Skip to main content

Targeting HIV Transcription: The Quest for a Functional Cure

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 389))

Abstract

HIV Transcription and Tat Protein. HIV Tat protein (A), bound to the TAR RNA stem–loop structure, binds to the P-TEFb complex (B), activating transcriptional elongation by RNA polymerase (C). The illustration also shows HIV Rev (D) bound to the Rev-response element and CRM1 (E), a cellular protein involved in transport through the nuclear pore

Antiretroviral therapy (ART) potently suppresses HIV-1 replication, but the virus persists in quiescent infected CD4+T cells as a latent integrated provirus, and patients must indefinitely remain on therapy. If ART is terminated, these integrated proviruses can reactivate, driving new rounds of infection. A functional cure for HIV requires eliminating low-level ongoing viral replication that persists in certain tissue sanctuaries and preventing viral reactivation. The HIV Tat protein plays an essential role in HIV transcription by recruiting the kinase activity of the P-TEFb complex to the viral mRNA’s stem–bulge–loop structure, TAR, activating transcriptional elongation. Because the Tat-mediated transactivation cascade is critical for robust HIV replication, the Tat/TAR/P-TEFb complex is one of the most attractive targets for drug development. Importantly, compounds that interfere with transcription could impair viral reactivation, low-level ongoing replication, and replenishment of the latent reservoir, thereby reducing the size of the latent reservoir pool. Here, we discuss the potential importance of transcriptional inhibitors in the treatment of latent HIV-1 disease and review recent findings on targeting Tat, TAR, and P-TEFb individually or as part of a complex. Finally, we discuss the impact of extracellular Tat in HIV-associated neurocognitive disorders and cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ART:

Antiretroviral therapy

HIV:

Human immunodeficiency virus

ARVs:

Antiretrovirals

LTR:

5′ long-terminal repeat

RNAPII:

RNA polymerase II

TAR:

Transactivation response element

PCAF:

p300/CBP-associated factor

P-TEFb:

Positive transcription elongation factor b

CDK9:

Cyclin-dependent kinase 9

CTD:

C-terminal domain

HDAC:

Histone deacetylase

HAT:

Histone acetyl transferase

HAND:

HIV-associated neurocognitive disorders

BBB:

Blood–brain barrier

MCP-1:

Chemoattractant protein-1

PBMC:

Peripheral blood mononuclear cell

TI:

Therapeutic index

IC50 :

Half-maximal inhibitory concentration

NMR:

Nuclear magnetic resonance

MAE:

Michael acceptor electrophile

CC50 :

Half-maximal cytotoxic concentration

dCA:

didehydro-cortistatin A

RT:

Reverse transcriptase

SPMG:

Sulfated polymannuroguluronate

AIDS:

Acquired immune deficiency syndrome

References

  • Aboul-ela F, Karn J, Varani G (1995) The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. J Mol Biol 253(2):313–332. doi:10.1006/jmbi.1995.0555

    Article  CAS  PubMed  Google Scholar 

  • Albini A, Ferrini S, Benelli R, Sforzini S, Giunciuglio D, Aluigi MG, Proudfoot AE, Alouani S, Wells TN, Mariani G, Rabin RL, Farber JM, Noonan DM (1998) HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci USA 95(22):13153–13158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albini A, Soldi R, Giunciuglio D, Giraudo E, Benelli R, Primo L, Noonan D, Salio M, Camussi G, Rockl W, Bussolino F (1996) The angiogenesis induced by HIV-1 tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat Med 2(12):1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Aldovini A, Debouck C, Feinberg MB, Rosenberg M, Arya SK, Wong-Staal F (1986) Synthesis of the complete trans-activation gene product of human T-lymphotropic virus type III in Escherichia coli: demonstration of immunogenicity in vivo and expression in vitro. Proc Natl Acad Sci USA 83(18):6672–6676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ali A, Ghosh A, Nathans RS, Sharova N, O’Brien S, Cao H, Stevenson M, Rana TM (2009) Identification of flavopiridol analogues that selectively inhibit positive transcription elongation factor (P-TEFb) and block HIV-1 replication. Chembiochem 10(12):2072–2080. doi:10.1002/cbic.200900303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Archin NM, Liberty AL, Kashuba AD, Choudhary SK, Kuruc JD, Crooks AM, Parker DC, Anderson EM, Kearney MF, Strain MC, Richman DD, Hudgens MG, Bosch RJ, Coffin JM, Eron JJ, Hazuda DJ, Margolis DM (2012) Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487(7408):482–485. doi:10.1038/nature11286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baba M (2006) Recent status of HIV-1 gene expression inhibitors. Antiviral Res 71(2–3):301–306. doi:10.1016/j.antiviral.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  • Bachani M, Sacktor N, McArthur JC, Nath A, Rumbaugh J (2013) Detection of anti-tat antibodies in CSF of individuals with HIV-associated neurocognitive disorders. J Neurovirol 19(1):82–88. doi:10.1007/s13365-012-0144-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bagashev A, Sawaya BE (2013) Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol J 10:358. doi:10.1186/1743-422x-10-358

