Skip to main content

Hyperaligning Neural Representational Spaces

  • Protocol
  • First Online:
Book cover Spatial Learning and Attention Guidance

Part of the book series: Neuromethods ((NM,volume 151))

Abstract

Neural populations in different brain regions represent different domains of information, but accounting for how population responses in homologous regions in different brains encode the same fine distinctions has been elusive. Common models of cortical functional architectures based on anatomy account for coarse regional topography that encode coarse-scale information such as visual versus auditory stimulation or perception of animate versus inanimate entities but fail to account for fine-scale information that captures distinctions between two songs or two insects. We proposed a method of functional alignment called hyperalignment that aligned high-dimensional neural representational spaces to derive a new common model of cortical functional architecture. This model is based on a common representational space rather than a common cortical topography. By modeling functional topographies as weighted sums of overlapping topographic basis functions, our model also accounts for coarse-scale regional topography and goes further to capture fine-scale topographies that coexist with coarse topographies and carry finer distinctions. In this chapter we present steps for an experimenter to use hyperalignment in their own study to derive a common model representational space and perform analyses in that space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haxby JV, Gobbini MI, Furey ML et al (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–2430. https://doi.org/10.1126/science.1063736

    Article  CAS  PubMed  Google Scholar 

  2. Haxby JV, Connolly AC, Guntupalli JS (2014) Decoding neural representational spaces using multivariate pattern analysis. Annu Rev Neurosci 37:435–456. https://doi.org/10.1146/annurev-neuro-062012-170325

    Article  CAS  PubMed  Google Scholar 

  3. Haxby JV, Guntupalli JS, Connolly AC et al (2011) A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72:404–416. https://doi.org/10.1016/j.neuron.2011.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guntupalli JS, Hanke M, Halchenko YO et al (2016) A model of representational spaces in human cortex. Cereb Cortex 26:2919–2934. https://doi.org/10.1093/cercor/bhw068

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guntupalli JS, Feilong M, Haxby JV (2018) A computational model of shared fine-scale structure in the human connectome. PLoS Comput Biol 14:e1006120. https://doi.org/10.1371/journal.pcbi.1006120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kriegeskorte N, Mur M, Bandettini P (2008) Representational similarity analysis—connecting the branches of systems neuroscience. Front Syst Neurosci 2. https://doi.org/10.3389/neuro.06.004.2008

  7. Sabuncu MR, Singer BD, Conroy B et al (2010) Function-based intersubject alignment of human cortical anatomy. Cereb Cortex 20:130–140. https://doi.org/10.1093/cercor/bhp085

    Article  PubMed  Google Scholar 

  8. Conroy BR, Singer BD, Guntupalli JS et al (2013) Inter-subject alignment of human cortical anatomy using functional connectivity. Neuroimage 81:400–411. https://doi.org/10.1016/j.neuroimage.2013.05.009

    Article  PubMed  Google Scholar 

  9. Feilong M, Nastase SA, Guntupalli JS, Haxby JV (2018) Reliable individual differences in fine-grained cortical functional architecture. Neuroimage 183:375–386. https://doi.org/10.1016/j.neuroimage.2018.08.029

    Article  PubMed  Google Scholar 

  10. Taschereau-Dumouchel V, Cortese A, Chiba T et al (2018) Towards an unconscious neural reinforcement intervention for common fears. Proc Natl Acad Sci U S A 115:3470–3475. https://doi.org/10.1073/pnas.1721572115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naselaris T, Kay KN, Nishimoto S, Gallant JL (2011) Encoding and decoding in fMRI. Neuroimage 56:400–410. https://doi.org/10.1016/j.neuroimage.2010.07.073

    Article  PubMed  Google Scholar 

  12. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  13. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–S219. https://doi.org/10.1016/j.neuroimage.2004.07.051

    Article  PubMed  Google Scholar 

  14. Fischl B, Sereno MI, Tootell RBH, Dale AM (1999) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esteban O, Markiewicz CJ, Blair RW et al (2019) fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods 16:111. https://doi.org/10.1038/s41592-018-0235-4

    Article  CAS  PubMed  Google Scholar 

  16. Hanke M, Halchenko YO, Sederberg PB et al (2009) PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics 7:37–53. https://doi.org/10.1007/s12021-008-9041-y

    Article  PubMed  PubMed Central  Google Scholar 

  17. Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178. https://doi.org/10.1038/nature18933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based functional brain mapping. Proc Natl Acad Sci U S A 103:3863–3868. https://doi.org/10.1073/pnas.0600244103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Namburi P, Elliott LT et al (2011) Cortical surface-based searchlight decoding. Neuroimage 56:582–592. https://doi.org/10.1016/j.neuroimage.2010.07.035

    Article  PubMed  Google Scholar 

  20. Oosterhof NN, Wiestler T, Downing PE, Diedrichsen J (2011) A comparison of volume-based and surface-based multi-voxel pattern analysis. Neuroimage 56:593–600. https://doi.org/10.1016/j.neuroimage.2010.04.270

    Article  PubMed  Google Scholar 

  21. Schönemann PH (1966) A generalized solution of the orthogonal procrustes problem. Psychometrika 31:1–10. https://doi.org/10.1007/BF02289451

    Article  Google Scholar 

  22. Hyperalignment for between-subject analysis. PyMVPA User Manual. http://www.pymvpa.org/examples/hyperalignment.html. Accessed 31 Mar 2019

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Guntupalli, J.S. (2019). Hyperaligning Neural Representational Spaces. In: Pollmann, S. (eds) Spatial Learning and Attention Guidance. Neuromethods, vol 151. Humana, New York, NY. https://doi.org/10.1007/7657_2019_25

Download citation

  • DOI: https://doi.org/10.1007/7657_2019_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9947-7

  • Online ISBN: 978-1-4939-9948-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics