03.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truong-Bolduc QC, Dunman PM, Eidem T, Hooper DC (2011) Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus. J Bacteriol 193(22):6207–6214. doi:10.1128/JB.05847-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C, Schrenzel J, Kelley WL (2007) Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun 75(3):1079–1088. doi:10.1128/IAI.01143-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuchscherr L, Loffler B, Buzzola FR, Sordelli DO (2010) Staphylococcus aureus adaptation to the host and persistence: role of loss of capsular polysaccharide expression. Future Microbiol 5(12):1823–1832. doi:10.2217/fmb.10.147

    Article  CAS  PubMed  Google Scholar 

  • Ulrich M, Bastian M, Cramton SE, Ziegler K, Pragman AA, Bragonzi A, Memmi G, Wolz C, Schlievert PM, Cheung A, Doring G (2007) The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol 65(5):1276–1287. doi:10.1111/j.1365-2958.2007.05863.x

    Article  CAS  PubMed  Google Scholar 

  • van Wamel W, Xiong YQ, Bayer AS, Yeaman MR, Nast CC, Cheung AL (2002) Regulation of Staphylococcus aureus type 5 capsular polysaccharides by agr and sarA in vitro and in an experimental endocarditis model. Microb Pathog 33(2):73–79

    Article  CAS  PubMed  Google Scholar 

  • Vandenesch F, Kornblum J, Novick RP (1991) A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. J Bacteriol 173(20):6313–6320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR (2005) Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol 3(5):383–396. doi:10.1038/nrmicro1146

    Article  CAS  PubMed  Google Scholar 

  • Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Said-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, DeLeo FR (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175(6):3907–3919

    Article  CAS  PubMed  Google Scholar 

  • Voyich JM, Vuong C, DeWald M, Nygaard TK, Kocianova S, Griffith S, Jones J, Iverson C, Sturdevant DE, Braughton KR, Whitney AR, Otto M, Deleo FR (2009) The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. J Infect Dis 199(11):1698–1706. doi:10.1086/598967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wakeman CA, Stauff DL, Zhang Y, Skaar EP (2014) Differential activation of Staphylococcus aureus heme detoxification machinery by heme analogues. J Bacteriol 196(7):1335–1342. doi:10.1128/JB.01067-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker JN, Crosby HA, Spaulding AR, Salgado-Pabon W, Malone CL, Rosenthal CB, Schlievert PM, Boyd JM, Horswill AR (2013) The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathog 9(12):e1003819. doi:10.1371/journal.ppat.1003819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe T, Hashimoto Y, Yamamoto K, Hirao K, Ishihama A, Hino M, Utsumi R (2003) Isolation and characterization of inhibitors of the essential histidine kinase, YycG in Bacillus subtilis and Staphylococcus aureus. J Antibiot (Tokyo) 56(12):1045–1052

    Article  CAS  Google Scholar 

  • White MJ, Boyd JM, Horswill AR, Nauseef WM (2014) Phosphatidylinositol-specific phospholipase C contributes to survival of Staphylococcus aureus USA300 in human blood and neutrophils. Infect Immun 82(4):1559–1571. doi:10.1128/IAI.01168-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winzer K, Hardie KR, Burgess N, Doherty N, Kirke D, Holden MT, Linforth R, Cornell KA, Taylor AJ, Hill PJ, Williams P (2002) LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148(Pt 4):909–922

    Article  CAS  PubMed  Google Scholar 

  • Wolz C, Pohlmann-Dietze P, Steinhuber A, Chien YT, Manna A, van Wamel W, Cheung A (2000) Agr-independent regulation of fibronectin-binding protein(s) by the regulatory locus sar in Staphylococcus aureus. Mol Microbiol 36(1):230–243

    Article  CAS  PubMed  Google Scholar 

  • Wright JS 3rd, Traber KE, Corrigan R, Benson SA, Musser JM, Novick RP (2005) The agr radiation: an early event in the evolution of staphylococci. J Bacteriol 187(16):5585–5594. doi:10.1128/JB.187.16.5585-5594.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong YQ, Willard J, Yeaman MR, Cheung AL, Bayer AS (2006) Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J Infect Dis 194(9):1267–1275 doi:JID36622 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Xue T, You Y, Hong D, Sun H, Sun B (2011) The Staphylococcus aureus KdpDE two-component system couples extracellular K+ sensing and Agr signaling to infection programming. Infect Immun 79(6):2154–2167. doi:10.1128/IAI.01180-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan M, Yu C, Yang J, Ji Y (2011) The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus. J Bacteriol 193(8):1799–1805. doi:10.1128/JB.01511-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan M, Hall JW, Yang J, Ji Y (2012) The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus. PLoS ONE 7(11):e50608. doi:10.1371/journal.pone.0050608

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  • Yang SJ, Xiong YQ, Yeaman MR, Bayles KW, Abdelhady W, Bayer AS (2013) Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob Agents Chemother 57(8):3875–3882. doi:10.1128/AAC.00412-13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112(11):1620–1625. doi:10.1172/JCI20442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yarwood JM, McCormick JK, Schlievert PM (2001) Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol 183(4):1113–1123. doi:10.1128/JB.183.4.1113-1123.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin S, Daum RS, Boyle-Vavra S (2006) VraSR two-component regulatory system and its role in induction of pbp2 and vraSR expression by cell wall antimicrobials in Staphylococcus aureus. Antimicrob Agents Chemother 50(1):336–343. doi:10.1128/AAC.50.1.336-343.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida Y, Matsuo M, Oogai Y, Kato F, Nakamura N, Sugai M, Komatsuzawa H (2011) Bacitracin sensing and resistance in Staphylococcus aureus. FEMS Microbiol Lett 320(1):33–39. doi:10.1111/j.1574-6968.2011.02291.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Stewart GC (2000) Characterization of the promoter elements for the staphylococcal enterotoxin D gene. J Bacteriol 182(8):2321–2325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Gray L, Novick RP, Ji G (2002) Transmembrane topology of AgrB, the protein involved in the post-translational modification of AgrD in Staphylococcus aureus. J Biol Chem 277(38):34736–34742. doi:10.1074/jbc.M205367200

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Xue T, Shang F, Sun H, Sun B (2010) Staphylococcus aureus AI-2 quorum sensing associates with the KdpDE two-component system to regulate capsular polysaccharide synthesis and virulence. Infect Immun 78(8):3506–3515. doi:10.1128/IAI.00131-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao F, Cheng BL, Boyle-Vavra S, Alegre ML, Daum RS, Chong AS, Montgomery CP (2015) Proteomic identification of saeRS-dependent targets critical for protective humoral immunity against Staphylococcus aureus skin infection. Infect Immun. doi:10.1128/IAI.00667-15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Haag .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haag, A.F., Bagnoli, F. (2015). The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. In: Bagnoli, F., Rappuoli, R., Grandi, G. (eds) Staphylococcus aureus. Current Topics in Microbiology and Immunology, vol 409. Springer, Cham. https://doi.org/10.1007/82_2015_5019

Download citation

Publish with us

Policies and ethics