Skip to main content

Assessment of Stiffness-Dependent Autophagosome Formation and Apoptosis in Embryonal Rhabdomyosarcoma Tumor Cells

  • Protocol
  • First Online:
Methods in Molecular Biology

Abstract

Remodeling of the extracellular matrix (ECM) eventually causes the stiffening of tumors and changes to the microenvironment. The stiffening alters the biological processes in cancer cells due to altered signaling through cell surface receptors. Autophagy, a key catabolic process in normal and cancer cells, is thought to be involved in mechano-transduction and the level of autophagy is probably stiffness-dependent. Here, we provide a methodology to study the effect of matrix stiffness on autophagy in embryonal rhabdomyosarcoma cells. To mimic stiffness, we seeded cells on GelMA hydrogel matrices with defined stiffness and evaluated autophagy-related endpoints. We also evaluated autophagy-dependent pathways, apoptosis, and cell viability. Specifically, we utilized immunocytochemistry and confocal microscopy to track autophagosome formation through LC3 lipidation. This approach suggests that the use of GelMA hydrogels with defined stiffness represents a novel method to evaluate the role of autophagy in embryonal rhabdomyosarcoma and other cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ramadan F, Fahs A, Ghayad SE, Saab R (2020) Signaling pathways in Rhabdomyosarcoma invasion and metastasis. Cancer Metastasis Rev 39(1):287–301. Available from: https://doi.org/10.1007/s10555-020-09860-3

    Google Scholar 

  2. Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P et al (2023) Rhabdomyosarcoma: current therapy, challenges, and future approaches to treatment strategies. Cancers (Basel) 15(21):5269

    Google Scholar 

  3. Gonzalez-Molina J, Kirchhof KM, Rathod B, Moyano-Galceran L, Calvo-Noriega M, Kokaraki G et al (2022) Mechanical confinement and DDR1 signaling synergize to regulate collagen-induced apoptosis in Rhabdomyosarcoma cells. Adv Sci 9(28):2202552. Available from: https://doi.org/10.1002/advs.202202552

    Google Scholar 

  4. Liang R, Song G (2023) Matrix stiffness-driven cancer progression and the targeted therapeutic strategy. Mechanobiol Med 1(2):100013. Available from: https://www.sciencedirect.com/science/article/pii/S294990702300013X

    Google Scholar 

  5. Liang P, Wang B (2024) An autophagy-independent role of ULK1/ULK2 in mechanotransduction and breast cancer cell migration. Autophagy 1:1–2. Available from: https://doi.org/10.1080/15548627.2023.2300916

    Google Scholar 

  6. Gong T, Wu D, Pan H, Sun Z, Yao X, Wang D et al (2023) Biomimetic microenvironmental stiffness boosts stemness of pancreatic ductal adenocarcinoma via augmented autophagy. ACS Biomater Sci Eng 9(9):5347–5360. Available from: https://doi.org/10.1021/acsbiomaterials.3c00487

    Google Scholar 

  7. Behrooz AB, Cordani M, Donadelli M, Ghavami S (2023) Metastatic outgrowth via the two-way interplay of autophagy and metabolism. Biochim Biophys Acta (BBA)-Molecular Basis Dis 1870:166824

    Google Scholar 

  8. Siapoush S, Rezaei R, Alavifard H, Hatami B, Zali MR, Vosough M et al (2023) Therapeutic implications of targeting autophagy and TGF-β crosstalk for the treatment of liver fibrosis. Life Sci 329:121894

    Google Scholar 

  9. Alizadeh J, Kochan MM, Stewart VD, Drewnik DA, Hannila SS, Ghavami S (2021) Inhibition of autophagy flux promotes secretion of chondroitin sulfate proteoglycans in primary rat astrocytes. Mol Neurobiol 58(12):6077–6091

    Google Scholar 

  10. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473. Available from: https://pubmed.ncbi.nlm.nih.gov/23725295

    Google Scholar 

  11. Alizadeh J, Kavoosi M, Singh N, Lorzadeh S, Ravandi A, Kidane B et al (2023) Regulation of autophagy via carbohydrate and lipid metabolism in cancer. Cancers (Basel) 15(8):2195

    Google Scholar 

  12. Hajiahmadi S, Lorzadeh S, Iranpour R, Karima S, Rajabibazl M, Shahsavari Z et al (2023) Temozolomide, simvastatin and acetylshikonin combination induces mitochondrial-dependent apoptosis in GBM cells, which is regulated by autophagy. Biology (Basel) 12(2):302

    Google Scholar 

  13. Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V et al (2022) New visions on natural products and cancer therapy: autophagy and related regulatory pathways. Cancers (Basel) 14(23):5839

    Google Scholar 

  14. Dalvand A, da Silva Rosa SC, Ghavami S, Marzban H (2022) Potential role of TGFΒ and autophagy in early crebellum development. Biochem Biophys Rep 32:101358

    Google Scholar 

  15. D’Agostino S, Tombolan L, Saggioro M, Frasson C, Rampazzo E, Pellegrini S et al (2021) Rhabdomyosarcoma cells produce their own extracellular matrix with minimal involvement of cancer-associated fibroblasts: a preliminary study. Front Oncol 10:600980. Available from: https://pubmed.ncbi.nlm.nih.gov/33585217

    Google Scholar 

  16. Li Y, Randriantsilefisoa R, Chen J, Cuellar-Camacho JL, Liang W, Li W (2020) Matrix stiffness regulates chemosensitivity, stemness characteristics, and autophagy in breast cancer cells. ACS Appl Bio Mater 3(7):4474–4485. Available from: https://doi.org/10.1021/acsabm.0c00448

    Google Scholar 

  17. Hupfer A, Brichkina A, Koeniger A, Keber C, Denkert C, Pfefferle P et al (2021) Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proc Natl Acad Sci 118(40):e2105367118. Available from: https://doi.org/10.1073/pnas.2105367118

    Google Scholar 

  18. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406. Available from: https://pubmed.ncbi.nlm.nih.gov/22351925

    Google Scholar 

  19. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S et al (2011) Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 53(4):1192–1205. Available from: https://pubmed.ncbi.nlm.nih.gov/21442631

    Google Scholar 

  20. Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26(1):85–124. Available from: https://doi.org/10.1002/adma.201303233

    Google Scholar 

  21. Stefanek E, Samiei E, Kavoosi M, Esmaeillou M, Roustai Geraylow K, Emami A et al (2021) A bioengineering method for modeling alveolar Rhabdomyosarcoma and assessing chemotherapy responses. MethodsX 8:101473. Available from: https://www.sciencedirect.com/science/article/pii/S2215016121002661

    Google Scholar 

  22. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663. Available from: https://pubmed.ncbi.nlm.nih.gov/19472329

    Google Scholar 

Download references

Acknowledgments

SG (Saeid Ghavami) and AZ (Ali Zarrabi) conceptualized and designed the study. SS (Serap Sezen) and SA (Sevin Adiguzel) performed the experiments. SG and SS analyzed the data. SS and A Kh (Arezoo Khosravi) wrote the manuscript. SS, SG, AZ, SA, Joseph W. Gordon (JWG), Atefeh Zarepour (AtZ), and AKh reviewed and edited the manuscript. AZ funded and SG supervised the experiments.

Funding

This study was funded in part by URGP (University of Manitoba) (SG) and 1002-short term R&D funding program of The Scientific and Technological Research Council of Türkiye (TÜBİTAK, Project No: 221Z107) (AZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zarrabi .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sezen, S. et al. (2024). Assessment of Stiffness-Dependent Autophagosome Formation and Apoptosis in Embryonal Rhabdomyosarcoma Tumor Cells. In: Methods in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/7651_2024_538

Download citation

  • DOI: https://doi.org/10.1007/7651_2024_538

  • Published:

  • Publisher Name: Springer, New York, NY

Publish with us

Policies and ethics