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bai J, Sui J, Zhu RY, Tallarico AS, Gennari F, Zhang D, Marasco WA (2003) Inhibition of Tat-mediated transactivation and HIV-1 replication by human anti-hCyclinT1 intrabodies. J Biol Chem 278(3):1433–1442. doi:10.1074/jbc.M208297200

    Article  CAS  PubMed  Google Scholar 

  • Barboric M, Yik JH, Czudnochowski N, Yang Z, Chen R, Contreras X, Geyer M, Peterlin BM, Zhou Q (2007) Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res 35(6):2003–2012. doi:10.1093/nar/gkm063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN (2008) The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 27(13):1907–1918. doi:10.1038/emboj.2008.121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH, Nakatani Y, Jeang KT (1998) Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 273(38):24898–24905

    Article  CAS  PubMed  Google Scholar 

  • Bieniasz PD, Grdina TA, Bogerd HP, Cullen BR (1998) Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J 17(23):7056–7065. doi:10.1093/emboj/17.23.7056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biglione S, Byers SA, Price JP, Nguyen VT, Bensaude O, Price DH, Maury W (2007) Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 4:47. doi:10.1186/1742-4690-4-47

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bres V, Gomes N, Pickle L, Jones KA (2005) A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 19(10):1211–1226. doi:10.1101/gad.1291705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19(1):60–71. doi:10.1016/j.chembiol.2011.12.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell GR, Loret EP (2009) What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 6:50. doi:10.1186/1742-4690-6-50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Carpio L, Klase Z, Coley W, Guendel I, Choi S, Van Duyne R, Narayanan A, Kehn-Hall K, Meijer L, Kashanchi F (2010) microRNA machinery is an integral component of drug-induced transcription inhibition in HIV-1 infection. J RNAi Gene Silencing Int J RNA Gene Target Res 6(1):386–400

    CAS  Google Scholar 

  • Cecchetti V, Parolin C, Moro S, Pecere T, Filipponi E, Calistri A, Tabarrini O, Gatto B, Palumbo M, Fravolini A, Palu G (2000) 6-Aminoquinolones as new potential anti-HIV agents. J Med Chem 43(20):3799–3802. doi:10.1021/jm9903390

    Article  CAS  PubMed  Google Scholar 

  • Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, Peterlin BM, Price DH (2000) Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 275(37):28345–28348. doi:10.1074/jbc.C000446200

    Article  CAS  PubMed  Google Scholar 

  • Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 94(24):13193–13197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F (2009) Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther 9(11):1369–1382. doi:10.1517/14712590903257781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corallini A, Betti M, Rusnati M, Campioni D, Ciomei M, Sola F, Calza N, Zauli G, Presta M, Barbanti-Brodano G, Caputo A (1998) Characterization of the effects of two polysulfonated distamycin A derivatives, PNU145156E and PNU153429, on HIV type 1 Tat protein. AIDS Res Hum Retroviruses 14(17):1561–1571

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (1986) Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46(7):973–982. doi:10.1016/0092-8674(86)90696-3

    Article  CAS  PubMed  Google Scholar 

  • Cullen BR (1991) Regulation of HIV-1 gene expression. FASEB J 5(10):2361–2368

    CAS  PubMed  Google Scholar 

  • D’Orso I, Frankel AD (2010) RNA-mediated displacement of an inhibitory snRNP complex activates transcription elongation. Nat Struct Mol Biol 17(7):815–821. doi:10.1038/nsmb.1827

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davidson A, Begley DW, Lau C, Varani G (2011) A small-molecule probe induces a conformation in HIV TAR RNA capable of binding drug-like fragments. J Mol Biol 410(5):984–996. doi:10.1016/j.jmb.2011.03.039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Debaisieux S, Rayne F, Yezid H, Beaumelle B (2012) The ins and outs of HIV-1 Tat. Traffic 13(3):355–363. doi:10.1111/j.1600-0854.2011.01286.x

    Article  CAS  PubMed  Google Scholar 

  • Deeks SG (2012) HIV: shock and kill. Nature 487(7408):439–440. doi:10.1038/487439a

    Article  CAS  PubMed  Google Scholar 

  • Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, Chomont N, Chun TW, Churchill M, Di Mascio M, Katlama C, Lafeuillade A, Landay A, Lederman M, Lewin SR, Maldarelli F, Margolis D, Markowitz M, Martinez-Picado J, Mullins JI, Mellors J, Moreno S, O’Doherty U, Palmer S, Penicaud MC, Peterlin M, Poli G, Routy JP, Rouzioux C, Silvestri G, Stevenson M, Telenti A, Van Lint C, Verdin E, Woolfrey A, Zaia J, Barre-Sinoussi F (2012) Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 12(8):607–614. doi:10.1038/nri3262

