Skip to main content

Once Upon a Time Adenosine and Its Receptors: Historical Survey and Perspectives as Potential Targets for Therapy in Human Diseases

  • Chapter
  • First Online:
Purinergic Receptors and their Modulators

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 41))

  • 102 Accesses

Abstract

Endogenous autacoid adenosine plays important physiological roles in various tissues and organs by acting through A1, A2A, A2B, and A3 receptors. Dysregulated extracellular adenosine concentrations can cause many disorders such as inflammation, neurodegeneration, pain, and cancer, thus suggesting adenosine receptors (ARs) as interesting therapeutic targets. Medicinal chemistry studies have generated a large number of AR ligands, which have been pharmacologically characterized and optimized. Improvement in AR structural biology stimulated new computer-aided drug design approaches for drug discovery. Some AR ligands have reached clinical trials, and a limited number of them are on the market. To achieve these results, great progress has been made since the first steps in the intriguing world of adenosine and its receptors. New knowledge has been achieved, many issues have been solved, and new important aspects, previously ignored or underestimated, have been highlighted. In particular, but not only, taking into account important factors such as binding kinetics and biased signaling of ARs can lead to a rational design of more effective and safer drugs. Multitarget-directed ligands that combine, in the same molecule, the ability to interact with AR(s) and other target(s) are getting much attention as innovative therapeutic agents for treating multifactorial disorders such as neurodegenerative diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams RA (1989) Purine receptors. In: Williams M, Glennon RA, Timmermans PBMWM (eds) Receptor pharmacology and function. Weiner M, Dekker M, New York, pp 503–525

    Google Scholar 

  2. Borea PA, Gessi S, Merighi S, Varani K (2016) Adenosine as a multi-signalling guardian angel in human diseases: when, where and how does it exert its protective effects? Trends Pharmacol Sci 37:419–434

    CAS  PubMed  Google Scholar 

  3. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    CAS  PubMed  Google Scholar 

  4. Borea PA, Varani K, Gessi S, Merighi S, Vincenzi F (2019) The adenosine receptors. In: Di Giovanni G (ed) The receptors, vol 34. Humana Press, pp 1–593

    Google Scholar 

  5. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2017) Pathological overproduction: the bad side of adenosine. Br J Pharmacol 174:1945–1960

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheele KW (1776) Analysis of the calculus vesicae. Essay IX. In: The chemical essays of Charles-William Scheele. Translated from the transactions of the Academy of Sciences at Stockholm, with additions (1786). J. Murray, London, pp 199–214

    Google Scholar 

  7. Fischer E (1890) Synthesen in der Zuckergruppe. Ber Deut Chem Ges 23:2114–2141

    Google Scholar 

  8. Fischer E (1899) Synthesen in der Puringruppe. Ber Deut Chem Ges 32:435–504

    CAS  Google Scholar 

  9. Fischer E (1907) Untersuchungen in Der Puringruppe: (1882–1906). Springer Verlag, Berlin

    Google Scholar 

  10. Kossel A (1885) Ueber eine neue Base aus dem Tierkorper. Ber Deut Chem Ges 18:79–81

    Google Scholar 

  11. Kossel A (1888) Ueber eine neue Base aus dem Pflanzenreich. Ber Deut Chem Ges 21:2164–2167

    Google Scholar 

  12. Levene PA, Jacobs WA (1911) Ueber die Inosinsaure. Vierte Mitteilung Ber Deut Chem Ges 44:746–752

    CAS  Google Scholar 

  13. Maruyama K (1991) The discovery of adenosine triphosphate and the establishment of its structure. J Hist Biol 24:145–154

    Google Scholar 

  14. Drury AN, Szent-Gyorgyi A (1929) The physiological activity of adenine compounds with especial reference to their action on the mammalian heart. J Physiol 68:213–237

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bennett DW, Drury AN (1931) Further observations relating to the physiological activity of adenine compounds. J Physiol 72:28–320

    Google Scholar 

  16. Gillespie JH (1934) The biological significance of the linkages in adenosine triphosphoric acid. J Physiol 80:345–359

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Honey RM, Ritchie WT, Thomson WAR (1930) The action of adenosine upon the human heart. QJM os-23(92):485–489

    Google Scholar 

  18. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    CAS  PubMed  Google Scholar 

  19. Gerlach E, Deuticke B, Dreisbach RH (1963) Die Nucleotid-Abbauim Herzmuskel bei Sauerstoffmangel und seine mogliche Bedeutung fur die Coronardurchblutung. Naturwissenschaft

    Google Scholar 

  20. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  21. Rubio R, Berne RM (1969) Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circ Res 25:407–415

    CAS  PubMed  Google Scholar 

  22. Olsson RA (1970) Changes in content of purine nucleoside in canine myocardium during coronary occlusion. Circ Res 26:301–306

    CAS  PubMed  Google Scholar 

  23. Fox AC, Reed GE, Glassman E, Kaltman AJ, Silk BB (1974) Release of adenosine from human hearts during angina induced by rapid atrial pacing. J Clin Invest 53:1447–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of Guinea pig cerebral cortex slices. Mol Pharmacol 6:13–23

    CAS  PubMed  Google Scholar 

  25. Shimizu H, Daly J (1970) Formation of cyclic adenosine 3′,5′-monophosphate from adenosine in brain slices. Biochim Biophys Acta 222(2):465–473

    CAS  PubMed  Google Scholar 

  26. Bretschneider HJ, Frank A, Bernard U, Kochsiek K, Scheler F (1959) Effect of a pyrimido-pyrimidine derivative on the oxygen supply of the heart muscle. Arzneimittelforschung 9:49–59

    CAS  PubMed  Google Scholar 

  27. Pfleger K, Seifen E, Schöndorf H (1969) Inosine potentiation of the effect of adenosine on the heart. Biochem Pharmacol 18:43–51

    CAS  PubMed  Google Scholar 

  28. Dietmann K, Schaumann W, Thiel M (1981) Die Geschichte der Adenosin-Derivate. Ein Abenteuer der Arzniemittelforschung. Getbooks GmbH, Bad Camberg, Germany

    Google Scholar 

  29. Rubio R, Berne RM (1980) Location of purine and pyrimidine nucleoside phosphorylases in heart, kidney and liver. Am J Physiol 239:H721–H730

    CAS  PubMed  Google Scholar 

  30. Hershfield MS, Kredich NM (1978) S-adenosylhomocysteine hydrolase is an adenosine binding protein: a target for adenosine toxicity. Science 202:757–760

    CAS  PubMed  Google Scholar 

  31. Schrader J, Nees S, Gerlach E (1981) Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem J 196:65–70

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagy JI, La Bella LA, Buss M, Daddona PE (1984) Immunohistochemistry of adenosine deaminase: implications for adenosine neurotransmission. Science 224(4645):166–168

    CAS  PubMed  Google Scholar 

  33. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Boils L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118

    Google Scholar 

  34. Fredholm BB (1982) Adenosine receptors. Med Biol 60(6):289–293

    CAS  PubMed  Google Scholar 

  35. Van Calker D, Müller M, Hamprecht B (1979) Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    PubMed  Google Scholar 

  36. Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci U S A 74:5482–5486

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch Eur J Physiol 372:29–35

    CAS  Google Scholar 

  38. Böhm M, Brückner R, Neumann J, Schmitz W, Scholz H, Starbatty J (1986) Role of guanine nucleotide-binding protein in the regulation by adenosine of cardiac potassium conductance and force of contraction. Evaluation with pertussis toxin. Naunyn Schmiedebergs Arch Pharmacol 332:403–405

    PubMed  Google Scholar 

  39. Dolphin AC, Forda SR, Scott RH (1986) Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J Physiol 373:47–61

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    CAS  PubMed  Google Scholar 

  41. Fredholm BB (1977) Activation of adenylate cyclase from rat striatum and tuberculum olfactorium by adenosine. Med Biol 55:262–267

    CAS  PubMed  Google Scholar 

  42. Premont J, Perez M, Bockaert J (1977) Adenosine-sensitive adenylate cyclase in rat striatal homogenates and its relationship to dopamine- and Ca2+-sensitive adenylate cyclases. Mol Pharmacol 13:662–670

    CAS  PubMed  Google Scholar 

  43. Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol 3:69–80

    CAS  PubMed  Google Scholar 

  44. Ribeiro JA, Sebastião AM (1986) Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol 26:179–209

    CAS  PubMed  Google Scholar 

  45. Ali H, Cunha-Melo JR, Saul WF, Beaven MA (1990) Activation of phospholipase C via adenosine receptors provides synergisti signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J Biol Chem 265:745–753

    CAS  PubMed  Google Scholar 

  46. Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natl Acad Sci U S A 89:7432–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  PubMed  Google Scholar 

  48. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors – an update. Pharmacol Rev 63:1–34

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K (2018) Pharmacology of adenosine receptors: the state of the art. Physiol Rev 98:1591–1625

    CAS  PubMed  Google Scholar 

  50. Malbon CC, Hert RC, Fain JN (1978) Characterization of [3H]adenosine binding to fat cell membranes. J Biol Chem 253:3114–3122

    CAS  PubMed  Google Scholar 

  51. Schwabe U, Trost T (1980) Characterization of adenosine receptors in rat brain by (−)[3H]N6-phenylisopropyladenosine. Naunyn Schmiedebergs Arch Pharmacol 313:179–187

    CAS  PubMed  Google Scholar 

  52. Williams M, Risley EA (1980) Biochemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine. Proc Natl Acad Sci U S A 77:6892–6896

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, Hays SJ, Huang CC (1987) Binding of the A1-selective adenosine antagonist 8-cyclopentyl-1,3-dipropylxanthine to rat membranes. Naunyn Schmied Arch Pharmacol 335:59–63

    CAS  Google Scholar 

  54. Jarvis MF, Williams M (1989) Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS 21680. Eur J Pharmacol 168:243–246

    CAS  PubMed  Google Scholar 

  55. Zocchi C, Ongini E, Conti A, Monopoli A, Negretti A, Baraldi PG, Dionisotti S (1996) The non-xanthine heterocyclic compound SCH 58261 is a new potent and selective A2a adenosine receptor antagonist. J Pharmacol Exp Ther 276(2):398–404

    CAS  PubMed  Google Scholar 

  56. Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PW, Jones G, Coll MG (1995) The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2a selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Olah ME, Gallo-Rodriguez C, Jacobson KA, Stiles GL (1994) 125I-4-aminobenzyl-5X-N methylcarboxamidoadenosine, a high affinity radioligand for the rat A3 adenosine receptor. Mol Pharmacol 45:978–982

    CAS  PubMed  Google Scholar 

  58. Baraldi PG, Cacciari B, Romagnoli R, Varani K, Merighi S, Gessi S, Borea PA, Leung E, Hickey SL, Spalluto G (2000) Synthesis and preliminary biological evaluation of [3H]-MRE 3008-F20: the first high affinity radioligand antagonist for the human A3 adenosine receptors. Bioorg Med Chem Lett 10:209–211

    CAS  PubMed  Google Scholar 

  59. Hinz S, Alnouri WM, Pleiss U, Müller CE (2018) Tritium-labeled agonists as tools for studying adenosine A2B receptors. Purinergic Signal 14:223–233

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Federico S, Lassiani L, Spalluto G (2019) Chemical probes for the adenosine receptors. Pharmaceuticals 12:168

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang X, Heitman LH, IJzerman AP, van der Es D (2021) Molecular probes for the human adenosine receptors. Purinergic Signal 17(1):85–108

    CAS  PubMed  Google Scholar 

  62. Weichert D, Gmeiner P (2015) Covalent molecular probes for class A G protein-coupled receptors: advances and applications. ACS Chem Biol 10:1376–1386

    CAS  PubMed  Google Scholar 

  63. Klotz KN (2000) Adenosine receptors and their ligands. Naunyn Schmiedebergs Arch Pharmacol 362(4–5):382–391

    CAS  PubMed  Google Scholar 

  64. Ukena D, Padgett WL, Hong O, Daly JW, Daly DT, Olsson RA (1987) N6-substituted 9-methyladenines: a new class of adenosine receptor antagonists. FEBS Lett 215(2):203–208

    CAS  PubMed  Google Scholar 

  65. Francis JE, Cash WD, Psychoyos S, Ghai G, Wenk P, Friedmann RC, Atkins C, Warren V, Furness P (1988) Structure-activity profile of a series of novel triazoloquinazoline adenosine antagonists. J Med Chem 31(5):1014–1020

    CAS  PubMed  Google Scholar 

  66. Kiesman WF, Elzein E, Zablocki J (2009) A1 adenosine receptor antagonists, agonists, and allosteric enhancers. In: Wilson C, Mustafa S (eds) Adenosine receptors in health and disease. Handbook of experimental pharmacology, vol 193. Springer, Berlin, pp 25–58

    Google Scholar 

  67. Cristalli G, Müller CE, Volpini R (2009) Recent developments in adenosine A2A receptor ligands. In: Wilson CN, Mustafa SJ (eds) Adenosine receptors in health and disease. Handbook of experimental pharmacology, vol 193. Springer, Berlin, pp 59–98

    Google Scholar 

  68. Deb PK, Deka S, Borah P, Abed SN, Klotz K-N (2019) Medicinal chemistry and therapeutic potential of agonists, antagonists and allosteric modulators of A1 adenosine receptor: current status and perspectives. Curr Pharm Des 25:2697–2715

    CAS  PubMed  Google Scholar 

  69. Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K (2015) History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 35:790–848

    CAS  PubMed  Google Scholar 

  70. Guerrero A (2018) A2A adenosine receptor agonists and their potential therapeutic applications. An update. Curr Med Chem 25:3597–3612

    CAS  PubMed  Google Scholar 

  71. Kalla RV, Zablocki J, Tabrizi MA, Baraldi PG (2009) Recent developments in A2B adenosine receptor ligands. In: Wilson C, Mustafa S (eds) Adenosine receptors in health and disease. Handbook of experimental pharmacology, vol 193. Springer, Berlin, pp 99–122

    Google Scholar 

  72. Jacobson KA, Klutz A, Tosh DK, Ivanov AA, Preti D, Baraldi PG (2009) Medicinal chemistry of the A3 adenosine receptor: agonists, antagonists, and receptor engineering. In: Wilson C, Mustafa S (eds) Adenosine receptors in health and disease. Handbook of experimental pharmacology, vol 193. Springer, Berlin, pp 123–159

    Google Scholar 

  73. Müller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808:1290–1308

    PubMed  Google Scholar 

  74. Gao Z-G, Jacobson KA (2011) Emerging adenosine receptor agonists-an update. Expert Opin Emerg Drugs 16(4):597–602

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Dal Ben D, Lambertucci C, Buccioni M, Navia AM, Marucci G, Spinaci A, Volpini R (2019) Non-nucleoside agonists of the adenosine receptors: an overview. Pharmaceuticals 12:150

    PubMed  PubMed Central  Google Scholar 

  76. Saini A, Patel R, Gaba S, Singh G, Gupta GD, Monga V (2022) Adenosine receptor antagonists: recent advances and therapeutic perspective. Eur J Med Chem 227:113907

    CAS  PubMed  Google Scholar 

  77. Jacobson KA, Tosh DK, Jain S, Gao Z-G (2019) Historical and current adenosine receptor agonists in preclinical and clinical development. Front Cell Neurosci 13:124

    CAS  PubMed  PubMed Central  Google Scholar 

  78. IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA (2022) International Union of Basic and Clinical Pharmacology. CXII: adenosine receptors: a further update. Pharmacol Rev 74:340–372

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Di Marco JP, Sellers TD, Berne RM, West GA, Belardinelli L (1985) Diagnostic and therapeutic use of adenosine in patients with supraventricular tachyarrhythmias. J Am Coll Cardiol 6:417–425

    Google Scholar 

  80. Verani M (1991) Pharmacological stress with adenosine for myocardial perfusion imaging. Semin Nucl Med 21:266–272

    CAS  PubMed  Google Scholar 

  81. Newby AC (1984) Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sci 9:42–44

    CAS  Google Scholar 

  82. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    CAS  PubMed  Google Scholar 

  83. Chen JF, Eltzschig HK, Fredholm BB (2013) Adenosine receptors as drug targets – what are the challenges? Nat Rev Drug Discov 12:265–286

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Deussen A, Stappert M, Schäfer S, Kelm M (1999) Quantification of extracellular and intracellular adenosine production: understanding the transmembranous concentration gradient. Circulation 99:2041–2047

