Skip to main content

Signaling Pathways in Trans-differentiation of Mesenchymal Stem Cells: Recent Advances

  • Protocol
  • First Online:
Stem Cells and Lineage Commitment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2736))

  • 328 Accesses

Abstract

Mesenchymal stem cells are a group of multipotent cells that can be induced to differentiate into other cell types. The cells fate is decided by various signaling pathways, growth factors, and transcription factors in differentiation. The proper coordination of these factors will result in cell specification. MSCs are capable of being differentiated into osteogenic, chondrogenic, and adipogenic lineages. Different conditions induces the MSCs into particular phenotypes. The MSC trans-differentiation ensues as a response to environmental factors or due to circumstances that prove to favor trans-differentiation. Depending on the stage at which they are expressed, and the genetic alterations they undergo prior to their expression, transcription factors can accelerate the process of trans-differentiation. Further research has been conducted on the challenging aspect of MSCs being developed into non-mesenchymal lineage. The cells that are differentiated in this way maintain their stability even after being induced in animals. The recent advancements in the trans-differentiation capacities of MSCs on induction with chemicals, growth inducers, improved differentiation mediums, growth factors from plant extracts, and electrical stimulation are discussed in this paper. Signaling pathways have a great effect on MSCs trans-differentiation and they need to be better understood for their applications in therapeutic techniques. So, this paper tends to review the major signaling pathways that play a vital role in the trans-differentiation of MSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ripa RS, Haack-Sørensen M, Wang Y et al (2007) Bone marrow–derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation 116(11_supplement):I–24

    Google Scholar 

  2. Sellheyer K, Krahl D (2010) Cutaneous mesenchymal stem cells: status of current knowledge, implications for dermatopathology. J Cutan Pathol 37(6):624–634

    PubMed  Google Scholar 

  3. Almalki SG, Agrawal DK (2016) Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92(1–2):41–51

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Banerjee A, Bizzaro D, Burra P, Di Liddo R, Pathak S, Arcidiacono D, Russo FP (2015) Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Res Ther 6(1):1–14

    CAS  Google Scholar 

  5. Sriramulu S, Banerjee A, Di Liddo R, Jothimani G, Gopinath M, Murugesan R et al (2018) Concise review on clinical applications of conditioned medium derived from human umbilical cord-mesenchymal stem cells (UC-MSCs). Int J Hematol-Oncol Stem Cell Res 12(3):230

    PubMed  PubMed Central  Google Scholar 

  6. Schilling T, Nöth U, Klein-Hitpass L et al (2007) Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol Cell Endocrinol 271(1–2):1–17

    CAS  PubMed  Google Scholar 

  7. Schilling T, Küffner R, Klein-Hitpass L et al (2008) Microarray analyses of transdifferentiated mesenchymal stem cells. J Cell Biochem 103(2):413–433

    CAS  PubMed  Google Scholar 

  8. Kadkhodaeian HA (2021) Mesenchymal stem cells: signaling pathways in transdifferentiation into retinal progenitor cells. BCN 12(1):29

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Phillips MI, Tang Y (2012) Genetic modification of stem cells for cardiac, diabetic, and hemophilia transplantation therapies. PMBTS 111:285–304

    CAS  Google Scholar 

  10. Nair V (2008) Retrovirus-induced oncogenesis and safety of retroviral vectors. Curr Opin Mol Ther 10(5):431–438

    CAS  PubMed  Google Scholar 

  11. Muralikumar M, Jain SM, Ganesan H, Duttaroy AK, Pathak S, Banerjee A (2021) Current understanding of the mesenchymal stem cell-derived exosomes in cancer and aging. Biotechnol Rep 31:e00658. Chamberlain G, Fox J, Ashton B et al (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Google Scholar 

  12. McMahon JM, Conroy S, Lyons M et al (2006) Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem Cells Dev 15(1):87–96

    CAS  PubMed  Google Scholar 

  13. Clements MO, Godfrey A, Crossley J et al (2006) Lentiviral manipulation of gene expression in human adult and embryonic stem cells. Tissue Eng 12(7):1741–1751

    CAS  PubMed  Google Scholar 

  14. Zhang XY, La Russa VF, Bao L et al (2002) Lentiviral vectors for sustained transgene expression in human bone marrow–derived stromal cells. Mol Ther 5(5):555–565

    CAS  PubMed  Google Scholar 

  15. Barzilay R, Melamed E, Offen D (2009) Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 27(10):2509–2515

    CAS  PubMed  Google Scholar 

  16. Visweswaran M, Pohl S, Arfuso F et al (2015) Multi-lineage differentiation of mesenchymal stem cells–to Wnt, or not Wnt. Int J Biochem Cell Biol 68:139–147