    Article  CAS  PubMed  Google Scholar 

  • Del Valle L, Croul S, Morgello S, Amini S, Rappaport J, Khalili K (2000) Detection of HIV-1 Tat and JCV capsid protein, VP1, in AIDS brain with progressive multifocal leukoencephalopathy. J Neurovirol 6(3):221–228

    Article  PubMed  Google Scholar 

  • Easley R, Carpio L, Dannenberg L, Choi S, Alani D, Van Duyne R, Guendel I, Klase Z, Agbottah E, Kehn-Hall K, Kashanchi F (2010) Transcription through the HIV-1 nucleosomes: effects of the PBAF complex in Tat activated transcription. Virology 405(2):322–333. doi:10.1016/j.virol.2010.06.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eekels JJ, Berkhout B (2011) Toward a durable treatment of HIV-1 infection using RNA interference. Prog Mol Biol Transl Sci 102:141–163. doi:10.1016/B978-0-12-415795-8.00001-5

    Article  CAS  PubMed  Google Scholar 

  • Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67(1):277–287

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91(2):664–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5(5):512–517. doi:10.1038/8394

    Article  CAS  PubMed  Google Scholar 

  • Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278(5341):1295–1300. doi:10.1126/science.278.5341.1295

    Article  CAS  PubMed  Google Scholar 

  • Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, Beilman GJ, Khoruts A, Thorkelson A, Schmidt TE, Anderson J, Perkey K, Stevenson M, Perelson AS, Douek DC, Haase AT, Schacker TW (2014) Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA 111(6):2307–2312. doi:10.1073/pnas.1318249111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fraldi A, Varrone F, Napolitano G, Michels AA, Majello B, Bensaude O, Lania L (2005) Inhibition of Tat activity by the HEXIM1 protein. Retrovirology 2:42. doi:10.1186/1742-4690-2-42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24(3):275–283. doi:10.1097/WCO.0b013e32834695fb

    Article  PubMed Central  PubMed  Google Scholar 

  • Garber ME, Mayall TP, Suess EM, Meisenhelder J, Thompson NE, Jones KA (2000) CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol 20(18):6958–6969. doi:10.1128/MCB.20.18.6958-6969.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garber ME, Wei P, KewalRamani VN, Mayall TP, Herrmann CH, Rice AP, Littman DR, Jones KA (1998) The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev 12(22):3512–3527. doi:10.1101/gad.12.22.3512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gorantla S, Poluektova L, Gendelman HE (2012) Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci 35(3):197–208. doi:10.1016/j.tins.2011.12.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH (2014) Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 13(11):1788–1797. doi:10.4161/cc.28756

    Article  CAS  PubMed  Google Scholar 

  • Hamasaki T, Okamoto M, Baba M (2013) Identification of novel inhibitors of human immunodeficiency virus type 1 replication by in silico screening targeting cyclin T1/Tat interaction. Antimicrob Agents Chemother 57(3):1323–1331. doi:10.1128/aac.01711-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haubrich RH, Flexner C, Lederman MM, Hirsch M, Pettinelli CP, Ginsberg R, Lietman P, Hamzeh FM, Spector SA, Richman DD (1995) A randomized trial of the activity and safety of Ro 24-7429 (Tat antagonist) versus nucleoside for human immunodeficiency virus infection. The AIDS clinical trials group 213 team. J Infect Dis 172(5):1246–1252

    Article  CAS  PubMed  Google Scholar 

  • Heredia A, Davis C, Bamba D, Le N, Gwarzo MY, Sadowska M, Gallo RC, Redfield RR (2005) Indirubin-3’-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS 19(18):2087–2095

    Article  CAS  PubMed  Google Scholar 

  • Heredia A, Natesan S, Le NM, Medina-Moreno S, Zapata JC, Reitz M, Bryant J, Redfield RR (2014) Indirubin 3′-Monoxime, from a Chinese traditional herbal formula, suppresses viremia in humanized mice infected with multidrug-resistant HIV. AIDS Res Hum Retroviruses. doi:10.1089/aid.2013.0249

    PubMed  Google Scholar 

  • Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, Rosenbloom DI, Lai J, Blankson JN, Siliciano JD, Siliciano RF (2013) Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155(3):540–551. doi:10.1016/j.cell.2013.09.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofman FM, Dohadwala MM, Wright AD, Hinton DR, Walker SM (1994) Exogenous tat protein activates central nervous system-derived endothelial cells. J Neuroimmunol 54(1–2):19–28

    Article  CAS  PubMed  Google Scholar 

  • Hsu MC, Dhingra U, Earley JV, Holly M, Keith D, Nalin CM, Richou AR, Schutt AD, Tam SY, Potash MJ et al (1993) Inhibition of type 1 human immunodeficiency virus replication by a tat antagonist to which the virus remains sensitive after prolonged exposure in vitro. Proc Natl Acad Sci USA 90(14):6395–6399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hudson L, Liu J, Nath A, Jones M, Raghavan R, Narayan O, Male D, Everall I (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J Neurovirol 6(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Hui B, Li J, Geng MY (2008) Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome drug candidate, decreased vulnerability of PC12 cells to human immunodeficiency virus tat protein through attenuating calcium overload. J Neurosci Res 86(5):1169–1177. doi:10.1002/jnr.21566

    Article  CAS  PubMed  Google Scholar 

  • Hui B, Xia W, Li J, Wang L, Ai J, Geng M (2006) Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome drug candidate, blocks neuroinflammatory signalling by targeting the transactivator of transcription (Tat) protein. J Neurochem 97(2):334–344. doi:10.1111/j.1471-4159.2006.03698.x

    Article  CAS  PubMed  Google Scholar 

  • Hunt PW (2010) Th17, gut, and HIV: therapeutic implications. Curr Opin HIV AIDS 5(2):189–193. doi:10.1097/COH.0b013e32833647d9

    Article  PubMed Central  PubMed  Google Scholar 

  • Jadlowsky JK, Nojima M, Okamoto T, Fujinaga K (2008a) Dominant negative mutant cyclin T1 proteins that inhibit HIV transcription by forming a kinase inactive complex with Tat. J Gen Virol 89(Pt 11):2783–2787. doi:10.1099/vir.0.2008/002857-0

    Article  CAS  PubMed  Google Scholar 

  • Jadlowsky JK, Nojima M, Schulte A, Geyer M, Okamoto T, Fujinaga K (2008b) Dominant negative mutant cyclin T1 proteins inhibit HIV transcription by specifically degrading Tat. Retrovirology 5:63. doi:10.1186/1742-4690-5-63

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jeang KT, Chun R, Lin NH, Gatignol A, Glabe CG, Fan H (1993) In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67(10):6224–6233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK (2011) Tits and bits of HIV Tat protein. Expert Opin Biol Ther 11(3):269–283. doi:10.1517/14712598.2011.546339

    Article  CAS  PubMed  Google Scholar 

  • Jones LE, Perelson AS (2007) Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy. J Acquir Immune Defic Syndr 45(5):483–493. doi:10.1097/QAI.0b013e3180654836

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalantari P, Narayan V, Henderson AJ, Prabhu KS (2009) 15-Deoxy-Delta12,14-prostaglandin J2 inhibits HIV-1 transactivating protein, Tat, through covalent modification. FASEB J 23(8):2366–2373. doi:10.1096/fj.08-124982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim BO, Liu Y, Ruan Y, Xu ZC, Schantz L, He JJ (2003) Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol 162(5):1693–1707. doi:10.1016/s0002-9440(10)64304-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SE, Lee EO, Yang JH, Kang JH, Suh YH, Chong YH (2012) 15-deoxy-Delta(1)(2), (1)(4) -prostaglandin J(2) inhibits human immunodeficiency virus-1 tat-induced monocyte chemoattractant protein-1/CCL2 production by blocking the extracellular signal-regulated kinase-1/2 signaling pathway independently of peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 in rat hippocampal slices. J Neurosci Res 90(9):1732–1742. doi:10.1002/jnr.23051

    Article  CAS  PubMed  Google Scholar 

  • King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV tat and neurotoxicity. Microbes Infect 8(5):1347–1357. doi:10.1016/j.micinf.2005.11.014

    Article  CAS  PubMed  Google Scholar 

  • Klebl BM, Choidas A (2006) CDK9/cyclin T1: a host cell target for antiretroviral therapy. Future Virol 1(3):317–330. doi:10.2217/17460794.1.3.317

    Article  CAS  Google Scholar 

  • Krueger BJ, Jeronimo C, Roy BB, Bouchard A, Barrandon C, Byers SA, Searcey CE, Cooper JJ, Bensaude O, Cohen EA, Coulombe B, Price DH (2008) LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res 36(7):2219–2229. doi:10.1093/nar/gkn061

  • Lapidot A, Berchanski A, Borkow G (2008) Insight into the mechanisms of aminoglycoside derivatives interaction with HIV-1 entry steps and viral gene transcription. FEBS J 275(21):5236–5257. doi:10.1111/j.1742-4658.2008.06657.x

    Article  CAS  PubMed  Google Scholar 

  • Li W, Li G, Steiner J, Nath A (2009) Role of Tat protein in HIV neuropathogenesis. Neurotox Res 16(3):205–220. doi:10.1007/s12640-009-9047-8

    Article  CAS  PubMed  Google Scholar 

  • Lu CX, Li J, Sun YX, Qi X, Wang QJ, Xin XL, Geng MY (2007) Sulfated polymannuroguluronate, a novel anti-AIDS drug candidate, inhibits HIV-1 Tat-induced angiogenesis in Kaposi’s sarcoma cells. Biochem Pharmacol 74(9):1330–1339. doi:10.1016/j.bcp.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  • Lusic M, Marcello A, Cereseto A, Giacca M (2003) Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 22(24):6550–6561. doi:10.1093/emboj/cdg631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma M, Nath A (1997) Molecular determinants for cellular uptake of Tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71(3):2495–2499

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mahmoudi T (2012) The BAF complex and HIV latency. Transcription 3(4):171–176. doi:10.4161/trns.20541

    Article  PubMed Central  PubMed  Google Scholar 

  • Marciniak RA, Sharp PA (1991) HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J 10(13):4189–4196

    PubMed Central  CAS  PubMed  Google Scholar 

  • Margolis DM (2010) Mechanisms of HIV latency: an emerging picture of complexity. Curr HIV/AIDS Rep 7(1):37–43. doi:10.1007/s11904-009-0033-9

    Article  PubMed  Google Scholar 

  • Massari S, Daelemans D, Barreca ML, Knezevich A, Sabatini S, Cecchetti V, Marcello A, Pannecouque C, Tabarrini O (2010) A 1,8-naphthyridone derivative targets the HIV-1 Tat-mediated transcription and potently inhibits the HIV-1 replication. J Med Chem 53(2):641–648. doi:10.1021/jm901211d

    Article  CAS  PubMed  Google Scholar 

  • Massari S, Sabatini S, Tabarrini O (2013) Blocking HIV-1 replication by targeting the Tat-hijacked transcriptional machinery. Curr Pharm Des 19(10):1860–1879. doi:10.2174/1381612811319100010

    Article  CAS  PubMed  Google Scholar 

  • Mbonye U, Karn J (2011) Control of HIV latency by epigenetic and non-epigenetic mechanisms. Curr HIV Res 9(8):554–567. doi:10.2174/157016211798998736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mediouni S, Jablonski J, Paris JJ, Clementz MA, Thenin-Houssier S, McLaughlin JP, Valente ST (2015) Didehydro-Cortistatin a Inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice. Curr HIV Res

    Google Scholar 

  • Miao B, Geng M, Li J, Li F, Chen H, Guan H, Ding J (2004) Sulfated polymannuroguluronate, a novel anti-acquired immune deficiency syndrome (AIDS) drug candidate, targeting CD4 in lymphocytes. Biochem Pharmacol 68(4):641–649. doi:10.1016/j.bcp.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  • Miao B, Li J, Fu X, Gan L, Xin X, Geng M (2005) Sulfated polymannuroguluronate, a novel anti-AIDS drug candidate, inhibits T cell apoptosis by combating oxidative damage of mitochondria. Mol Pharmacol 68(6):1716–1727. doi:10.1124/mol.105.015412

    CAS  PubMed  Google Scholar 

  • Molle D, Maiuri P, Boireau S, Bertrand E, Knezevich A, Marcello A, Basyuk E (2007) A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 4:36. doi:10.1186/1742-4690-4-36

    Article  PubMed Central  PubMed  Google Scholar 

  • Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, Baran P, Fromentin R, Chomont N, Valente ST (2012) An analog of the natural steroidal alkaloid cortistatin A potently suppresses Tat-dependent HIV transcription. Cell Host Microbe 12(1):97–108. doi:10.1016/j.chom.2012.05.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mousseau G, Valente ST (2012) Strategies to block HIV transcription: focus on small molecule Tat inhibitors. Biology 1(3):668–697. doi:10.3390/biology1030668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mulhbacher J, St-Pierre P, Lafontaine DA (2010) Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 10(5):551–556. doi:10.1016/j.coph.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  • Narayan V, Ravindra KC, Chiaro C, Cary D, Aggarwal BB, Henderson AJ, Prabhu KS (2011) Celastrol inhibits Tat-mediated human immunodeficiency virus (HIV) transcription and replication. J Mol Biol 410(5):972–983. doi:10.1016/j.jmb.2011.04.013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narayanan A, Sampey G, Van Duyne R, Guendel I, Kehn-Hall K, Roman J, Currer R, Galons H, Oumata N, Joseph B, Meijer L, Caputi M, Nekhai S, Kashanchi F (2012) Use of ATP analogs to inhibit HIV-1 transcription. Virology 432(1):219–231. doi:10.1016/j.virol.2012.06.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nemeth G, Varga Z, Greff Z, Bencze G, Sipos A, Szantai-Kis C, Baska F, Gyuris A, Kelemenics K, Szathmary Z, Minarovits J, Keri G, Orfi L (2011) Novel, selective CDK9 inhibitors for the treatment of HIV infection. Curr Med Chem 18(3):342–358. doi:10.2174/092986711794839188

    Article  CAS  PubMed  Google Scholar 

  • Nemeth G, Greff Z, Sipos A, Varga Z, Szekely R, Sebestyen M, Jaszay Z, Beni S, Nemes Z, Pirat JL, Volle JN, Virieux D, Gyuris A, Kelemenics K, Ay E, Minarovits J, Szathmary S, Keri G, Orfi L (2014) Synthesis and evaluation of phosphorus containing, specific CDK9/CycT1 inhibitors. J Med Chem 57(10):3939–3965. doi:10.1021/jm401742r