    CAS  PubMed  Google Scholar 

  85. Peleli M, Fredholm BB, Sobrevia L, Carlstrӧm M (2017) Pharmacological targeting of adenosine receptor signaling. Mol Aspects Med 55:4–8

    CAS  PubMed  Google Scholar 

  86. Gracia E, Farré D, Cortés A, Ferrer-Costa C, Orozco M, Mallol J, Lluís C, Canela EI, McCormick PJ, Franco R, Fanelli F, Casadó V (2013) The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB J 27:1048–1061

    CAS  PubMed  Google Scholar 

  87. Pacheco R, Martinez-Navio JM, Lejeune M, Climent N, Oliva H, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R (2005) CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci U S A 102:9583–9588

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liu Y-J, Chen J, Li X, Zhou X, Hu Y-M, Chu S-F, Peng Y, Chen N-H (2019) Research progress on adenosine in central nervous system diseases. CNS Neurosci Ther 25:899–910

    PubMed  PubMed Central  Google Scholar 

  89. Sawynok J (2016) Adenosine receptor targets for pain. Neuroscience 338:1–18

    CAS  PubMed  Google Scholar 

  90. Dhalla AK, Chisholm JW, Reaven GM, Belardinelli L (2009) A1 adenosine receptor: role in diabetes and obesity. Handb Exp Pharmacol 193:271–295

    CAS  Google Scholar 

  91. Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA (2017) Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy. Adv Exp Med Biol 1051:193–232

    CAS  PubMed  Google Scholar 

  92. Rabadi MM, Lee HT (2015) Adenosine receptors and renal ischaemia reperfusion injury. Acta Physiol 213:222–231

    CAS  Google Scholar 

  93. Hua X, Erikson CJ, Chason KD, Rosebrock CN, Deshpande DA, Penn RB, Tilley SL (2007) Involvement of A1 adenosine receptors and neural pathways in adenosine-induced bronchoconstriction in mice. Am J Physiol Lung Cell Mol Physiol 293:L25–L32

    CAS  PubMed  Google Scholar 

  94. Wilson CN, Nadeem A, Spina D, Brown R, Page CP, Mustafa SJ (2009) Adenosine receptors and asthma. Handb Exp Pharmacol 193:329–362

    CAS  Google Scholar 

  95. Wolska N, Rozalski M (2019) Blood platelet adenosine receptors as potential targets for anti-platelet therapy. Int J Mol Sci 20(21):5475

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Janes K, Esposito E, Doyle T, Cuzzocrea S, Tosh DK, Jacobson KA, Salvemini D (2014) A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 155:2560–2567

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Aghazadeh Tabrizi M, Romagnoli R, Baraldi PA, Ciancetta A, Tosh DK, Gao Z-G, Gessi S (2018) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev 38(4):1031–1072

    CAS  PubMed  Google Scholar 

  98. Marucci G, Santinelli C, Buccioni M, Martí Navia A, Lambertucci C, Zhurina A, Yli-Harjab O, Volpini R, Kandhavelu M (2018) Anticancer activity study of A3 adenosine receptor agonists. Life Sci 205:155–163

    CAS  PubMed  Google Scholar 

  99. Hussain A, Gharanei AM, Nagra AS, Maddock HL (2014) Caspase inhibition via A3 adenosine receptors: a new cardioprotective mechanism against myocardial infarction. Cardiovasc Drugs Ther 28:19–32

    CAS  PubMed  Google Scholar 

  100. Gao Z-G, Inoue A, Jacobson KA (2018) On the G protein-coupling selectivity of the native A2B adenosine receptor. Biochem Pharmacol 151:201–213

    CAS  PubMed  Google Scholar 

  101. Cordeaux Y, IJzerman AP, Hill SJ (2004) Coupling of the human A1 adenosine receptor to different heterotrimeric G proteins: evidence for agonist-specific G protein activation. Br J Pharmacol 143:705–714

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kull B, Svenningsson P, Fredholm BB (2000) Adenosine A2A receptors are colocalized with and activate golf in rat striatum. Mol Pharmacol 58(4):771–777

    CAS  PubMed  Google Scholar 

  103. Schulte G, Fredholm BB (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58:477–482

    CAS  PubMed  Google Scholar 

  104. McNeill SM, Jo-Anne B, White PJ, May Lauren T (2021) Biased agonism at adenosine receptors. Cell Signal 82:109954

    CAS  PubMed  Google Scholar 

  105. Wall MJ, Hill E, Huckstepp R, Barkan K, Deganutti G, Leuenberger M, Preti B, Winfield I, Wei H, Imlach W et al (2020) A biased adenosine A1R agonist elicits analgesia without cardiorespiratory depression. bioRxiv. 2020.04.04.023945

    Google Scholar 

  106. Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE (2015) Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal 11:389–407

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Du L, Gao ZG, Paoletta S, Wan TC, Gizewski ET, Barbour S, van Veldhoven JPD, IJzerman AP, Jacobson KA, Auchampach JA (2018) Species differences and mechanism of action of A3 adenosine receptor allosteric modulators. Purinergic Signal 14:59–71

    CAS  PubMed  Google Scholar 

  108. Fredholm BB, Arslan G, Halldner L et al (2000) Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol 362:364–374

    CAS  PubMed  Google Scholar 

  109. Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, Tehan B, Hurrell E, Bennett K, Congreve M, Magnani F, Tate CG, Weir M, Marshall FH (2011) Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293

    PubMed  PubMed Central  Google Scholar 

  111. Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z-G, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 536:104–107

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Barrington WW, Jacobson KA, Stiles GL (1989) Demonstration of distinct agonist and antagonist conformations of the A1 adenosine receptor. J Biol Chem 264:13157–13164

    CAS  PubMed  Google Scholar 

  115. Olah ME, Jacobson KA, Stiles GL (1994) Role of the second extracellular loop of adenosine receptors in agonist and antagonist binding: analysis of chimeric A1/A3 adenosine receptors. J Biol Chem 269:24692–24698

    CAS  PubMed  Google Scholar 

  116. Tosh DK, Paoletta S, Deflorian F et al (2012) Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 55:8075–8090

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Glukhova A, Thal DM, Nguyen AT, Vecchio EA, Jörg M, Scammells PJ, May LT, Sexton PM, Christopoulos A (2017) Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168:867–877

    CAS  PubMed  Google Scholar 

  118. Cheng Y (2018) Single-particle cryo-EM-how did it get here and where will it go. Science 361:876–880

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ceska T, Chung CW, Cooke R, Phillips C, Williams PA (2019) Cryo-EM in drug discovery. Biochem Soc Trans 47:281–293

    CAS  PubMed  Google Scholar 

  120. Draper-Joyce CJ, Khoshouei M, Thal DM, Liang YL, Nguyen ATN, Furness SGB, Venugopal H, Baltos JA, Plitzko JM, Danev R (2018) Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature 558:559–563

    CAS  PubMed  Google Scholar 

  121. García-Nafría J, Lee Y, Bai X, Carpente B, Tate CG (2018) Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife 7:e35946

    PubMed  PubMed Central  Google Scholar 

  122. Wang J, Bhattarai A, Ahmad WI, Farnan TS, John KP, Miao Y (2020) Computer-aided GPCR drug discovery. In: Jastrzebska B, Park PSH (eds) GPCRs. Academic Press, Cambridge, pp 283–293

    Google Scholar 

  123. Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Crystallogr Sect D Biol Crystallogr 54:1078–1084

    CAS  Google Scholar 

  124. Karplus M, Mc Cammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Mol Biol 9:646–652

    CAS  Google Scholar 

  125. Wang J, Miao Y (2019) Mechanistic insights into specific G protein interactions with adenosine receptors. J Phys Chem B 123(30):6462–6473

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang J, Bhattarai A, Do HN, Akhter S, Miao Y (2022) Molecular simulations and drug discovery of adenosine receptors. Molecules 27:2054

    CAS  PubMed  PubMed Central  Google Scholar 

  127. May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

    CAS  PubMed  Google Scholar 

  128. Vecchio EA, Baltos J-A, Nguyen ATN, Christopoulos A, White PJ, May LT (2018) New paradigms in adenosine receptor pharmacology: allostery, oligomerization and biased agonism. Br J Pharmacol 175(21):4036–4046

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Korkutata M, Agrawal L, Lazarus M (2022) Allosteric modulation of adenosine A2A receptors as a new therapeutic avenue. Int J Mol Sci 23(4):2101

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Poulsen S-A, Quinn RJ (1998) Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem 6(6):619–641

    CAS  PubMed  Google Scholar 

  131. Wu PH, Phillis JW (1982) Adenosine receptor in rat brain membranes: characterization of high affinity binding of [3H]-2-chloroadenosine. Int J Biochem 14:399–404

    CAS  PubMed  Google Scholar 

  132. Müller CE, Baqi Y, Hinz S, Namasivayam V (2018) Medicinal chemistry of A2B adenosine receptors. In: Borea PA, Varani K, Gessi S, Merighi S, Vincenzi F (eds) The adenosine receptors. The receptors, vol 34. Springer, Cham, pp 137–168

    Google Scholar 

  133. Beukers MW, Chang LCW, von Frijtag Drabbe Kunzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, IJzermann AP (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47:3707–3709

    CAS  PubMed  Google Scholar 

  134. Hinz S, Lacher SK, Seibt BF, Müller CE (2014) BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J Pharmacol Exp Ther 349:427–436

    PubMed  Google Scholar 

  135. Guo M, Gao ZG, Tyler R, Stodden T, Li Y, Ramsey J, Zhao WJ, Wang GJ, Wiers CE, Fowler JS, Rice KC, Jacobson KA, Kim SW, Volkow ND (2018) Preclinical evaluation of the first adenosine A1 receptor partial agonist radioligand for positron emission tomography imaging. J Med Chem 61:9966–9975

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Bertarelli DC, Diekmann M, Hayallah AM, Rüsing D, Iqbal J, Preiss B, Verspohl EJ, Müller CE (2006) Characterization of human and rodent native and recombinant adenosine A(2B) receptors by radioligand binding studies. Purinergic Signal 2:559–571

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Dal Ben D, Lambertucci C, Colotta V (2018) The aminopyridine-3,5-dicarbonitrile core for the design of new non-nucleoside-like agonists of the human adenosine A2B receptor. Eur J Med Chem 150:127–139

    CAS  PubMed  Google Scholar 

  138. Johnston-Cox H, Koupenova M, Yang D, Corkey B, Gokce N, Farb MG, LeBrasseur N, Ravid K (2012) The A2B adenosine receptor modulates glucose homeostasis and obesity. PloS One 7:e40584

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Johnston-Cox H, Eisenstein AS, Koupenova M, Carroll S, Ravid K (2014) The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PloS One 9:e98775

    PubMed  PubMed Central  Google Scholar 

  140. Csoka B, Koscso B, Toro G, Kokai E, Virag L, Nemeth ZH, Pacher P, Bai P, Hasko G (2014) A2B adenosine receptors prevent insulin resistance by inhibiting adipose tissue inflammation via maintaining alternative macrophage activation. Diabetes 63:850–866

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Tian Y, Piras BA, Kron IL, French BA, Yang Z (2015) Adenosine 2B receptor activation reduces myocardial reperfusion injury by promoting anti-inflammatory macrophages differentiation via PI3K/Akt pathway. Oxid Med Cell Longev 2015:585297

    PubMed  PubMed Central  Google Scholar 

  142. Ni Y, Liang D, Tian Y, Kron IL, French BA, Yang Z (2018) Infarct-sparing effect of adenosine A2B receptor agonist is primarily due to its action on splenic leukocytes via a PI3K/Akt/IL-10 pathway. J Surg Res 232:442–449

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Bott-Flugel L, Bernshausen A, Schneider H, Luppa P, Zimmermann K, Albrecht-Kupper B, Kast R, Laugwitz KL, Ehmke H, Knorr A, Seyfarth M (2011) Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism. PloS One 6(3):e18048

    PubMed  PubMed Central  Google Scholar 

  144. Tendera M, Gaszewska-Zurek E, Parma Z, Ponikowski P, Jankowska E, Kawecka-Jaszcz K, Czarnecka D, Krzeminska-Pakula M, Bednarkiewicz Z, Sosnowski M, Kilama MO, Agrawal R (2012) The new oral adenosine A1 receptor agonist capadenoson in male patients with stable angina. Clin Res Cardiol 101:585–591

    CAS  PubMed  Google Scholar 

  145. Sabbah HN, Gupta RC, Kohli S, Wang RS, Zhang K, Zimmermann K, Diedrichs N, Albrecht-Kupper BE (2013) Chronic therapy with a partial adenosine A1-receptor agonist improves left ventricular function and remodeling in dogs with advanced heart failure. Circ Heart Fail 6:563–571

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Albrecht-Kupper BE, Leineweber K, Nell PG (2012) Partial adenosine A1 receptor agonists for cardiovascular therapies. Purinergic Signal 8:91–99

    PubMed  Google Scholar 

  147. Bailey IR, Laughlin B, Moore LA, Bogren LK, Barati Z (2017) Drew KL optimization of thermolytic response to A1 adenosine receptor agonists in rats. J Pharm Exp Ther 362:424–430

    CAS  Google Scholar 

  148. Baltos JA, Vecchio EA, Harris MA, Qin CX, Ritchie RH, Christopoulos A, White PJ, May LT (2017) Capadenoson, a clinically trialed partial adenosine A1 receptor agonist, can stimulate adenosine A2B receptor biased agonism. Biochem Pharmacol 135:79–89

    CAS  PubMed  Google Scholar 

  149. Rueda P, Merlin J, Chimenti S, Feletou M, Paysant J, White PJ, Christopoulos A, Sexton PM, Summers RJ, Charman WN, May LT, Langmead CJ (2021) Pharmacological insights into safety and efficacy determinants for the development of adenosine receptor biased agonists in the treatment of heart failure. Front Pharmacol 12:628060

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Meibom D, Albrecht-Kupper B, Diedrich N, Hubsch W, Kast R, Kramer T, Krenz U, Lerchen HG, Mittendorf J, Nell PG, Süssmeier F, Vakalopoulos A, Zimmermann K (2017) Neladenoson bialanate hydrochloride: a prodrug of a partial adenosine A1 receptor agonist for the chronic treatment of heart diseases. Chem Med Chem 12:728–737

    CAS  PubMed  Google Scholar 

  151. Voors AA, Dungen HD, Senni M, Nodari S, Agostoni P, Ponikowski P, Bax JJ, Butler J, Kim RJ, Dorhout B, Dinh W, Gheorghiade M (2017) Safety and tolerability of neladenoson bialanate, a novel oral partial adenosine A1 receptor agonist, in patients with chronic heart failure. J Clin Pharmacol 57:440–451

    CAS  PubMed  Google Scholar 

  152. Louvel J, Guo D, Soethoudt M, Mocking TA, Lenselink EB, Mulder-Krieger T, Heitman LH, IJzerman AP (2015) Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. Eur J Med Chem 101:681–691

    CAS  PubMed  Google Scholar 

  153. Fredholm BB (1985) On the mechanism of action of theophylline and caffeine. Acta Med Scand 217:149–153

    CAS  PubMed  Google Scholar 

  154. Müller CE, Jacobson KA (2011) Xanthines as adenosine receptor antagonists. Handb Exp Pharmacol 200:151–199

    Google Scholar 

  155. Takahashi M, Fujita M, Asai N, Saki M, Mori A (2018) Safety and effectiveness of istradefylline in patients with Parkinson’s disease: interim analysis of a postmarketing surveillance study in Japan. Expert Opin Pharmacother 19:1635–1642

    CAS  PubMed  Google Scholar 

  156. Chen J-F, Cunha RA (2020) The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal 16(2):167–174

    PubMed  PubMed Central  Google Scholar 

  157. Borrmann T, Hinz S, Bertarelli DCG, Li W, Florin NC, Scheiff AB, Müller CE (2009) 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52(13):3994–4006

    CAS  PubMed  Google Scholar 

  158. Ji X, Kim YC, Ahern DG, Linden J, Jacobson KA (2001) [3H]MRS 1754, a selective antagonist radioligand for A2B adenosine receptors. Biochem Pharmacol 61:657–663

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Rohilla S, Bansal R, Kachler S, Klotz KN (2019) Synthesis, biological evaluation and molecular modelling studies of 1, 3, 7, 8-tetrasubstituted xanthines as potent and selective A2A AR ligands with in vivo efficacy against animal model of Parkinson's disease. Bioorg Chem 87:601–612

    CAS  PubMed  Google Scholar 

  160. Koul S, Ramdas V, Barawkar DA, Waman YB, Prasad N, Madadi SK, Shejul YD, Bonagiri R, Basu S, Menon S, Reddy SB (2017) Design and synthesis of novel, potent and selective hypoxanthine analogs as adenosine A1 receptor antagonists and their biological evaluation. Bioorg Med Chem 25:1963–1975

    CAS  PubMed  Google Scholar 

  161. Basu S, Barawkar DA, Ramdas V, Waman Y, Patel M, Panmand A, Kumar S, Thorat S, Bonagiri R, Jadhav D, Mukhopadhyay P (2017) A2B adenosine receptor antagonists: design, synthesis and biological evaluation of novel xanthine derivatives. Eur J Med Chem 127:986–996

    CAS  PubMed  Google Scholar 

  162. Basu S, Barawkar DA, Ramdas V, Patel M, Waman Y, Panmand A, Kumar S, Thorat S, Naykodi M, Goswami A, Reddy BS (2017) Design and synthesis of novel xanthine derivatives as potent and selective A2B adenosine receptor antagonists for the treatment of chronic inflammatory airway diseases. Eur J Med Chem 134:218–229

    CAS  PubMed  Google Scholar 

  163. de Lera RM, Lim Y-H, Zeng J (2014) Adenosine A2A receptor as a drug discovery target. J Med Chem 57:3623–3650

    Google Scholar 

  164. Gatta F, Del Giudice MR, Borioni A, Borea PA, Dionisotti S, Ongini E (1993) Synthesis of imidazo[1,2-c]pyrazolo[4,3-e]pyrimidines, pyrazolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidines and 1,2,4- triazolo[5,1-i]purines: new potent adenosine A2 receptor antagonists. Eur J Med Chem 28:569–576

    CAS  Google Scholar 

  165. Baraldi PG, Tabrizi MA, Fruttarolo F, Bovero A, Avitabile B, Preti D, Romagnoli R, Merighi S, Gessi S, Varani K, Borea PA (2003) Recent developments in the field of A3 adenosine receptor antagonists. Drug Dev Res 58:315–329

    CAS  Google Scholar 

  166. Le Witt PA, Aradi SD, Hauser RA, Rascol O (2020) The challenge of developing adenosine A2A antagonists for Parkinson disease: istradefylline, preladenant, and tozadenant. Parkinsonism Relat Disord 80(Suppl 1):S54–S63

    Google Scholar 

  167. Gillespie RJ, Cliffe IA, Dawson C, Dourish CT, Gaur S, Jordan AM, Knight AR, Lerpiniere J, Misra A, Pratt RM, Roffey J, Stratton GC, Upton R, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor. Part 3: design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]-pyrimidines and 6-arylpurines. Bioorg Med Chem Lett 18(9):2924–2929

    CAS  PubMed  Google Scholar 

  168. Gillespie RJ, Bamford SJ, Botting R, Come M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J, Leonardi S, Lightowler S, Mc Ateer S, Merrett A, Misra A, Padfield A, Reece M, Saadi M, Selwood DL, Stratton GC, Surry D, Todd R, Tong X, Ruston V, Upton R, Weiss SM (2009) Antagonist of the human A2A adenosine receptor. 4. Design, synthesis and preclinical evaluations of 7-aryltriazolo[4,5-d]pyrimidines. J Med Chem 52(1):33–47

    CAS  PubMed  Google Scholar 

  169. Basu S, Barawkar DA, Thorat S, Shejul YD, Patel M, Naykodi M, Jain V, Salve Y, Prasad V, Chaudhary S, Ghosh I (2017) Design, synthesis of novel, potent, selective, orally bioavailable adenosine A2A receptor antagonists and their biological evaluation. J Med Chem 60:681–694

    CAS  PubMed  Google Scholar 

  170. Renk DR, Skraban M, Bier D, Schulze A, Wabbals E, Wedekind F, Neumaier F, Neumaier B, Holschbach M (2021) Design, synthesis and biological evaluation of Tozadenant analogues as adenosine A2A receptor ligands. Eur J Med Chem 15(214):113214

    Google Scholar 

  171. Li A-N, Moro S, Forsyth N, Melman N, Ji X-D, Jacobson KA (1999) Synthesis, CoMFA analysis, and receptor docking of 3,5-diacyl-2,4-dialkylpyridine derivatives as selective A3 adenosine receptor antagonists. J Med Chem 42:706–721

    CAS  PubMed  Google Scholar 

  172. Madi L, Bar-Yehuda S, Barer F, Ardon E, Ochaion A, Fishman P (2003) A3 adenosine receptor activation in melanoma cells: association between receptor fate and tumor growth inhibition. J Biol Chem 278(43):42121–42130

    CAS  PubMed  Google Scholar 

  173. Moro S, Gao ZG, Jacobson KA, Spalluto G (2006) Progress in pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 26:131–159

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Jacobson KA, IJzerman AP, Müller CE (2021) Medicinal chemistry of P2 and adenosine receptors: common scaffolds adapted for multiple targets. Biochem Pharmacol 187:114311

    CAS  PubMed  Google Scholar 

  175. Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM (2017) Structures of human A1 and A2A adenosine receptors xanthines reveal determinants of selectivity. Structure 25:1275–1285

    CAS  PubMed  Google Scholar 

  176. Jespers W, Schiedel AC, Heitman LH, Cooke R, Gutiérrez-de-Terán H (2018) Structural mapping of adenosine receptor mutations: ligand binding and signaling mechanisms. Trends Pharmacol Sci 39:75–89

    CAS  PubMed  Google Scholar 

  177. Carpenter B, Lebon G (2017) Human adenosine A2A receptor: molecular mechanism of ligand binding and activation. Front Pharmacol 8:898

    PubMed  PubMed Central  Google Scholar 

  178. Rucktooa P, Cheng RKY, Segala E, Geng T, Errey JC, Brown GA, Cooke RM, Marshall FH, Doré AS (2018) Towards high throughput GPCR crystallography: in Meso soaking of adenosine A2A receptor crystals. Sci Rep 8:41

    PubMed  PubMed Central  Google Scholar 

  179. Costanzi S, Ivanov AA, Tikhonova IG, Jacobson KA (2007) Structure and function of G protein-coupled receptors studied using sequence analysis, molecular modeling and receptor engineering: adenosine receptors. Front Drug Des Discov 3:63–79

    CAS  Google Scholar 

  180. Dal Ben D, Lambertucci C, Marucci G, Volpini R, Cristalli G (2010) Adenosine receptor modeling: what does the A2A crystal structure tell us? Curr Top Med Chem 10:993–1018

    CAS  PubMed  Google Scholar 

  181. Ciancetta A, Jacobson KA (2017) Structural probing and molecular modeling of the A3 adenosine receptor: a focus on agonist binding. Molecules 22:449

    PubMed  PubMed Central  Google Scholar 

  182. Effendi WI, Nagano T, Kobayashi K, Nishimura Y (2020) Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cell 9:785

    CAS  Google Scholar 

  183. Sousa JB, Fresco P, Diniz C, Goncalves J (2018) Adenosine receptor ligands on cancer therapy. A review of patent literature. Recent Pat Anticancer Drug Discov 13:40–69

    CAS  PubMed  Google Scholar 

  184. Merighi S, Battistello E, Giacomelli L, Varani K, Vincenzi F, Borea PA (2019) Targeting A3 and A2A adenosine receptors in the fight against cancer. Exp Opin Ther Targets 23:669–678

    CAS  Google Scholar 

  185. Yu F, Zhu C, Xie Q, Wang Y (2020) Adenosine A2A receptor antagonists for cancer immunotherapy. J Med Chem 63:12196–12212

    CAS  PubMed  Google Scholar 

  186. Guglielmi P, Carradori S, Campestre C, Poce G (2019) Novel therapies for glaucoma: a patent review (2013-2019). Exp Opin Ther Patents 29:769–780

    CAS  Google Scholar 

  187. Zheng J, Zhang X, Zhen X (2019) Development of adenosine A2A receptor antagonists for the treatment of Parkinson’s disease: a recent update and challenge. ACS Chem Nerosci 10:783–791

    CAS  Google Scholar 

  188. Borah P, Deka S, Mailavaram RP, Deb PK (2019) P1 receptor agonists/antagonists in clinical trials – potential drug candidates of the future. Curr Pharm Des 25:2792–2807

    CAS  PubMed  Google Scholar 

  189. Chandrasekaran B, Samarneh S, Jaber AMY, Kassab G, Agrawal N (2019) Therapeutic potentials of A2B adenosine receptor ligands: current status and perspectives. Curr Pharm Des 25:2741–2771

    CAS  PubMed  Google Scholar 

  190. Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, Lieu H, Mahmarian JJ, Olmsted A, Underwood SR, Vitola J, Wang W (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14(5):645–658

    PubMed  Google Scholar 

  191. Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. In: Wilson CN, Mustafa SJ (eds) Adenosine receptors in health and disease, vol 193. Springer, Berlin, pp 535–587

    Google Scholar 

  192. Jenner P, Mori A, Aradi SD, Hauser RA (2021) Istradefylline – a first generation adenosine A2A antagonist for the treatment of Parkinson’s disease. Expert Rev Neurother 21:317–333

    CAS  PubMed  Google Scholar 

  193. Stocchi F, Rascol O, Hauser RA, Huyck S, Tzontcheva A, Capece R, Ho TW, Sklar P, Lines C, Michelson D, Hewitt DJ (2017) Randomized trial of preladenant, given as monotherapy, in patients with early Parkinson disease. Neurology 88:2198–2206

    CAS  PubMed  Google Scholar 

  194. Hauser RA, Olanow CW, Kieburtz KD, Pourcher E, Docu-Axelerad A, Lew M, Kozyolkin O, Neale A, Resburg C, Meya U, Kenney C, Bandak S (2014) Tozadenant (SYN115) in patients with Parkinson’s disease who have motor fluctuations on levodopa: a phase 2b, double-blind, randomised trial. Lancet Neurol 13:767–776

    CAS  PubMed  Google Scholar 

  195. Popoli P, Blum D, Domenici M, Burnouf S, Chern YA (2008) Critical evaluation of adenosine A2A receptors as potentially “Druggable” targets in Huntington’s disease. Curr Pharm Des 14:1500–1511

    CAS  PubMed  Google Scholar 

  196. Faivre E, Coelho JE, Zornbach K, Malik E, Baqi Y, Schneider M, Cellai L, Carvalho K, Sebda S, Figeac M, Eddarkaoui S, Caillierez R, Chern Y, Heneka M, Sergeant N, Müller CE, Halle A, Buée L, Lopes LV, Blum D (2018) Beneficial effect of a selective adenosine A2A receptor antagonist in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Front Mol Neurosci 11:235

    PubMed  PubMed Central  Google Scholar 

  197. Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer’s disease. J Alzheimers Dis 20:S167–S174

    CAS  PubMed  Google Scholar 

  198. Santos C, Lunet N, Azevedo A, de Mendonça A, Ritchie K, Barros H (2010) Caffeine intake is associated with a lower risk of cognitive decline: a cohort study from Portugal. J Alzheimers Dis 20(Suppl 1):S175–S185

    CAS  PubMed  Google Scholar 

  199. Chen JQA, Scheltens P, Groot C, Ossenkoppele R (2020) Associations between caffeine consumption, cognitive decline, and dementia: a systematic review. J Alzheimers Dis 78(4):1519–1546

    PubMed  PubMed Central  Google Scholar 

  200. van Dam RM, Hu FB, Willett WC (2020) Coffee, caffeine, and health. N Engl J Med 383:369–378

    PubMed  Google Scholar 

  201. Melani A, Pugliese AM, Pedata F (2014) Chapter thirteen-adenosine receptors in cerebral ischemia. Int Rev Neurobiol 119:309–348

    PubMed  Google Scholar 

  202. Pedata F, Pugliese AM, Coppi E, Popoli P, Morelli M, Schwarzschild MA, Melani A (2007) Adenosine in the central nervous system: effects on neurotransmission and neuroprotection. Immun Endoc Metab Agents Med Chem 7:304–321

    CAS  Google Scholar 

  203. Martire A, Lambertucci C, Pepponi R, Ferrante A, Benati N, Buccioni M, Dal Ben D, Marucci G, Klotz K-N, Volpini R, Popoli P (2019) Neuroprotective potential of adenosine A1 receptor partial agonists in experimental models of cerebral ischemia. J Neurochem 149:211–230

    CAS  PubMed  Google Scholar 

  204. Dickenson AH, Suzuki R, Reeve AJ (2000) Adenosine as a potential analgesic target in inflammatory and neuropathic pains. CNS Drugs 13:77–85

    CAS  Google Scholar 

  205. Knezevic NN, Cicmil N, Knezevic I, Candido KD (2015) Discontinued neuropathic pain therapy between 2009-2015. Expert Opin Investig Drugs 24:1631–1646

    CAS  PubMed  Google Scholar 

  206. Rivera-Oliver M, Díaz-Ríos M (2014) Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 101:1–9

    PubMed  PubMed Central  Google Scholar 

  207. Bilkei-Gorzo A, Abo-Salem OM, Hayallah AM, Michel K, Müller CE, Zimmer A (2008) Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol 377:65–76

    CAS  PubMed  Google Scholar 

  208. Pechlivanov DM, Georgiev VP (2005) Effects of single and long-term theophylline treatment on the threshold of mechanical nociception: contribution of adenosine A1 and α2-adrenoceptors. Methods Find Exp Clin Pharmacol 27:659–664

    Google Scholar 

  209. Gong Q-J, Li Y-Y, Xin W-J, Wei X-H, Cui Y, Wang J, Liu Y, Liu C-C, Li Y-Y (2010) Differential effects of adenosine A1 receptor on pain-related behavior in normal and nerve-injured rats. Brain Res 1361:23–30

    CAS  PubMed  Google Scholar 

  210. Katz NK, Ryals JM, Wright DE (2015) Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in mouse model of painful diabetic neuropathy. Neuroscience 285:312–323

    CAS  PubMed  Google Scholar 

  211. Ferre S, Diamond I, Goldberg SR, Yao L, Hourani SMO, Huang ZL, Urade Y, Kitchen I (2007) Adenosine A2A receptor in ventral striatum, hypothalamus and nociceptive circuitry. Implication for drug addiction, sleep and pain. Prog Neurobiol 83:332–347

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Cunha RA (2005) Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signal 1:111–134

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Stockwell J, Jakova E, Cayabyab FS (2017) Adenosine A1 and A2A receptors in the brain: current research and their role in neurodegeneration. Molecules 22(4):676

    PubMed  PubMed Central  Google Scholar 

  214. Betti M, Catarzi D, Varano F, Falsini M, Varani K, Vincenzi F, Pasquini S, Di Cesare ML, Ghelardini C, Lucarini E, Dal Ben D, Spinaci A, Bartolucci G, Menicatti M, Colotta V (2019) Modifications on the Amino-3,5-dicyanopyridine core to obtain multifaceted adenosine receptor ligands with antineuropathic activity. J Med Chem 62:6894–6912

    CAS  PubMed  Google Scholar 

  215. Ledent C, Vaugeois JM, Shiffmann SN, Pedrazzini T, El Yacoubini M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassert G, Parmentier M (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:647–678

    Google Scholar 

  216. Falsini M, Catarzi D, Varano F, Ceni C, Dal Ben D, Marucci G, Buccioni M, Volpini R, Di Cesare ML, Lucarini E, Ghelardini C, Bartolucci G, Menicatti M, Colotta V (2019) Antioxidant-conjugated 1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives: highly potent and selective human A2A adenosine receptor antagonists possessing protective efficacy in neuropathic. J Med Chem 62:8511–8531

    CAS  PubMed  Google Scholar 

  217. Imlach WL, Bhola RF, May LT, Christopoulos A, Christie MJ (2015) A positive allosteric modulator of the A1 AR selectively inhibits primary afferent synaptic transmission in a neuropathic pain model. Mol Pharmacol 88:460–468

    CAS  PubMed  Google Scholar 

  218. Varano F, Catarzi D, Vincenzi F, Betti M, Falsini M, Ravani A, Borea PA, Colotta V, Varani K (2016) Design, synthesis, and pharmacological characterization of 2-(2-furanyl)thiazolo[5,4-d]pyrimidine-5,7-diamine derivatives: new highly potent A2A adenosine receptor inverse agonists with antinociceptive activity. J Med Chem 59:10564–10576

    CAS  PubMed  Google Scholar 

  219. Salvemini D, Jacobson KA (2017) Highly selective A3 adenosine receptor agonists relieve chronic neuropathic pain. Expert Opin Ther Patents 27:967

