Skip to main content

Receptor Binding Properties of the Influenza Virus Hemagglutinin as a Determinant of Host Range

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 385))

Abstract

Host cell attachment by influenza A viruses is mediated by the hemagglutinin glycoprotein (HA), and the recognition of specific types of sialic acid -containing glycan receptors constitutes one of the major determinants of viral host range and transmission properties. Structural studies have elucidated some of the viral determinants involved in receptor recognition of avian-like and human-like receptors for various subtypes of influenza A viruses, and these provide clues relating to the mechanisms by which viruses evolve to adapt to human hosts. We discuss structural aspects of receptor binding by influenza HA, as well as the biological implications of functional interplay involving HA binding, NA sialidase functions, the effects of antigenic drift, and the inhibitory properties of natural glycans present on mucosal surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

HA:

Hemagglutinin

NA:

Neuraminidase

Sia:

Sialic acid

Gal:

Galactose

GlcNAc or NAG:

N-acetylglucosamine

3-SLN:

3′-Sialyl-N-acetyllactosamine

6-SLN:

6′-Sialyl-N-acetyllactosamine

LSTc:

LS-Tetrasaccharide C

References

  • Aytay S, Schulze IT (1991) Single amino acid substitutions in the hemagglutinin can alter the host range and receptor binding properties of H1 strains of influenza A virus. J Virol 65:3022–3028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baigent SJ, Bethell RC, McCauley JW (1999) Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian influenza viruses to zanamivir in vitro. Virology 263:323–338. doi:10.1006/viro.1999.9931

    CAS  PubMed  Google Scholar 

  • Baigent SJ, McCauley JW (2001) Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res 79:177–185

    CAS  PubMed  Google Scholar 

  • Bateman AC, Karamanska R, Busch MG, Dell A, Olsen CW, Haslam SM (2010) Glycan analysis and influenza a virus infection of primary swine respiratory epithelial cells: the importance of NeuAc{alpha}2–6 glycans. J Biol Chem 285:34016–34026. doi:10.1074/jbc.M110.115998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baum LG, Paulson JC (1991) The N2 neuraminidase of human influenza virus has acquired a substrate specificity complementary to the hemagglutinin receptor specificity. Virology 180:10–15

    CAS  PubMed  Google Scholar 

  • Bean WJ, Schell M, Katz J, Kawaoka Y, Naeve C, Gorman O, Webster RG (1992) Evolution of the H3 influenza virus hemagglutinin from human and nonhuman hosts. J Virol 66:1129–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belser JA, Lu X, Szretter KJ et al (2007) DAS181, a novel sialidase fusion protein, protects mice from lethal avian influenza H5N1 virus infection. J Infect Dis 196:1493–1499. doi:10.1086/522609

    CAS  PubMed  Google Scholar 

  • Blixt O, Head S, Mondala T et al (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101:17033–17038. doi:10.1073/pnas.0407902101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley KC, Galloway SE, Lasanajak Y et al (2011a) Analysis of influenza virus hemagglutinin receptor binding mutants with limited receptor recognition properties and conditional replication characteristics. J Virol 85:12387–12398. doi:10.1128/JVI.05570-11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley KC, Jones CA, Tompkins SM et al (2011b) Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology 413:169–182. doi:10.1016/j.virol.2011.01.027

    CAS  PubMed  Google Scholar 

  • Breg J, Van Halbeek H, Vliegenthart JF, Lamblin G, Houvenaghel MC, Roussel P (1987) Structure of sialyl-oligosaccharides isolated from bronchial mucus glycoproteins of patients (blood group O) suffering from cystic fibrosis. Eur J Biochem/FEBS 168:57–68

    CAS  Google Scholar 

  • Burnet FM (1948) Mucins and mucoids in relation to influenza virus action. 4. Inhibition by purified mucoid of infection and haemagglutination with the virus strain WSE. Aust J exp Biol med Sci 26:381–387

    Google Scholar 

  • Burnet FM, Bull DR (1943) Changes in influenza virus associated with adaptation to passage in chick embryos. Aust J Exp Biol Med Sci 21:55–69

    Google Scholar 

  • Burnet FM, McCrea JF, Stone JD (1946) Modification of human red cells by virus action I. The receptor gradient for virus action in human red cells. Br J Exp Path 27:228–236