  • Nunnari G, Smith JA, Daniel R (2008) HIV-1 Tat and AIDS-associated cancer: targeting the cellular anti-cancer barrier? J Exp Clin Cancer Res CR 27:3. doi:10.1186/1756-9966-27-3

    Article  CAS  Google Scholar 

  • Ott M, Geyer M, Zhou Q (2011) The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe 10(5):426–435. doi:10.1016/j.chom.2011.11.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer S, Maldarelli F, Wiegand A, Bernstein B, Hanna GJ, Brun SC, Kempf DJ, Mellors JW, Coffin JM, King MS (2008) Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 105(10):3879–3884. doi:10.1073/pnas.0800050105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parolin C, Gatto B, Del Vecchio C, Pecere T, Tramontano E, Cecchetti V, Fravolini A, Masiero S, Palumbo M, Palu G (2003) New anti-human immunodeficiency virus type 1 6-aminoquinolones: mechanism of action. Antimicrob Agents Chemother 47(3):889–896. doi:10.1128/AAC.47.3.889-896.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pessler F, Cron RQ (2004) Reciprocal regulation of the nuclear factor of activated T cells and HIV-1. Genes Immun 5(3):158–167. doi:10.1038/sj.gene.6364047

    Article  CAS  PubMed  Google Scholar 

  • Possati L, Campioni D, Sola F, Leone L, Ferrante L, Trabanelli C, Ciomei M, Montesi M, Rocchetti R, Talevi S, Bompadre S, Caputo A, Barbanti-Brodano G, Corallini A (1999) Antiangiogenic, antitumoural and antimetastatic effects of two distamycin A derivatives with anti-HIV-1 Tat activity in a Kaposi’s sarcoma-like murine model. Clin Exp Metastasis 17(7):575–582

    Article  CAS  PubMed  Google Scholar 

  • Puglisi JD, Tan R, Calnan BJ, Frankel AD, Williamson JR (1992) Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257(5066):76–80. doi:10.1126/science.1621097

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan R, Liu H, Donahue H, Malovannaya A, Qin J, Rice AP (2012) Identification of novel CDK9 and Cyclin T1-associated protein complexes (CCAPs) whose siRNA depletion enhances HIV-1 Tat function. Retrovirology 9:90. doi:10.1186/1742-4690-9-90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richter S, Parolin C, Gatto B, Del Vecchio C, Brocca-Cofano E, Fravolini A, Palu G, Palumbo M (2004) Inhibition of human immunodeficiency virus type 1 tat-trans-activation-responsive region interaction by an antiviral quinolone derivative. Antimicrob Agents Chemother 48(5):1895–1899. doi:10.1128/AAC.48.5.1895-1899.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richter SN, Palu G (2006) Inhibitors of HIV-1 Tat-mediated transactivation. Curr Med Chem 13(11):1305–1315. doi:10.2174/092986706776872989

    Article  CAS  PubMed  Google Scholar 

  • Romani B, Engelbrecht S, Glashoff RH (2010) Functions of Tat: the versatile protein of human immunodeficiency virus type 1. J Gen Virol 91(Pt 1):1–12. doi:10.1099/vir.0.016303-0

    Article  CAS  PubMed  Google Scholar 

  • Rozera C, Carattoli A, De Marco A, Amici C, Giorgi C, Santoro MG (1996) Inhibition of HIV-1 replication by cyclopentenone prostaglandins in acutely infected human cells. Evidence for a transcriptional block. J Clin Invest 97(8):1795–1803. doi:10.1172/JCI118609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rusnati M, Presta M (2002) HIV-1 Tat protein and endothelium: from protein/cell interaction to AIDS-associated pathologies. Angiogenesis 5(3):141–151. doi:10.1023/A:1023892223074

    Article  CAS  PubMed  Google Scholar 

  • Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, Ciomei M, Corallini A, Presta M (1998) The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J Biol Chem 273(26):16027–16037

    Article  CAS  PubMed  Google Scholar 

  • Rusnati M, Urbinati C, Caputo A, Possati L, Lortat-Jacob H, Giacca M, Ribatti D, Presta M (2001) Pentosan polysulfate as an inhibitor of extracellular HIV-1 Tat. J Biol Chem 276(25):22420–22425. doi:10.1074/jbc.M010779200

    Article  CAS  PubMed  Google Scholar 

  • Sancineto L, Iraci N, Massari S, Attanasio V, Corazza G, Barreca ML, Sabatini S, Manfroni G, Avanzi NR, Cecchetti V, Pannecouque C, Marcello A, Tabarrini O (2013) Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 Tat-mediated transcription activity. ChemMedChem 8(12):1941–1953. doi:10.1002/cmdc.201300287

    Article  CAS  PubMed  Google Scholar 

  • Sedore SC, Byers SA, Biglione S, Price JP, Maury WJ, Price DH (2007) Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res 35(13):4347–4358. doi:10.1093/nar/gkm443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9(6):727–728. doi:10.1038/nm880

    Article  CAS  PubMed  Google Scholar 

  • Sklar PA, Ward DJ, Baker RK, Wood KC, Gafoor Z, Alzola CF, Moorman AC, Holmberg SD (2002) Prevalence and clinical correlates of HIV viremia (‘blips’) in patients with previous suppression below the limits of quantification. AIDS 16(15):2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Stelzer AC, Frank AT, Kratz JD, Swanson MD, Gonzalez-Hernandez MJ, Lee J, Andricioaei I, Markovitz DM, Al-Hashimi HM (2011) Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat Chem Biol 7(8):553–559. doi:10.1038/nchembio.596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevens M, De Clercq E, Balzarini J (2006) The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev 26(5):595–625. doi:10.1002/med.20081

    Article  CAS  PubMed  Google Scholar 

  • Stevens M, Pollicita M, Pannecouque C, Verbeken E, Tabarrini O, Cecchetti V, Aquaro S, Perno CF, Fravolini A, De Clercq E, Schols D, Balzarini J (2007) Novel in vivo model for the study of human immunodeficiency virus type 1 transcription inhibitors: evaluation of new 6-desfluoroquinolone derivatives. Antimicrob Agents Chemother 51(4):1407–1413. doi:10.1128/AAC.01251-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR (2011) Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier. Brain Res 1399:96–115. doi:10.1016/j.brainres.2011.05.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung TL, Rice AP (2009) miR-198 inhibits HIV-1 gene expression and replication in monocytes and its mechanism of action appears to involve repression of cyclin T1. PLoS Pathog 5(1):e1000263. doi:10.1371/journal.ppat.1000263

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tabarrini O, Massari S, Cecchetti V (2010) 6-desfluoroquinolones as HIV-1 Tat-mediated transcription inhibitors. Future Med Chem 2(7):1161–1180. doi:10.4155/fmc.10.208

    Article  CAS  PubMed  Google Scholar 

  • Tabarrini O, Massari S, Daelemans D, Stevens M, Manfroni G, Sabatini S, Balzarini J, Cecchetti V, Pannecouque C, Fravolini A (2008) Structure-activity relationship study on anti-HIV 6-desfluoroquinolones. J Med Chem 51(17):5454–5458. doi:10.1021/jm701585h

    Article  CAS  PubMed  Google Scholar 

  • Tabarrini O, Massari S, Sancineto L, Daelemans D, Sabatini S, Manfroni G, Cecchetti V, Pannecouque C (2011) Structural investigation of the naphthyridone scaffold: identification of a 1,6-naphthyridone derivative with potent and selective anti-HIV activity. ChemMedChem 6(7):1249–1257. doi:10.1002/cmdc.201100073

    Article  CAS  PubMed  Google Scholar 

  • Tabarrini O, Stevens M, Cecchetti V, Sabatini S, Dell’Uomo M, Manfroni G, Palumbo M, Pannecouque C, De Clercq E, Fravolini A (2004) Structure modifications of 6-aminoquinolones with potent anti-HIV activity. J Med Chem 47(22):5567–5578. doi:10.1021/jm049721p

    Article  CAS  PubMed  Google Scholar 

  • Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH (2010) Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465(7299):747–751. doi:10.1038/nature09131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toohey MG, Jones KA (1989) In vitro formation of short RNA polymerase II transcripts that terminate within the HIV-1 and HIV-2 promoter-proximal downstream regions. Genes Dev 3(3):265–282. doi:10.1101/gad.3.3.265

    Article  CAS  PubMed  Google Scholar 

  • Toossi Z, Wu M, Hirsch CS, Mayanja-Kizza H, Baseke J, Aung H, Canaday DH, Fujinaga K (2012) Activation of P-TEFb at sites of dual HIV/TB infection, and inhibition of MTB-induced HIV transcriptional activation by the inhibitor of CDK9, Indirubin-3’-monoxime. AIDS Res Hum Retroviruses 28(2):182–187. doi:10.1089/AID.2010.0211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turner JJ, Fabani M, Arzumanov AA, Ivanova G, Gait MJ (2006) Targeting the HIV-1 RNA leader sequence with synthetic oligonucleotides and siRNA: chemistry and cell delivery. Biochim Biophys Acta 1758(3):290–300. doi:10.1016/j.bbamem.2005.10.013

    Article  CAS  PubMed  Google Scholar 

  • Turpin JA, Buckheit RW Jr, Derse D, Hollingshead M, Williamson K, Palamone C, Osterling MC, Hill SA, Graham L, Schaeffer CA, Bu M, Huang M, Cholody WM, Michejda CJ, Rice WG (1998) Inhibition of acute-, latent-, and chronic-phase human immunodeficiency virus type 1 (HIV-1) replication by a bistriazoloacridone analog that selectively inhibits HIV-1 transcription. Antimicrob Agents Chemother 42(3):487–494

    PubMed Central  CAS  PubMed  Google Scholar 

  • Urbinati C, Mitola S, Tanghetti E, Kumar C, Waltenberger J, Ribatti D, Presta M, Rusnati M (2005) Integrin alphavbeta3 as a target for blocking HIV-1 Tat-induced endothelial cell activation in vitro and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 25(11):2315–2320. doi:10.1161/01.ATV.0000186182.14908.7b

    Article  CAS  PubMed  Google Scholar 

  • Van Duyne R, Guendel I, Jaworski E, Sampey G, Klase Z, Chen H, Zeng C, Kovalskyy D, El Kouni MH, Lepene B, Patanarut A, Nekhai S, Price DH, Kashanchi F (2013) Effect of mimetic CDK9 inhibitors on HIV-1-activated transcription. J Mol Biol 425(4):812–829. doi:10.1016/j.jmb.2012.12.005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Grol J, Subauste C, Andrade RM, Fujinaga K, Nelson J, Subauste CS (2010) HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PLoS One 5(7):e11733. doi:10.1371/journal.pone.0011733

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wan Z, Chen X (2014) Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein. Retrovirology 11(1):88. doi:10.1186/preaccept-1002681664135027

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang D, de la Fuente C, Deng L, Wang L, Zilberman I, Eadie C, Healey M, Stein D, Denny T, Harrison LE, Meijer L, Kashanchi F (2001) Inhibition of human immunodeficiency virus type 1 transcription by chemical cyclin-dependent kinase inhibitors. J Virol 75(16):7266–7279. doi:10.1128/jvi.75.16.7266-7279.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Fischer PM (2008) Cyclin-dependent kinase 9: a key transcriptional regulator and potential drug target in oncology, virology and cardiology. Trends Pharmacol Sci 29(6):302–313. doi:10.1016/j.tips.2008.03.003

    Article  PubMed  CAS  Google Scholar 

  • Weeks BS, Lieberman DM, Johnson B, Roque E, Green M, Loewenstein P, Oldfield EH, Kleinman HK (1995) Neurotoxicity of the human immunodeficiency virus type 1 tat transactivator to PC12 cells requires the Tat amino acid 49-58 basic domain. J Neurosci Res 42(1):34–40. doi:10.1002/jnr.490420105

    Article  CAS  PubMed  Google Scholar 

  • Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, Griffin JW, Griffin DE (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33(6):576–582. doi:10.1002/ana.410330604

    Article  CAS  PubMed  Google Scholar 

  • Wiley CA, Baldwin M, Achim CL (1996) Expression of HIV regulatory and structural mRNA in the central nervous system. AIDS 10(8):843–847

    Article  CAS  PubMed  Google Scholar 

  • Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278(5341):1291–1295. doi:10.1126/science.278.5341.1291

    Article  CAS  PubMed  Google Scholar 

  • Wu YL, Ai J, Zhao JM, Xiong B, Xin XJ, Geng MY, Xin XL, Jiang HD (2011) Sulfated polymannuroguluronate inhibits Tat-induced SLK cell adhesion via a novel binding site, a KKR spatial triad. Acta pharmacologica Sinica 32(5):647–654. doi:10.1038/aps.2011.2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yukl SA, Gianella S, Sinclair E, Epling L, Li Q, Duan L, Choi AL, Girling V, Ho T, Li P, Fujimoto K, Lampiris H, Hare CB, Pandori M, Haase AT, Gunthard HF, Fischer M, Shergill AK, McQuaid K, Havlir DV, Wong JK (2010) Differences in HIV burden and immune activation within the gut of HIV-positive patients receiving suppressive antiretroviral therapy. J Infect Dis 202(10):1553–1561. doi:10.1086/656722

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeller SJ, Kumar P (2011) RNA-based gene therapy for the treatment and prevention of HIV: from bench to bedside. Yale J Biol Med 84(3):301–309

    PubMed Central  PubMed  Google Scholar 

  • Zucchini S, Pittaluga A, Brocca-Cofano E, Summa M, Fabris M, De Michele R, Bonaccorsi A, Busatto G, Barbanti-Brodano G, Altavilla G, Verlengia G, Cifelli P, Corallini A, Caputo A, Simonato M (2013) Increased excitability in tat-transgenic mice: role of tat in HIV-related neurological disorders. Neurobiol Dis 55:110–119. doi:10.1016/j.nbd.2013.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana T. Valente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mousseau, G., Mediouni, S., Valente, S.T. (2015). Targeting HIV Transcription: The Quest for a Functional Cure. In: Torbett, B., Goodsell, D., Richman, D. (eds) The Future of HIV-1 Therapeutics. Current Topics in Microbiology and Immunology, vol 389. Springer, Cham. https://doi.org/10.1007/82_2015_435

Download citation

Publish with us

Policies and ethics