Skip to main content

Optogenetic Control of Hypocretin (Orexin) Neurons and Arousal Circuits

  • Chapter
  • First Online:
Sleep, Neuronal Plasticity and Brain Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the last 16 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, non-redundant function as arousal stabilizer. We recently applied optogenetic methods to interrogate the role of individual neuronal circuits in sleep-to-wake transitions. The neuronal connections between the hypocretin system and the locus coeruleus (LC) seem to be crucial in establishing the appropriate dynamic of spontaneous awakenings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamantidis AR, Zhang F, Aravanis AM et al (2007) Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–424

    Article  CAS  PubMed  Google Scholar 

  • Adamantidis A, Carter MC, de Lecea L (2010) Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Armbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. In: Proceedings of the national academy of sciences of the United States of America, vol 104, pp 5163–5168

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981a) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981b) Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1:887–900

    CAS  PubMed  Google Scholar 

  • Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58:1–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berridge CW, Espana RA (2000) Synergistic sedative effects of noradrenergic alpha(1)-and beta-receptor blockade on forebrain electroencephalographic and behavioral indices. Neuroscience 99:495–505

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Foote SL (1991) Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J Neurosci 11:3135–3145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bourgin P, Huitron-Resendiz S, Spier AD et al (2000) Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci 20:7760–7765

    CAS  PubMed  Google Scholar 

  • Carter ME, de Lecea L (2011) Optogenetic investigation of neural circuits in vivo. Trends Mol Med 17:197–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Carter ME, Borg JS, de Lecea L (2009a) The brain hypocretins and their receptors: mediators of allostatic arousal. Curr Opin Pharmacol 9:39–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter ME, Adamantidis A, Ohtsu H et al (2009b) Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29:10939–10949

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter ME, Yizhar O, Chikahisa S et al (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13:1526–1533

    Google Scholar 

  • Carter ME, Brill J, Bonnavion P et al (2012) Mechanism for hypocretin-mediated sleep-to-wake transitions. In: Proceedings of the national academy of sciences of the United States of America

    Google Scholar 

  • Chemelli RM, Willie JT, Sinton CM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Pompeiano M, Tononi G (1996) Neuronal gene expression in the waking state: a role for the locus coeruleus. Science 274:1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Constantinople CM, Bruno RM (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron 69:1061–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Lecea L, Huerta R (2014) Hypocretin (orexin) regulation of sleep-to-wake transitions. Front Pharmacol 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. In: Proceedings of the national academy of sciences of the United States of America, vol 95 pp 322–327

    Google Scholar 

  • Eriksson KS, Sergeeva O, Brown RE et al (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci 21:9273–9279

    CAS  PubMed  Google Scholar 

  • Grivel J, Cvetkovic V, Bayer L et al (2005) The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation. J Neurosci 25:4127–4130

    Article  CAS  PubMed  Google Scholar 

  • Gulyani S, Wu MF, Nienhuis R et al (2002) Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience 112:355–365

    Article  CAS  PubMed  Google Scholar 

  • Hagan JJ, Leslie RA, Patel S et al (1999) Orexin A activates locus coeruleus cell firing and increases arousal in the rat. In: Proceedings of the national academy of sciences of the United States of America, vol 96, pp 10911–10916

    Google Scholar 

  • Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. In: Proceedings of the national academy of sciences of the United States of America, vol 106, pp 2418–2422

    Google Scholar 

  • Hinard V, Mikhail C, Pradervand S et al (2012) Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J Neurosci 32:12506–12517

    Article  CAS  PubMed  Google Scholar 

  • Hunsley MS, Curtis WR, Palmiter RD (2006) Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin. Genes Brain Behav 5:451–457

    Article  CAS  PubMed  Google Scholar 

  • John J, Wu MF, Boehmer LN et al (2004) Cataplexy-active neurons in the hypothalamus: implications for the role of histamine in sleep and waking behavior. Neuron 42:619–634

    Article  CAS  PubMed  Google Scholar 

  • Kalogiannis M, Grupke SL, Potter PE et al (2010) Narcoleptic orexin receptor knockout mice express enhanced cholinergic properties in laterodorsal tegmental neurons. Eur J Neurosci 32:130–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalogiannis M, Hsu E, Willie JT et al (2011) Cholinergic modulation of narcoleptic attacks in double orexin receptor knockout mice. PLoS One 6:e18697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25:6716–6720

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu Z, de Lecea L (2014) The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 171:332–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin L, Faraco J, Li R et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Blanco-Centurion C, Konadhode R et al (2011) Orexin gene transfer into zona incerta neurons suppresses muscle paralysis in narcoleptic mice. J Neurosci 31:6028–6040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuki T, Nomiyama M, Takahira H et al (2009) Selective loss of GABA(B) receptors in orexin-producing neurons results in disrupted sleep/wakefulness architecture. In: Proceedings of the national academy of sciences of the United States of America, vol 106, pp 4459–4464

    Google Scholar 

  • Mieda M, Willie JT, Hara J et al (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. In: Proceedings of the national academy of sciences of the United States of America, vol 101, pp 4649–4654

    Google Scholar 

  • Mieda M, Hasegawa E, Kisanuki YY et al (2011) Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci 31:6518–6526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–798

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T, Arrigoni E, Marcus JN et al (2011) Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. In: Proceedings of the national academy of sciences of the United States of America, vol 108, pp 4471–4476

    Google Scholar 

  • Modirrousta M, Mainville L, Jones BE (2005) Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors. Eur J Neurosci 21:2807–2816

    Article  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  • Rolls A, Colas D, Adamantidis A et al (2011) Optogenetic disruption of sleep continuity impairs memory consolidation. In: Proceedings of the national academy of sciences of the United States of America, vol 108, pp 13305–13310

    Google Scholar 

  • Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8:171–181

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Suzuki M, Mieda M et al (2011) Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 6:e20360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scammell TE, Willie JT, Guilleminault C et al (2009) A consensus definition of cataplexy in mouse models of narcolepsy. Sleep 32:111–116

    PubMed Central  PubMed  Google Scholar 

  • Schone C, Apergis-Schoute J, Sakurai T et al (2014) Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell reports 7:697–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steriade M, McCarley R (1990) Brainstem control of wakefulness and sleep. Plenum, New York

    Book  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2008) Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience 153:860–870

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Yu H, MacNeil DJ et al (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438:71–75

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Kilduff TS, Boyden ES et al (2011) Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice. J Neurosci 31:10529–10539

    Article  CAS  PubMed  Google Scholar 

  • Tsunematsu T, Tabuchi S, Tanaka KF et al (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74

    Article  CAS  PubMed  Google Scholar 

  • Vazey EM, Aston-Jones G (2014) Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. In: Proceedings of the national academy of sciences of the United States of America, vol 111, pp 3859–3864

    Google Scholar 

  • Willie JT, Chemelli RM, Sinton CM et al (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 38:715–730

    Article  CAS  PubMed  Google Scholar 

  • Willie JT, Takahira H, Shibahara M et al (2011) Ectopic overexpression of orexin alters sleep/wakefulness states and muscle tone regulation during REM sleep in mice. J Mol Neurosci 43:155–161

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis de Lecea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Lecea, L. (2014). Optogenetic Control of Hypocretin (Orexin) Neurons and Arousal Circuits. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_364

Download citation

Publish with us

Policies and ethics