    CAS  Google Scholar 

  • Burnet FM, Stone JD (1947) The receptor-destroying enzyme of V. cholera. Aust J Exp Biol Med Sci 25:227–233

    CAS  PubMed  Google Scholar 

  • Byrd-Leotis L, Liu R, Bradley KC et al (2014) Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc Natl Acad Sci USA. doi:10.1073/pnas.1323162111

    PubMed  Google Scholar 

  • Calder LJ, Wasilewski S, Berriman JA, Rosenthal PB (2010) Structural organization of a filamentous influenza a virus. Proc Natl Acad Sci USA 107:10685–10690. doi:10.1073/pnas.1002123107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan RW, Karamanska R, Van Poucke S et al (2013) Infection of swine ex vivo tissues with avian viruses including H7N9 and correlation with glycomic analysis. Influenza Other Respir Viruses 7:1269–1282. doi:10.1111/irv.12144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC (1998) Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–417

    CAS  PubMed  Google Scholar 

  • Chen LM, Blixt O, Stevens J et al (2012) In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology 422:105–113. doi:10.1016/j.virol.2011.10.006

    CAS  PubMed  Google Scholar 

  • Chen LM, Rivailler P, Hossain J et al (2011) Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology 412:401–410. doi:10.1016/j.virol.2011.01.015

    CAS  PubMed  Google Scholar 

  • Childs RA, Palma AS, Wharton S et al (2009) Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat Biotechnol 27:797–799. doi:10.1038/nbt0909-797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choppin PW, Murphy JS, Tamm I (1960) Studies of two kinds of virus particles which comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J Exp Med 112:945–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choppin PW, Tamm I (1960a) Studies of two kinds of virus particles which comprise influenza A2 Virus Strains : I. characterization of stable homogeneous substrains in reactions with specific antibody, mucoprotein inhibitors, and erythrocytes. J Exp Med 112:895–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choppin PW, Tamm I (1960b) Studies of two kinds of virus particles which comprise influenza A2 virus strains. II. Reactivity with virus inhibitors in normal sera. J Exp Med 112:921–944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu CM, Dawson IM, Elford WJ (1949) Filamentous forms associated with newly isolated influenza virus. Lancet 1:602

    CAS  PubMed  Google Scholar 

  • Chu VC, Whittaker GR (2004) Influenza virus entry and infection require host cell N-linked glycoprotein. Proc Natl Acad Sci USA 101:18153–18158. doi:10.1073/pnas.0405172102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chutinimitkul S, van Riel D, Munster VJ et al (2010) In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza a viruses with altered receptor specificity. J Virol 84:6825–6833 doi:10.1128/JVI.02737-09JVI.02737-09 [pii]

  • Claas EC, Osterhaus AD, van Beek R et al (1998) Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351:472–477. doi:10.1016/S0140-6736(97)11212-0

    CAS  PubMed  Google Scholar 

  • Connaris H, Govorkova EA, Ligertwood Y et al (2014) Prevention of influenza by targeting host receptors using engineered proteins. Proc Natl Acad Sci USA. doi:10.1073/pnas.1404205111

    PubMed  Google Scholar 

  • Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23. doi:10.1006/viro.1994.1615

    CAS  PubMed  Google Scholar 

  • Costa T, Chaves AJ, Valle R et al (2012) Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species. Vet Res 43:28. doi:10.1186/1297-9716-43-28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couceiro JN, Paulson JC, Baum LG (1993) Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res 29:155–165

    CAS  PubMed  Google Scholar 

  • Daniels PS, Jeffries S, Yates P et al (1987) The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J 6:1459–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels RS, Douglas AR, Skehel JJ et al (1984) Antigenic analyses of influenza virus haemagglutinins with different receptor-binding specificities. Virology 138:174–177

    CAS  PubMed  Google Scholar 

  • Daniels RS, Downie JC, Hay AJ, Knossow M, Skehel JJ, Wang ML, Wiley DC (1985) Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439

    CAS  PubMed  Google Scholar 

  • Das SR, Hensley SE, David A et al (2011) Fitness costs limit influenza a virus hemagglutinin glycosylation as an immune evasion strategy. Proc Natl Acad Sci USA 108:E1417–E1422. doi:10.1073/pnas.1108754108

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries RP, Zhu X, McBride R et al (2014) Hemagglutinin receptor specificity and structural analyses of respiratory droplet-transmissible H5N1 viruses. J Virol 88:768–773. doi:10.1128/JVI.02690-13

    PubMed  PubMed Central  Google Scholar 

  • Eisen MB, Sabesan S, Skehel JJ, Wiley DC (1997) Binding of the influenza a virus to cell-surface receptors: structures of five hemagglutinin-sialyloligosaccharide complexes determined by X-ray crystallography. Virology 232:19–31. doi:10.1006/viro.1997.8526

    CAS  PubMed  Google Scholar 

  • Fang R, Min Jou W, Huylebroeck D, Devos R, Fiers W (1981) Complete structure of A/duck/Ukraine/63 influenza hemagglutinin gene: animal virus as progenitor of human H3 Hong Kong 1968 influenza hemagglutinin. Cell 25:315–323

    Google Scholar 

  • Franca M, Stallknecht DE, Howerth EW (2013) Expression and distribution of sialic acid influenza virus receptors in wild birds. Avian pathol: J W.V.P.A 42:60–71 doi:10.1080/03079457.2012.759176

  • Galloway SE, Reed ML, Russell CJ, Steinhauer DA (2013) Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation. PLoS Pathog 9:e1003151. doi:10.1371/journal.ppat.1003151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gambaryan A, Tuzikov A, Pazynina G, Bovin N, Balish A, Klimov A (2006) Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology 344:432–438 doi:S0042-6822(05)00531-3 [pii] 10.1016/j.virol.2005.08.035

  • Gambaryan AS, Matrosovich MN (1992) A solid-phase enzyme-linked assay for influenza virus receptor-binding activity. J Virol Methods 39:111–123

    CAS  PubMed  Google Scholar 

  • Gambaryan AS, Tuzikov AB, Piskarev VE et al (1997) Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6’-sialyl(N-acetyllactosamine). Virology 232:345–350. doi:10.1006/viro.1997.8572

    CAS  PubMed  Google Scholar 

  • Gamblin SJ, Haire LF, Russell RJ et al (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303:1838–1842. doi:10.1126/science.1093155

    CAS  PubMed  Google Scholar 

  • Glaser L, Stevens J, Zamarin D et al (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79:11533–11536. doi:10.1128/JVI.79.17.11533-11536.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottschalk A (1957) Neuraminidase: the specific enzyme of influenza virus and Vibrio cholera. Biochim Biophys Acta 23:645

    CAS  PubMed  Google Scholar 

  • Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2003) X-ray structure of the hemagglutinin of a potential H3 avian progenitor of the 1968 Hong Kong pandemic influenza virus. Virology 309:209–218

    CAS  PubMed  Google Scholar 

  • Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4:3021–3024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley SE, Das SR, Bailey AL et al (2009) Hemagglutinin receptor binding avidity drives influenza a virus antigenic drift. Science 326:734–736 doi:10.1126/science.1178258326/5953/734 [pii]

  • Herfst S, Schrauwen EJ, Linster M et al (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541. doi:10.1126/science.1213362

    CAS  PubMed  Google Scholar 

  • Hirst GK (1941) The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94:22–23. doi:10.1126/science.94.2427.22

    CAS  PubMed  Google Scholar 

  • Hooper KA, Bloom JD (2013) A mutant influenza virus that uses an N1 neuraminidase as the receptor-binding protein. J Virol 87:12531–12540. doi:10.1128/JVI.01889-13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyle L (1968) Virology monographs. Springer, Berlin

    Google Scholar 

  • Hughes MT, Matrosovich M, Rodgers ME, McGregor M, Kawaoka Y (2000) Influenza a viruses lacking sialidase activity can undergo multiple cycles of replication in cell culture, eggs, or mice. J Virol 74:5206–5212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyushina NA, Govorkova EA, Russell CJ, Hoffmann E, Webster RG (2007) Contribution of H7 haemagglutinin to amantadine resistance and infectivity of influenza virus. J Gen Virol 88:1266–1274. doi:10.1099/vir.0.82256-0

    CAS  PubMed  Google Scholar 

  • Imai M, Watanabe T, Hatta M et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428. doi:10.1038/nature10831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal M, Essen SC, Xiao H, Brookes SM, Brown IH, McCauley JW (2012) Selection of variant viruses during replication and transmission of H7N1 viruses in chickens and turkeys. Virology 433:282–295. doi:10.1016/j.virol.2012.08.001

    CAS  PubMed  Google Scholar 

  • Ito T, Couceiro JN, Kelm S et al (1998) Molecular basis for the generation in pigs of influenza a viruses with pandemic potential. J Virol 72:7367–7373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Suzuki Y, Mitnaul L, Vines A, Kida H, Kawaoka Y (1997) Receptor specificity of influenza a viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227:493–499. doi:10.1006/viro.1996.8323

    CAS  PubMed  Google Scholar 

  • Itoh Y, Shinya K, Kiso M et al (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025. doi:10.1038/nature08260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman A, Chandrasekaran A, Viswanathan K, Raman R, Fox JG, Sasisekharan R (2012) Decoding the distribution of glycan receptors for human-adapted influenza a viruses in ferret respiratory tract. PLoS ONE 7:e27517. doi:10.1371/journal.pone.0027517

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kida H, Kawaoka Y, Naeve CW, Webster RG (1987) Antigenic and genetic conservation of H3 influenza virus in wild ducks. Virology 159:109–119

    CAS  PubMed  Google Scholar 

  • Kilander A, Rykkvin R, Dudman SG, Hungnes O (2010) Observed association between the HA1 mutation D222G in the 2009 pandemic influenza A(H1N1) virus and severe clinical outcome, Norway 2009–2010. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 15

    Google Scholar 

  • Klenk E, Faillard H, Lempfrid H (1955) Enzymatic effect of the influenza virus. Hoppe Seylers Z Physiol Chem 301:235–246

    CAS  PubMed  Google Scholar 

  • Klenk HD, Rott R, Orlich M, Blodorn J (1975) Activation of influenza a viruses by trypsin treatment. Virology 68:426–439

    CAS  PubMed  Google Scholar 

  • Kobasa D, Kodihalli S, Luo M et al (1999) Amino acid residues contributing to the substrate specificity of the influenza a virus neuraminidase. J Virol 73:6743–6751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koel BF, Burke DF, Bestebroer TM et al (2013) Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342:976–979. doi:10.1126/science.1244730

    CAS  PubMed  Google Scholar 

  • Kuchipudi SV, Nelli R, White GA, Bain M, Chang KC, Dunham S (2009) Differences in influenza virus receptors in chickens and ducks: Implications for interspecies transmission. J Mol Gen Med Int J Bio Res 3:143–151

    CAS  Google Scholar 

  • Lamblin G, Roussel P (1993) Airway mucins and their role in defence against micro-organisms. Respir Med 87:421–426

    CAS  PubMed  Google Scholar 

  • Leigh MW, Connor RJ, Kelm S, Baum LG, Paulson JC (1995) Receptor specificity of influenza virus influences severity of illness in ferrets. Vaccine 13:1468–1473

    CAS  PubMed  Google Scholar 

  • Lin YP, Gregory V, Collins P et al (2010) Neuraminidase receptor binding variants of human influenza A(H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment? J Virol 84:6769–6781. doi:10.1128/JVI.00458-10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YP, Xiong X, Wharton SA et al (2012) Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci USA 109:21474–21479. doi:10.1073/pnas.1218841110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Stevens DJ, Haire LF et al (2009) Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci USA 106:17175–17180. doi:10.1073/pnas.0906849106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Childs RA, Matrosovich T et al (2010) Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J Virol 84:12069–12074. doi:10.1128/JVI.01639-10

    PubMed  PubMed Central  Google Scholar 

  • Lu X, Shi Y, Zhang W, Zhang Y, Qi J, Gao GF (2013) Structure and receptor-binding properties of an airborne transmissible avian influenza a virus hemagglutinin H5 (VN1203mut). Protein Cell 4:502–511. doi:10.1007/s13238-013-3906-z

    CAS  PubMed  Google Scholar 

  • Mak GC, Au KW, Tai LS, Chuang KC, Cheng KC, Shiu TC, Lim W (2010) Association of D222G substitution in haemagglutinin of 2009 pandemic influenza A (H1N1) with severe disease. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 15

    Google Scholar 

  • Martin J, Wharton SA, Lin YP, Takemoto DK, Skehel JJ, Wiley DC, Steinhauer DA (1998) Studies of the binding properties of influenza hemagglutinin receptor-site mutants. Virology 241:101–111

    CAS  PubMed  Google Scholar 

  • Matrosovich M, Tuzikov A, Bovin N et al (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78:12665–12667. doi:10.1128/JVI.78.22.12665-12667.2004

    CAS  PubMed  PubMed Central  Google Scholar 

  • McClelland L, Hare R (1941) Adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus. Can J Publ Health 32:530

    Google Scholar 

  • McKimm-Breschkin JL (2000) Resistance of influenza viruses to neuraminidase inhibitors–a review. Antiviral Res 47:1–17

    CAS  PubMed  Google Scholar 

  • Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S (2001) Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology 289:74–85. doi:10.1006/viro.2001.1121

    CAS  PubMed  Google Scholar 

  • Meisner J, Szretter KJ, Bradley KC et al (2008) Infectivity studies of influenza virus hemagglutinin receptor binding site mutants in mice. J Virol 82:5079–5083. doi:10.1128/JVI.01958-07

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, Kobasa D, Kawaoka Y (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza a virus. J Virol 74:6015–6020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosley VM, Wyckoff RW (1946) Election micrography of the virus of influenza. Nature 157:263

    CAS  PubMed  Google Scholar 

  • Naeve CW, Hinshaw VS, Webster RG (1984) Mutations in the hemagglutinin receptor-binding site can change the biological properties of an influenza virus. J Virol 51:567–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelli RK, Kuchipudi SV, White GA, Perez BB, Dunham SP, Chang KC (2010) Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet Res 6:4. doi:10.1186/1746-6148-6-4

    PubMed  PubMed Central  Google Scholar 

  • Nicholls JM, Chan MC, Chan WY et al (2007) Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. Nat Med 13:147–149. doi:10.1038/nm1529

    CAS  PubMed  Google Scholar 

  • Nobusawa E, Ishihara H, Morishita T, Sato K, Nakajima K (2000) Change in receptor-binding specificity of recent human influenza a viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Virology 278:587–596. doi:10.1006/viro.2000.0679

    CAS  PubMed  Google Scholar 

  • Paulson JC, Rogers GN (1987) Resialylated erythrocytes for assessment of the specificity of sialyloligosaccharide binding proteins. Methods Enzymol 138:162–168

    CAS  PubMed  Google Scholar 

  • Pritchett TJ, Paulson JC (1989) Basis for the potent inhibition of influenza virus infection by equine and guinea pig alpha 2-macroglobulin. J Biol Chem 264:9850–9858

    CAS  PubMed  Google Scholar 

  • Resende PC, Motta FC, Oliveira Mde L et al (2014) Polymorphisms at residue 222 of the hemagglutinin of pandemic influenza A(H1N1)pdm09: association of quasi-species to morbidity and mortality in different risk categories. PloS one 9:e92789 doi:10.1371/journal.pone.0092789

  • Rogers GN, Daniels RS, Skehel JJ, Wiley DC, Wang XF, Higa HH, Paulson JC (1985) Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2, 6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2, 3Gal-specific wild type in ovo. J Biol Chem 260:7362–7367

    CAS  PubMed  Google Scholar 

  • Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    CAS  PubMed  Google Scholar 

  • Rogers GN, Paulson JC, Daniels RS, Skehel JJ, Wilson IA, Wiley DC (1983a) Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature 304:76–78

    CAS  PubMed  Google Scholar 

  • Rogers GN, Pritchett TJ, Lane JL, Paulson JC (1983b) Differential sensitivity of human, avian, and equine influenza a viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131:394–408

    CAS  PubMed  Google Scholar 

  • Ryan-Poirier KA, Kawaoka Y (1991) Distinct glycoprotein inhibitors of influenza a virus in different animal sera. J Virol 65:389–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan-Poirier KA, Kawaoka Y (1993) Alpha 2-macroglobulin is the major neutralizing inhibitor of influenza a virus in pig serum. Virology 193:974–976. doi:10.1006/viro.1993.1208

    CAS  PubMed  Google Scholar 

  • Sauter NK, Bednarski MD, Wurzburg BA, Hanson JE, Whitesides GM, Skehel JJ, Wiley DC (1989) Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociation constants: a 500 MHz proton nuclear magnetic resonance study. Biochemistry 28:8388–8396

    CAS  PubMed  Google Scholar 

  • Sauter NK, Hanson JE, Glick GD et al (1992) Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31:9609–9621

    CAS  PubMed  Google Scholar 

  • Shelton H, Roberts KL, Molesti E, Temperton N, Barclay WS (2013) Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J Gen Virol 94:1220–1229. doi:10.1099/vir.0.050526-0

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Zhang W, Wang F et al (2013) Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses. Science 342:243–247. doi:10.1126/science.1242917

    CAS  PubMed  Google Scholar 

  • Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B, Peumans WJ (1987) The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2–6)Gal/GalNAc sequence. J Biol Chem 262:1596–1601

    CAS  PubMed  Google Scholar 

  • Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436. doi:10.1038/440435a

    CAS  PubMed  Google Scholar 

  • Shore DA, Yang H, Balish AL et al (2013) Structural and antigenic variation among diverse clade 2 H5N1 viruses. PLoS ONE 8:e75209. doi:10.1371/journal.pone.0075209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Lasanajak Y, Xia B et al (2011a) Shotgun glycomics: a microarray strategy for functional glycomics. Nat Methods 8:85–90. doi:10.1038/nmeth.1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Yu H, Chen X et al (2011b) A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses. J Biol Chem 286:31610–31622. doi:10.1074/jbc.M111.274217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhauer DA, Wharton SA, Skehel JJ, Wiley DC, Hay AJ (1991) Amantadine selection of a mutant influenza virus containing an acid-stable hemagglutinin glycoprotein: evidence for virus-specific regulation of the pH of glycoprotein transport vesicles. Proc Natl Acad Sci USA 88:11525–11529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–410. doi:10.1126/science.1124513

    CAS  PubMed  Google Scholar 

  • Stone JD (1948) Prevention of virus infection with enzyme of V. cholerae, studies with influenza virus in mice. Aust J Exp Biol Med Sci 26:287–298

    CAS  PubMed  Google Scholar 

  • Trebbien R, Larsen LE, Viuff BM (2011) Distribution of sialic acid receptors and influenza a virus of avian and swine origin in experimentally infected pigs. Virol J 8:434. doi:10.1186/1743-422X-8-434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Triana-Baltzer GB, Gubareva LV, Nicholls JM et al (2009) Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein. PLoS ONE 4:e7788. doi:10.1371/journal.pone.0007788

    PubMed  PubMed Central  Google Scholar 

  • Underwood PA, Skehel JJ, Wiley DC (1987) Receptor-binding characteristics of monoclonal antibody-selected antigenic variants of influenza virus. J Virol 61:206–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 a resolution. Nature 303:35–40

    CAS  PubMed  Google Scholar 

  • Walther T, Karamanska R, Chan RW et al (2013) Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection. PLoS Pathog 9:e1003223. doi:10.1371/journal.ppat.1003223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Tian X, Chen X, Ma J (2007) Structural basis for receptor specificity of influenza B virus hemagglutinin. Proc Natl Acad Sci USA 104:16874–16879. doi:10.1073/pnas.0708363104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WC, Cummings RD (1988) The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2, 3 to penultimate galactose residues. J Biol Chem 263:4576–4585

    CAS  PubMed  Google Scholar 

  • Ward CW, Dopheide TA (1981) Evolution of the Hong Kong influenza a sub-type. Structural relationships between the haemagglutinin from A/duck/Ukraine/1/63 (Hav 7) and the Hong Kong (H3) haemagglutinins. Biochem J 195:337–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Ibrahim MS, Ellakany HF et al (2011) Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. PLoS Pathog 7:e1002068 doi:10.1371/journal.ppat.1002068 PPATHOGENS-D-10-00603 [pii]

  • Wedde M, Wahlisch S, Wolff T, Schweiger B (2013) Predominance of HA-222D/G polymorphism in influenza A(H1N1)pdm09 viruses associated with fatal and severe outcomes recently circulating in Germany. PLoS ONE 8:e57059. doi:10.1371/journal.pone.0057059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431. doi:10.1038/333426a0

    CAS  PubMed  Google Scholar 

  • WHO (2014) Monthly risk assessment. Influenza at the human-anima interface. Summary and assessment as of 27 June 2014 at (http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_27June14.pdf?ua=1)

  • WHO/OIE/FAO (2014) Revised and updated nomenclature for highly pathogenic avian influenza A (H5N1) viruses. Influenza Other Respir Viruses 8:384–388

    Google Scholar 

  • Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378

    CAS  PubMed  Google Scholar 

  • Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 a resolution. Nature 289:366–373

    CAS  PubMed  Google Scholar 

  • Xiong X, Coombs PJ, Martin SR et al (2013a) Receptor binding by a ferret-transmissible H5 avian influenza virus. Nature 497:392–396. doi:10.1038/nature12144

    CAS  PubMed  Google Scholar 

  • Xiong X, Martin SR, Haire LF et al (2013b) Receptor binding by an H7N9 influenza virus from humans. Nature 499:496–499. doi:10.1038/nature12372

    CAS  PubMed  Google Scholar 

  • Xiong X, Tuzikov A, Coombs PJ et al (2013c) Recognition of sulphated and fucosylated receptor sialosides by A/Vietnam/1194/2004 (H5N1) influenza virus. Virus Res 178:12–14. doi:10.1016/j.virusres.2013.08.007

    CAS  PubMed  Google Scholar 

  • Xiong X, Xiao H, Martin SR et al (2014) Enhanced human receptor binding by H5 haemagglutinins. Virology 456–457:179–187. doi:10.1016/j.virol.2014.03.008

    PubMed  PubMed Central  Google Scholar 

  • Xu R, de Vries RP, Zhu X et al (2013) Preferential recognition of avian-like receptors in human influenza A H7N9 viruses. Science 342:1230–1235. doi:10.1126/science.1243761

    CAS  PubMed  Google Scholar 

  • Xu R, McBride R, Nycholat CM, Paulson JC, Wilson IA (2012a) Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol 86:982–990. doi:10.1128/JVI.06322-11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, Wilson IA (2012b) Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic. J Virol 86:9221–9232. doi:10.1128/JVI.00697-12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Suzuki Y, Suzuki T et al. (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza a viruses to human-type receptors. Nature 444:378–382 doi: nature05264 [pii] 10.1038/nature05264

  • Yang P, Bansal A, Liu C, Air GM (1997) Hemagglutinin specificity and neuraminidase coding capacity of neuraminidase-deficient influenza viruses. Virology 229:155–165. doi:10.1006/viro.1996.8421

    CAS  PubMed  Google Scholar 

  • Yen HL, Liang CH, Wu CY et al (2011) Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. Proc Natl Acad Sci USA 108:14264–14269. doi:10.1073/pnas.1111000108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaraket H, Bridges OA, Russell CJ (2013) The pH of activation of the hemagglutinin protein regulates H5N1 influenza virus replication and pathogenesis in mice. J Virol 87:4826–4834. doi:10.1128/JVI.03110-12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Shi J, Deng G et al (2013a) H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341:410–414. doi:10.1126/science.1240532

    CAS  PubMed  Google Scholar 

  • Zhang W, Shi Y, Lu X, Shu Y, Qi J, Gao GF (2013b) An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Science 340:1463–1467 doi:10.1126/science.1236787 science.1236787 [pii]

  • Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, Wilson IA (2012) Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic acid receptors. J Virol 86:13371–13383. doi:10.1128/JVI.01426-12

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work by XX and JWM was funded by the Medical Research Council through programs U117512723 and U117584222. The work by DAS was supported by the U.S. Department of Health and Human Services contract HHSN272201400004C (NIAID Centers of Excellence for Influenza Research and Surveillance).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John W. McCauley or David A. Steinhauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xiong, X., McCauley, J.W., Steinhauer, D.A. (2014). Receptor Binding Properties of the Influenza Virus Hemagglutinin as a Determinant of Host Range. In: Compans, R., Oldstone, M. (eds) Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, vol 385. Springer, Cham. https://doi.org/10.1007/82_2014_423

Download citation

Publish with us

Policies and ethics