    CAS  Google Scholar 

  220. Janes K, Symons-Liguori AM, Jacobson KA, Salvemini D (2016) Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol 173:1253–1267

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Terayama R, Tabata M, Maruhama K, Iida S (2018) A3 adenosine receptor agonist attenuates neuropathic pain by suppressing activation of microglia and convergence of nociceptive inputs in the spinal dorsal horn. Exp Brain Res 236:3203–3213

    CAS  PubMed  Google Scholar 

  222. Van Troostenburg AR, Clark EV, Carey WDH, Warrington SJ, Kerns WD, Cohn I, Silverman MH, Bar-Yehuda S, Fong K-LL, Fishman P (2004) Tolerability, pharmacokinetics and concentration-dependent hemodynamic effects of oral CF101, an A3 adenosine receptor agonist, in healthy young men. Int J Clin Pharmacol Ther 42:534–542

    PubMed  Google Scholar 

  223. Schaddelee MP, Collins SD, DeJongh J, de Boer AG, Ijzerman AP, Danhof M (2005) Pharmacokinetic/pharmacodynamic modelling of the anti-hyperalgesic and anti-nociceptive effect of adenosine A1 receptor partial agonists in neuropathic pain. Eur J Pharmacol 514:131–140

    CAS  PubMed  Google Scholar 

  224. Antonioli L, Fornai M, Blandizzi C, Pacher P, Haskó G (2019) Adenosine signaling and the immune system: when a lot could be too much. Immunol Lett 205:9–15

    CAS  PubMed  Google Scholar 

  225. Journey JD, Bentley TP (2020) Theophylline toxicity. In: StatPearls, StatPearls Publishing LLC, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK532962/

  226. Magni G, Ceruti S (2020) Adenosine signaling in autoimmune disorders. Pharmaceuticals 13:260

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    CAS  PubMed  Google Scholar 

  228. David M, Akerman L, Ziv M, Kadurina M, Gospodinov D, Pavlotsky F, Yankova R, Kouzeva V, Ramon M, Silverman MH, Fishman P (2012) Treatment of plaque-type psoriasis with oral CF101: data from an exploratory randomized phase 2 clinical trial. J Eur Acad Dermatol Venereol 26:361–367

    CAS  PubMed  Google Scholar 

  229. Mantell S, Jones R, Trevethick M (2010) Design and application of locally delivered agonists of the adenosine A2A receptor. Expert Rev Clin Pharmacol 3:55–72

    CAS  PubMed  Google Scholar 

  230. Palani G, Ananthasubramaniam K (2013) Regadenoson: review of its established role in myocardial perfusion imaging and emerging applications. Cardiol Rev 21:42–48

    PubMed  Google Scholar 

  231. Sharma AK, La Par DJ, Stone ML, Zhao Y, Mehta CK, Kron IL, Laubach VE (2016) NOX2 activation of natural killer T cells is blocked by the adenosine A2A receptor to inhibit lung ischemia-reperfusion injury. Am J Respir Crit Care Med 193:988–999

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412

    CAS  PubMed  Google Scholar 

  233. Ren T, Tian T, Feng X, Ye S, Wang H, Wu W, Qiu Y, Yu C, He Y, Zeng J, Cen J, Zhou Y (2015) An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway. Sci Rep 5:9047

    PubMed  PubMed Central  Google Scholar 

  234. Ohana G, Bar-Yehuda S, Arich A, Madi L, Dreznick Z, Rath-Wolfson L, Silberman D, Slosman G, Fishman P (2003) Inhibition of primary colon carcinoma growth and liver metastasis by the A3 adenosine receptor agonist CF101. Br J Cancer 89:1552–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Stemmer SM, Manojlovic NS, Vasile Marinca M, Petrov P, Cherciu N, Ganea D, Ciuleanu T-E, Puscas IA, Shaalan Beg M, Purcell WT, Croitoru A-E, Nedyalkova Ilieva R, Natošević S, Lavinir Nita A, Kalev DN, Harpaz Z, Farbstein M, Silverman MH, Fishman P, Llovet JM (2019) A phase II, randomized, double-blind, placebo-controlled trial evaluating efficacy and safety of namodenoson (CF102), an A3 adenosine receptor agonist (A3AR), as a second-line treatment in patients with child-Pugh B (CPB) advanced hepatocellular carcinoma (HCC). J Clin Oncol 37:2503–2503

    Google Scholar 

  236. Congreve M, Brown GA, Borodovsky A, Lamb ML (2018) Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discovery 13:997–1003

    CAS  Google Scholar 

  237. Buisseret L, Rottey S, De Bono JS, Migeotte A, Delafontaine B, Manickavasagar T, Martinoli C, Wald N, Rossetti M, Gangolli EA, Wiegert E, Ni MI, Lager JJ, Machiels J-PH (2021) Phase 1 trial of the adenosine A2A receptor antagonist inupadenant (EOS-850): update on tolerability, and antitumor activity potentially associated with the expression of the A2A receptor within the tumor. J Clin Oncol 39(15):2562–2562

    Google Scholar 

  238. Houthuys E, Brouwer M, Nyawouame F, Pirson R, Marillier R, Deregnaucourt T, Marchante J, Swiercz J, Moulin C, Bol V, Driessens G, Detheux M, Quéva C, Crosignani S, Gomes B (2017) A novel adenosine A2A receptor antagonist optimized for high potency in adenosine-rich tumor microenvironment boost antitumor immunity. Cancer Res 77(13):1683

    Google Scholar 

  239. Seitz L, Jin L, Leleti M, Ashok D, Jeffrey J, Rieger A, Tiessen RG, Arold G, Tan JBL, Powers JP, Walters MJ, Karakunnel J (2019) Safety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteers. Invest New Drugs 37:711–721

    CAS  PubMed  Google Scholar 

  240. Chiappori AA, Creelan B, Tanvetyanon T, Gray JE, Haura EB, Thapa R, Barlow L, Chen Z, Chen DT, Beg AA, Boyle TA, Castro J, Morgan L, Morris E, Aregay M, FeK H, Manenti L, Antonia S (2022) Phase I study of taminadenant (PBF509/NIR178), an A2A receptor antagonist, with or without spartalizumab (PDR001), in patients with advanced non-small cell lung cancer. Clin Cancer Res 28(11):2313–2320

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Saavedra Santa Gadea O, Greil R, de Jonge MJA, Tan D, Jerusalem G, Damian S, Grell P, Wainberg ZA, Wolf J, Joerger M, Carlino MS, Kasper S, Yap TA, Otero J, Yang X, Nesbitt V, Kim J, Ho Lee L, Choudhury S, Leal TA (2021) Phase (Ph) II study of taminadenant (NIR178) + spartalizumab (PDR001) in patients (pts) with microsatellite stable (MSS) colorectal cancer (CRC). Ann Oncol 32(5):S553

    Google Scholar 

  242. Willingham SB, Ho Po Y, Hotson A, Hill C, Piccione EC, Hsieh J, Liu L, Buggy JJ, McCaffery I, Miller RA (2018) A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models. Cancer Immunol Res 6(10):1136–1149

    CAS  PubMed  Google Scholar 

  243. Leone RD, Sun I-M, Oh M-H, Sun I-H, Wen J, Englert J, Powell JD (2018) Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother 67(8):1271–1284

    CAS  PubMed  Google Scholar 

  244. Fong HA, Powderly JD, Sznol M, Heist RS, Choueiri TK, George S, Hughes BGM, Hellmann MD, Shepard DR, Rini BI, Kummar S, Weise AM, Riese MJ, Markman B, Emens LA, Mahadevan D, Luke JJ, Laport G, Brody JD, Hernandez-Aya L, Bonomi P, Goldman JW, Berim L, Renouf DJ, Goodwin RA, Munneke B, Ho PY, Hsieh J, McCaffery I, Kwei L, Willingham SB, Miller RA (2020) Adenosine A2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov 10(1):40–53

    CAS  PubMed  Google Scholar 

  245. Patel JJ, Alzahrani T (2021) Myocardial perfusion scan. In: StatPearls, StatPearls Publishing LLC, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK539772/

  246. Singh S, McKintosh R (2022) Adenosine. In: StatPearls. StatPearls Publishing LLC, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK519049/

  247. Tian Y, Marshall M, French BA, Linden J, Yang Z (2015) The infarct-sparing effect of IB-MECA against myocardial ischemia/reperfusion injury in mice is mediated by sequential activation of adenosine A3 and A2A receptors. Basic Res Cardiol 110:16

    PubMed  Google Scholar 

  248. Galal A, El-Bakly WM, Al Haleem ENA, El-Demerdash E (2016) Selective A3 adenosine receptor agonist protects against doxorubicin-induced cardiotoxicity. Cancer Chemother Pharmacol 77:309–322

    CAS  PubMed  Google Scholar 

  249. Rosentreter U, Krämer T, Shimada M, Hübsch W, Diedrichs N, Krahn T, Henninger K, Stasch J-P, Wischnat R (2003) Substituted 2-thio-3,5-dicyano-4-phenyl-6-aminopyridines and the use of the same. WO 2003053441 A1

    Google Scholar 

  250. Voors AA, Bax JJ, Hernandez AF, Wirtz AB, Pap AF, Ferreira AC, Senni M, van der Laan M, Butler J (2019) Safety and efficacy of the partial adenosine A1 receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced ejection fraction: a phase IIb, randomized, double-blind, placebo-controlled trial. Eur J Heart Fail 21:1426–1433

    CAS  PubMed  Google Scholar 

  251. Shah S.J, Voors AA, McMurray JJV, Kitzman DW, Viethen T, Bomfim Wirtz A, Huang E, Pap AF, Solomon SD (2012) Effect of neladenoson bialanate on exercise capacity among patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 321:2101–2112

    Google Scholar 

  252. Lasley RD (2018) Adenosine receptor-mediated cardioprotection-current limitations and future directions. Front Pharmacol 9:310

    PubMed  PubMed Central  Google Scholar 

  253. Zhan E, McIntosh VJ, Lasley RD (2011) Adenosine A2A and A2B receptors are both required for adenosine A1 receptor-mediated cardioprotection. Am J Physiol Heart Circ Physiol 301:H1183–H1189

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Dhalla AK, Santikul M, Smith M, Wong M-Y, Shryock JC, Belardinelli L (2007) Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid. J Pharmacol Exp Ther 321(1):327–333

    CAS  PubMed  Google Scholar 

  255. Fuentes E, Fuentes M, Caballero J, Palomo I, Hinz S, El-Tayeb A, Müller CE (2018) Adenosine A2A receptor agonists with potent antiplatelet activity. Platelets 29:292–300

    CAS  PubMed  Google Scholar 

  256. Wolska N, Kassassir NH, Luzak B, Watala C, Rozalski M (2020) Adenosine receptor agonists increase the inhibition of platelet function by P2Y12 antagonists in a cAMP and calcium-dependent manner. Pharmaceuticals 13:177

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Johnston-Cox HA, Ravid K (2011) Adenosine and blood platelets. Purinergic Signal 7:357–365

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Voloshyna I, Littlefield MJ, Kaplan L, Rieger JM, Figler R, Reiss AB (2013) Adenosine A2A receptor agonists regulate cholesterol homeostasis in mouse bone marrow derived macrophages (BMDM). FASEB J 27

    Google Scholar 

  259. Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, De Leon J (2019) Adenosine and the cardiovascular system. Am J Cardiovasc Drugs 19:449–464

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Gregory KJ, Bridges TM, Gogliotti RG, Stauffer SR, Noetzel MJ, Jones CK, Craig WL, Conn PJ, Niswender CM (2019) In vitro to in vivo translation of allosteric modulator concentration-effect relationships: implications for drug discovery. ACS Pharmacol Transl Sci 2:442–452

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Lane JR, May LT, Parton RG, Sexton PM, Christopoulos A (2017) A kinetic view of GPCR allostery and biased agonism. Nat Chem Biol 13:929–937

    CAS  PubMed  Google Scholar 

  262. Deganutti G, Moro S (2017) Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Future Med Chem 9(5)

    Google Scholar 

  263. Zhang J, Yan W, Duan W, Wüthrich K, Cheng J (2020) Tumor immunotherapy using A2A adenosine receptor antagonists. Pharmaceuticals 13(9):237

    PubMed  PubMed Central  Google Scholar 

  264. Augustin RC, Leone RD, Naing A, Fong L, Bao R, Luke JJ (2022) Next steps for clinical translation of adenosine pathway inhibition in cancer immunotherapy. J Immunother Cancer 10(2):e004089

    PubMed  PubMed Central  Google Scholar 

  265. Anighoro A, Bajorath J, Rastelli G (2014) Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 57(19):7874–7887

    CAS  PubMed  Google Scholar 

  266. Ma H, Huang B, Zhang Y (2020) Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov Today 25(9):1682–1692

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W, Wei Q, Sun H (2019) Rational design of multitarget-directed ligands: strategies and emerging paradigms. J Med Chem 62:8881–8914

    CAS  PubMed  Google Scholar 

  268. Morphy R, Rankovic Z (2005) Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem 48(21):6523–6543

    CAS  PubMed  Google Scholar 

  269. Wang M, Hou S, Wei Y, Li D, Lin J (2021) Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking. PLoS Comput Biol 17(3):e1008821

    CAS  PubMed  PubMed Central  Google Scholar 

  270. Barlow N, Baker SP, Scammells PJ (2013) Effect of linker length and composition on heterobivalent ligand-mediated receptor cross-talk between the A1 adenosine and beta2 adrenergic receptors. ChemMedChem 8(12):2036–2046

    CAS  PubMed  Google Scholar 

  271. Pulido D, Casadó-Anguera V, Gómez-Autet M, Llopart N, Moreno E, Casajuana-Martin N, Ferré S, Pardo L, Casadó V, Royo M (2022) Heterobivalent ligand for the adenosine A2A-dopamine D2 receptor heteromer. J Med Chem 65(1):616–632

    CAS  PubMed  Google Scholar 

  272. Hagenow S, Affini A, Pioli EY, Hinz S, Zhao Y, Porras G, Namasivayam V, Müller CE, Lin J-S, Bezard E, Holger S (2021) Adenosine A2AR/A1R antagonists enabling additional H3R antagonism for the treatment of Parkinson’s disease. J Med Chem 64(12):8246–8262

    CAS  PubMed  Google Scholar 

  273. Brunschweiger A, Koch P, Schlenk M, Rafehi M, Radjainia H, Küppers P, Hinz S, Pineda F, Wiese M, Hockemeyer J, Heer J, Denonne F, Müller CE (2016) 8-Substituted 1,3-dimethyltetrahydropyrazino [2,1-f]purinediones: water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors. Bioorg Med Chem 24(21):5462–5480

    CAS  PubMed  Google Scholar 

  274. Ceni C, Catarzi D, Varano F, Dal Ben D, Marucci G, Buccioni M, Volpini R, Angeli A, Nocentini A, Gratteri P, Supuran CT, Colotta V (2020) Discovery of first-in-class multi-target adenosine A2A receptor antagonists-carbonic anhydrase IX and XII inhibitors. 8-Amino-6-aryl-2-phenyl-1,2,4-triazolo [4,3-a]pyrazin-3-one derivatives as new potential antitumor agents. Eur J Med Chem 201:112478

    CAS  PubMed  Google Scholar 

  275. Durante M, Squillace S, Lauro F, Giancotti LA, Coppi E, Cherchi F, Di Cesare ML, Ghelardini C, Kolar G, Wahlman C, Opejin A, Xiao C, Reitman ML, Tosh DK, Hawiger D, Jacobson KA, Salvemini D (2021) Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10. J Clin Invest 131:e139299

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Catarzi .

Editor information

Editors and Affiliations

Ethics declarations

The author declares that they have no conflict of interest.

Funding

Original research of our team is funded by the Italian Ministry for University and Research (MIUR, PRIN 2017MT3993_004 project).

Ethical Approval

This chapter does not contain any studies with human participants or animals performed by the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Catarzi, D., Varano, F., Calenda, S., Vigiani, E., Colotta, V. (2023). Once Upon a Time Adenosine and Its Receptors: Historical Survey and Perspectives as Potential Targets for Therapy in Human Diseases. In: Colotta, V., Supuran, C.T. (eds) Purinergic Receptors and their Modulators. Topics in Medicinal Chemistry, vol 41. Springer, Cham. https://doi.org/10.1007/7355_2023_158

Download citation

Publish with us

Policies and ethics