Skip to main content

Control of ADAR1 Editing of Hepatitis Delta Virus RNAs

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 353))

Abstract

Hepatitis delta virus (HDV) uses ADAR1 editing of the viral antigenome RNA to switch from viral RNA replication to packaging. At early times in the replication cycle, the virus produces the protein HDAg-S, which is required for RNA synthesis; at later times, as result of editing at the amber/W site, the virus produces HDAg-L, which is required for packaging, but inhibits further RNA synthesis as levels increase. Control of editing during the replication cycle is essential for the virus and is multifaceted. Both the rate at which amber/W site editing occurs and the ultimate amount of editing are restricted; moreover, despite the nearly double stranded character of the viral RNA, efficient editing is restricted to the amber/W site. The mechanisms used by the virus for controlling editing operate at several levels, and range from molecular interactions to procedural. They include the placement of editing in the HDV replication cycle, RNA structural dynamics, and interactions of both ADAR1 and HDAg with specific structural features of the RNA. That HDV genotypes 1 and 3 use different RNA structural features for editing and control the process in ways related to these features underscores the critical roles of editing and its control in HDV replication. This review will cover the mechanisms of editing at the amber/W site and the means by which the virus controls it in these two genotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Casey JL (2002) RNA editing in hepatitis delta virus genotype III requires a branched double-hairpin RNA structure. J Virol 76:7385–7397

    Article  PubMed  CAS  Google Scholar 

  • Casey JL, Gerin JL (1995) Hepatitis D virus RNA editing: specific modification of adenosine in the antigenomic RNA. J Virol 69:7593–7600

    PubMed  CAS  Google Scholar 

  • Casey JL, Gerin JL (1998) Genotype-specific complementation of hepatitis delta virus RNA replication by hepatitis delta antigen. J Virol 72:2806–2814

    PubMed  CAS  Google Scholar 

  • Casey JL, Bergmann KF, Brown TL, Gerin JL (1992) Structural requirements for RNA editing in hepatitis delta virus: evidence for a uridine-to-cytidine editing mechanism. Proc Natl Acad Sci USA 89:7149–7153

    Article  PubMed  CAS  Google Scholar 

  • Casey JL, Brown TL, Colan EJ, Wignall FS, Gerin JL (1993) A genotype of hepatitis D virus that occurs in northern South America. Proc Natl Acad Sci USA 90:9016–9020

    Article  PubMed  CAS  Google Scholar 

  • Casey JL, Tennant BC, Gerin JL (2006) Genetic changes in hepatitis delta virus from acutely and chronically infected woodchucks. J Virol 80:6469–6477

    Article  PubMed  CAS  Google Scholar 

  • Chang FL, Chen PJ, Tu SJ, Wang CJ, Chen DS (1991) The large form of hepatitis delta antigen is crucial for assembly of hepatitis delta virus. Proc Natl Acad Sci USA 88:8490–8494

    Article  PubMed  CAS  Google Scholar 

  • Chang MF, Chen CH, Lin SL, Chen CJ, Chang SC (1995) Functional domains of delta antigens and viral RNA required for RNA packaging of hepatitis delta virus. J Virol 69:2508–2514

    PubMed  CAS  Google Scholar 

  • Chang J, Gudima SO, Taylor JM (2005) Evolution of hepatitis delta virus RNA genome following long-term replication in cell culture. J Virol 79:13310–13316

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Nie X, Chang HE, Han Z, Taylor J (2008) Transcription of hepatitis delta virus RNA by RNA polymerase II. J Virol 82:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Chao M, Hsieh SY, Taylor J (1990) Role of two forms of hepatitis delta virus antigen: evidence for a mechanism of self-limiting genome replication. J Virol 64:5066–5069

    PubMed  CAS  Google Scholar 

  • Cheng Q, Jayan GC, Casey JL (2003) Differential inhibition of RNA editing in hepatitis delta virus genotype III by the short and long forms of hepatitis delta antigen. J Virol 77:7786–7795

    Article  PubMed  CAS  Google Scholar 

  • Defenbaugh DA, Johnson M, Chen R, Zheng YY, Casey JL (2009) Hepatitis delta antigen requires a minimum length of the hepatitis delta virus unbranched rod RNA structure for binding. J Virol 83:4548–4556

    Article  PubMed  CAS  Google Scholar 

  • Deny P (2006) Hepatitis delta virus genetic variability: from genotypes I, II, III to eight major clades? Curr Top Microbiol Immunol 307:151–171

    Article  PubMed  CAS  Google Scholar 

  • Farci P, Roskams T, Chessa L, Peddis G, Mazzoleni AP, Scioscia R, Serra G, Lai ME, Loy M, Caruso L, Desmet V, Purcell RH, Balestrieri A (2004) Long-term benefit of interferon alpha therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology 126:1740–1749

    Article  PubMed  CAS  Google Scholar 

  • Gandy SZ, Linnstaedt SD, Muralidhar S, Cashman KA, Rosenthal LJ, Casey JL (2007) RNA editing of the human herpesvirus 8 kaposin transcript eliminates its transforming activity and is induced during lytic replication. J Virol 81:13544–13551

    Article  PubMed  CAS  Google Scholar 

  • Hartwig D, Schoeneich L, Greeve J, Schutte C, Dorn I, Kirchner H, Hennig H (2004) Interferon-alpha stimulation of liver cells enhances hepatitis delta virus RNA editing in early infection. J Hepatol 41:667–672

    Article  PubMed  CAS  Google Scholar 

  • Hartwig D, Schutte C, Warnecke J, Dorn I, Hennig H, Kirchner H, Schlenke P (2006) The large form of ADAR 1 is responsible for enhanced hepatitis delta virus RNA editing in interferon-alpha-stimulated host cells. J Viral Hepat 13:150–157

    Article  PubMed  CAS  Google Scholar 

  • Herb A, Higuchi M, Sprengel R, Seeburg PH (1996) Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci USA 93:1875–1880

    Article  PubMed  CAS  Google Scholar 

  • Herbert A, Rich A (2001) The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1. Proc Natl Acad Sci USA 98:12132–12137

    Article  PubMed  CAS  Google Scholar 

  • Jaikaran DC, Collins CH, MacMillan AM (2002) Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site. J Biol Chem 277:37624–37629

    Article  PubMed  CAS  Google Scholar 

  • Jayan GC, Casey JL (2002a) Increased RNA editing and inhibition of hepatitis delta virus replication by high-level expression of ADAR1 and ADAR2. J Virol 76:3819–3827

    Article  PubMed  CAS  Google Scholar 

  • Jayan GC, Casey JL (2002b) Inhibition of hepatitis delta virus RNA editing by short inhibitory RNA-mediated knockdown of Adar1 but not Adar2 expression. J Virol 76:12399–12404

    Google Scholar 

  • Jayan GC, Casey JL (2005) Effects of conserved RNA secondary structures on hepatitis delta virus genotype I RNA editing, replication, and virus production. J Virol 79:11187–11193

    Article  PubMed  CAS  Google Scholar 

  • Jenna S, Sureau C (1998) Effect of mutations in the small envelope protein of hepatitis B virus on assembly and secretion of hepatitis delta virus. Virology 251:176–186

    Article  PubMed  CAS  Google Scholar 

  • Jilbert AR, Burrell CJ, Gowans EJ, Hertzog PJ, Linnane AW, Marmion BP (1986) Cellular localization of alpha-interferon in hepatitis B virus-infected liver tissue. Hepatology 6:957–961

    Article  PubMed  CAS  Google Scholar 

  • Lazinski DW, Taylor JM (1994) Expression of hepatitis delta virus RNA deletions: cis and trans requirements for self-cleavage, ligation, and RNA packaging. J Virol 68:2879–2888

    PubMed  CAS  Google Scholar 

  • Lehmann KA, Bass BL (1999) The importance of internal loops within RNA substrates of ADAR1. J Mol Biol 291:1–13

    Article  PubMed  CAS  Google Scholar 

  • Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL (2006) The role of a metasj RNA secondary structure in hepatitis delta virus genotype III RNA editing. RNA 12:1521–1533

    Article  PubMed  CAS  Google Scholar 

  • Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL (2009) The fraction of RNA that folds into the correct branched secondary structure determines hepatitis delta virus type 3 RNA editing levels. RNA 15:1177–1187

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Samuel CE (1996) Mechanism of interferon action: functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA- specific adenosine deaminase. J Virol 70:1961–1968

    PubMed  CAS  Google Scholar 

  • Liu Y, Herbert A, Rich A, Samuel CE (1998) Double-stranded RNA-specific adenosine deaminase: nucleic acid binding properties. Methods 15:199–205

    Article  PubMed  Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Hoger T, Geiger JR, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266:1709–1713

    Article  PubMed  CAS  Google Scholar 

  • McNair AN, Cheng D, Monjardino J, Thomas HC, Kerr IM (1994) Hepatitis delta virus replication in vitro is not affected by interferon-alpha or -gamma despite intact cellular responses to interferon and dsRNA. J Gen Virol 75:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Netter HJ, Wu TT, Bockol M, Cywinski A, Ryu WS, Tennant BC, Taylor JM (1995) Nucleotide sequence stability of the genome of hepatitis delta virus. J Virol 69:1687–1692

    PubMed  CAS  Google Scholar 

  • Ohman M, Kallman AM, Bass BL (2000) In vitro analysis of the binding of ADAR2 to the pre-mRNA encoding the GluR-B R/G site. RNA 6:687–697

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Samuel CE (1995) Expression and regulation by interferon of a double-stranded-RNA- specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol 15:5376–5388

    PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL (1994) Preferential selection of adenosines for modification by double- stranded RNA adenosine deaminase. EMBO J 13:5701–5711

    PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL, Casey JL (1996) RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 380:454–456

    Article  PubMed  CAS  Google Scholar 

  • Polson AG, Ley HL 3rd, Bass BL, Casey JL (1998) Hepatitis delta virus RNA editing is highly specific for the amber/W site and is suppressed by hepatitis delta antigen. Mol Cell Biol 18:1919–1926

    PubMed  CAS  Google Scholar 

  • Ponzetto A, Hoyer BH, Popper H, Engle R, Purcell RH, Gerin JL (1987) Titration of the infectivity of hepatitis D virus in chimpanzees. J Infect Dis 155:72–78

    Article  PubMed  CAS  Google Scholar 

  • Pugnale P, Pazienza V, Guilloux K, Negro F (2009) Hepatitis delta virus inhibits alpha interferon signaling. Hepatology 49:398–406

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Wong SK, Lazinski DW (2001) Hepatitis delta virus minimal substrates competent for editing by ADAR1 and ADAR2. J Virol 75:8547–8555

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Cornillez-Ty C, Lazinski DW (2004) By inhibiting replication, the large hepatitis delta antigen can indirectly regulate amber/W editing and its own expression. J Virol 78:8120–8134

    Article  PubMed  CAS  Google Scholar 

  • Wong SK, Lazinski DW (2002) Replicating hepatitis delta virus RNA is edited in the nucleus by the small form of ADAR1. Proc Natl Acad Sci USA 99:15118–15123

    Article  PubMed  CAS  Google Scholar 

  • Wong SK, Sato S, Lazinski DW (2001) Substrate recognition by ADAR1 and ADAR2. RNA 7:846–858

    Article  PubMed  CAS  Google Scholar 

  • Wong SK, Sato S, Lazinski DW (2003) Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. RNA 9:586–598

    Article  PubMed  CAS  Google Scholar 

  • Xia YP, Lai MM (1992) Oligomerization of hepatitis delta antigen is required for both the trans-activating and trans-dominant inhibitory activities of the delta antigen. J Virol 66:6641–6648

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Filipovska J, Yano K, Furuya A, Inukai N, Narita T, Wada T, Sugimoto S, Konarska MM, Handa H (2001) Stimulation of RNA polymerase II elongation by hepatitis delta antigen. Science 293:124–127

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Mura T, Chanarat S, Okamoto S, Handa H (2007) Hepatitis delta antigen binds to the clamp of RNA polymerase II and affects transcriptional fidelity. Genes Cells 12:863–875

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Casey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Casey, J.L. (2011). Control of ADAR1 Editing of Hepatitis Delta Virus RNAs. In: Samuel, C. (eds) Adenosine Deaminases Acting on RNA (ADARs) and A-to-I Editing. Current Topics in Microbiology and Immunology, vol 353. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_146

Download citation

Publish with us

Policies and ethics