    CAS  PubMed  Google Scholar 

  17. Van Camp JK, Beckers S, Zegers D et al (2014) Wnt signaling and the control of human stem cell fate. Stem Cell Rev Rep 10(2):207–229

    PubMed  Google Scholar 

  18. Kusserow A, Pang K, Sturm C et al (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433(7022):156–160

    CAS  PubMed  Google Scholar 

  19. Liu G, Vijayakumar S, Grumolato L et al (2009) Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. JCB 185(1):67–75

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gopinath M, Di Liddo R, Marotta F, Murugesan R, Banerjee A, Sriramulu S et al (2018) Role of hippo pathway effector Tafazzin protein in maintaining stemness of Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSC). Int J Hematol-Oncol Stem Cell Res 12(2):153

    PubMed  PubMed Central  Google Scholar 

  21. Siar CH, Nagatsuka H, Han PP (2012) Differential expression of canonical and non-canonical Wnt ligands in ameloblastoma. J Oral Pathol Med 41(4):332–339

    PubMed  Google Scholar 

  22. van Amerongen R, Fuerer C, Mizutani M et al (2012) Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev Biol 369(1):101–114

    PubMed  PubMed Central  Google Scholar 

  23. Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101(5):1109–1124

    CAS  PubMed  Google Scholar 

  24. Banerjee A, Jothimani G, Prasad SV, Marotta F, Pathak S (2019) Targeting Wnt signaling through small molecules in governing stem cell fate and diseases. Endocr Metabol Immune Disord Drug Targets 19(3):233–246

    CAS  Google Scholar 

  25. Jeong SY, Lyu J, Kim JA et al (2020) Ryk modulates the niche activity of mesenchymal stromal cells by fine-tuning canonical Wnt signaling. Exp Mol Med 52(7):1140–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13(14):4042–4045

    CAS  PubMed  Google Scholar 

  27. Volleman TNE, Schol J, Morita K et al (2020) Wnt3a and wnt5a as potential chondrogenic stimulators for nucleus pulposus cell induction: a comprehensive review. Neurospine 17(1):19

    PubMed  PubMed Central  Google Scholar 

  28. Jothimani G, Di Liddo R, Pathak S et al (2020) Wnt signaling regulates the proliferation potential and lineage commitment of human umbilical cord derived mesenchymal stem cells. Mol Biol Rep 47(2):1293–1308

    CAS  PubMed  Google Scholar 

  29. Ntziachristos P, Lim JS, Sage J et al (2014) From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell 25(3):318–334

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Boopathy AV, Pendergrass KD, Che PL et al (2013) Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Res Ther 4(2):1–15

    Google Scholar 

  31. Akai J, Halley PA, Storey KG (2005) FGF-dependent Notch signaling maintains the spinal cord stem zone. Genes Dev 19(23):2877–2887

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu N, Liu H, Qu F et al (2013) Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol 94(1):33–39

    CAS  PubMed  Google Scholar 

  33. Cao J, Wei Y, Lian J et al (2017) Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int J Mol Med 40(2):378–388

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Semenova D, Bogdanova M, Kostina A et al (2020) Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res 379(1):169–179

    CAS  PubMed  Google Scholar 

  35. Song BQ, Chi Y, Li X et al (2015) Inhibition of Notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell Physiol Biochem 36(5):1991–2002

    CAS  PubMed  Google Scholar 

  36. Takam Kamga P, Bazzoni R, Dal Collo G et al (2021) The role of notch and Wnt signaling in MSC communication in normal and leukemic bone marrow niche. Front Cell Dev Biol 8:599276

    PubMed  PubMed Central  Google Scholar 

  37. Luu HH, Song WX, Luo X et al (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 25(5):665–677

    CAS  PubMed  Google Scholar 

  38. Sampath TK, Maliakal JC, Hauschka PV et al (1992) Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation in vitro. J Biol Chem 267(28):20352–20362

    CAS  PubMed  Google Scholar 

  39. Roelen BA, Dijke P (2003) Controlling mesenchymal stem cell differentiation by TGFβ family members. J Orthop Sci 8(5):740–748

    PubMed  Google Scholar 

  40. Wan M, Cao X (2005) BMP signaling in skeletal development. Biochem Biophys Res Commun 328(3):651–657

    CAS  PubMed  Google Scholar 

  41. Bandyopadhyay A, Tsuji K, Cox K et al (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2(12):e216

    PubMed  PubMed Central  Google Scholar 

  42. Olivera L, Antoniac I (2019) Bone substitutes in orthopedic and trauma surgery. Bioceram Biocomposit 30:341–366

    Google Scholar 

  43. Sriramulu S, Banerjee A, Jothimani G, Pathak S (2021) Conditioned medium from the human umbilical cord-mesenchymal stem cells stimulate the proliferation of human keratinocytes. J Basic Clin Physiol Pharmacol 32(2):51–56

    CAS  Google Scholar 

  44. Etheridge L, Mason RA, Saleh F et al (2016) Cell–cell signaling pathways that regulate mesenchymal stromal cell differentiation. The Biology and Therapeutic Application of Mesenchymal Cells, pp 91–103

    Google Scholar 

  45. Schmitt B, Ringe J, Häupl T (2003) BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture. Differentiation 71(9–10):567–577

    CAS  PubMed  Google Scholar 

  46. Van der Kraan PM, Davidson EB, Blom A (2009) TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 17(12):1539–1545

    Google Scholar 

  47. Jackson RA, McDonald MM, Nurcombe V et al (2006) The use of heparan sulfate to augment fracture repair in a rat fracture model. J Orthop Res 24(4):636–644

    CAS  PubMed  Google Scholar 

  48. Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2):139–149

    CAS  PubMed  Google Scholar 

  49. Lamplot JD, Denduluri S, Liu X et al (2013) Major signaling pathways regulating the proliferation and differentiation of mesenchymal stem cells. In: Essentials of mesenchymal stem cell biology and its clinical translation. Springer, Dordrecht, pp 75–100

    Google Scholar 

  50. Chen L, Deng CX (2005) Roles of FGF signaling in skeletal development and human genetic diseases. Front Biosci-Landmark 10(2):1961–1976

    CAS  Google Scholar 

  51. Woei Ng K, Speicher T, Dombrowski C et al (2007) Osteogenic differentiation of murine embryonic stem cells is mediated by fibroblast growth factor receptors. Stem Cells Dev 16(2):305–318

    PubMed  Google Scholar 

  52. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97(1):33–44

    CAS  PubMed  Google Scholar 

  53. Ornitz DM (2005) FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 16(2):205–213

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942

    CAS  PubMed  Google Scholar 

  55. Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21(10):1226–1238

    CAS  PubMed  Google Scholar 

  56. Friedenstein AJ, Chailakhyan RK, Latsinik NV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    CAS  PubMed  Google Scholar 

  57. Caplan AI (1987) Bone development and repair. BioEssays 6(4):171–175

    CAS  PubMed  Google Scholar 

  58. Panicker S, Venkatabalasubramanian S, Pathak S, Ramalingam S (2021) The impact of fusion genes on cancer stem cells and drug resistance. Mol Cell Biochem 476(10):3771–3783

    CAS  PubMed  Google Scholar 

  59. Ying QL, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416(6880):545–548

    CAS  PubMed  Google Scholar 

  60. Eisenberg LM, Eisenberg CA (2003) Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res C Embryo Today 69(3):209–218

    CAS  PubMed  Google Scholar 

  61. Nuttall ME, Gimble JM (2000) Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 27(2):177–184

    CAS  PubMed  Google Scholar 

  62. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102(2):341–351

    CAS  PubMed  Google Scholar 

  63. Shen M, Yoshida E, Yan W et al (2002) Basic helix-loop-helix protein DEC1 promotes chondrocyte differentiation at the early and terminal stages. J Cell Sci 277(51):50112–50120

    CAS  Google Scholar 

  64. Iwata T, Kawamoto T, Sasabe E et al (2006) Effects of overexpression of basic helix–loop–helix transcription factor Dec1 on osteogenic and adipogenic differentiation of mesenchymal stem cells. Eur J Cell Biol 85(5):423–431

    CAS  PubMed  Google Scholar 

  65. Li Y, Zhang R, Qiao H et al (2007) Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. J Cell Sci 211(1):36–44

    CAS  Google Scholar 

  66. Karnieli O, Izhar-Prato Y, Bulvik S et al (2007) Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 25:2837–2844

    CAS  PubMed  Google Scholar 

  67. Kim SS, Yoo SW, Park TS et al (2008) Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells 26(9):2217–2228

    PubMed  Google Scholar 

  68. Yang Y, Li Y, Lv Y et al (2008) NRSF silencing induces neuronal differentiation of human mesenchymal stem cells. Exp Cell Res 314(11–12):2257–2265

    CAS  PubMed  Google Scholar 

  69. Trzaska KA, Reddy BY, Munoz JL et al (2008) Loss of RE-1 silencing factor in mesenchymal stem cell-derived dopamine progenitors induces functional maturity. Mol Cell Neurosci 9(2):285–290

    Google Scholar 

  70. Park IH, Zhao R, West JA et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    CAS  PubMed  Google Scholar 

  71. Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie H, Ye M, Feng R et al (2004) Stepwise reprogramming of B cells into macrophages. Cell 117(5):663–676

    CAS  PubMed  Google Scholar 

  73. Laiosa CV, Stadtfeld M, Xie H et al (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU. 1 transcription factors. Immunity 25(5):731–744

    CAS  PubMed  Google Scholar 

  74. Zhou Q, Brown J, Kanarek A et al (2008) In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455(7213):627–632

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Phinney DG (2007) Biochemical heterogeneity of mesenchymal stem cell populations: clues to their therapeutic efficacy. Cell Cycle 6(23):2884–2889

    CAS  PubMed  Google Scholar 

  76. Condic ML, Rao M (2008) Regulatory issues for personalized pluripotent cells. Stem Cells 26(11):2753–2758

    CAS  PubMed  Google Scholar 

  77. Jothimani G, Pathak S, Dutta S, Duttaroy AK, Banerjee A (2022) A comprehensive cancer-associated MicroRNA expression profiling and proteomic analysis of human umbilical cord mesenchymal stem cell-derived exosomes. Tissue Eng Regen Med 19:1013–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Girigoswami K, Saini D, Girigoswami A (2021) Extracellular matrix remodeling and development of cancer. Stem Cell Rev Rep 17(3):739–747

    PubMed  Google Scholar 

  79. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    CAS  PubMed  Google Scholar 

  80. Brachvogel B, Moch H, Pausch F et al (2005) Perivascular cells expressing annexin A5 define a novel mesenchymal stem cell-like population with the capacity to differentiate into multiple mesenchymal lineages. Development 132:2657–2668

    CAS  PubMed  Google Scholar 

  81. Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    CAS  PubMed  Google Scholar 

  82. Das B, Girigoswami A, Dutta A, Pal P, Dutta J, Dadhich P et al (2019) Carbon nanodots doped super-paramagnetic iron oxide nanoparticles for multimodal bioimaging and osteochondral tissue regeneration via external magnetic actuation. ACS Biomater Sci Eng 5(7):3549–3560

    CAS  PubMed  Google Scholar 

  83. Chagraoui J, Lepage-Noll A, Anjo A et al (2003) Fetal liver stroma consists of cells in epithelial-to-mesenchymal transition. Blood 101(8):2973–2982

    PubMed  Google Scholar 

  84. Vennila R, Sundaram RSM, Selvaraj S, Srinivasan P, Pathak S, Rupert S, Rajagopal S (2019) Effect of human platelet lysate in differentiation of Wharton’s jelly derived mesenchymal stem cells. Endocr Metab Immune Disord Drug Targets 19(8):1177–1191

    CAS  PubMed  Google Scholar 

  85. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25(11):2896–2902

    PubMed  Google Scholar 

  86. Choudhary P, Gupta A, Singh S (2021) Therapeutic advancement in neuronal transdifferentiation of mesenchymal stromal cells for neurological disorders. J Mol Neurosci 71(5):889–901

    CAS  PubMed  Google Scholar 

  87. Uz M, Das SR, Ding S et al (2018) Advances in controlling differentiation of adult stem cells for peripheral nerve regeneration. Adv Healthc Mater 7(14):1701046

    Google Scholar 

  88. Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M (2019) Direct transdifferentiation of human Wharton’s jelly mesenchymal stromal cells into cholinergic-like neurons. J Neurosci Methods 312:126–138

    CAS  PubMed  Google Scholar 

  89. Murugan Girija D, Kalachaveedu M, Ranga Rao S et al (2018) Transdifferentiation of human gingival mesenchymal stem cells into functional keratinocytes by Acalypha indica in three-dimensional microenvironment. J Cell Physiol 233(11):8450–8457

    CAS  PubMed  Google Scholar 

  90. Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, Saccone V (2021) Mesenchymal stromal cells and their secretome: new therapeutic perspectives for skeletal muscle regeneration. Front Bioeng Biotechnol 9:652970

    Google Scholar 

Download references

Acknowledgments

The authors of this paper are thankful to Chettinad Academy of Research and Education (CARE) for providing infrastructure support and to DST (INSPIRE), Government of India, and CARE for the financial support.

Author Contributions

The study was designed by AB and the literature search and manuscript draft preparation were done by VK, DD, DB, AB. The final version of the manuscript was reviewed and edited by SP and AB.

Funding

This work was partially supported by the DST Inspire research student grant with award number 190963 awarded to Ms. Dikshita Deka and Supervisor Dr. Antara Banerjee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antara Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaviarasan, V., Deka, D., Balaji, D., Pathak, S., Banerjee, A. (2023). Signaling Pathways in Trans-differentiation of Mesenchymal Stem Cells: Recent Advances. In: Turksen, K. (eds) Stem Cells and Lineage Commitment. Methods in Molecular Biology, vol 2736. Humana, New York, NY. https://doi.org/10.1007/7651_2023_478

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_478

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3536-0

  • Online ISBN: 978-1-0716-3537-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics