Skip to main content

Recent Developments in Agents for the Treatment of Age-Related Macular Degeneration and Stargardt Disease

  • Chapter
  • First Online:
Book cover Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 35))

Abstract

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in older individuals living in developed countries. There are two major clinical presentations of AMD: atrophic or “dry” and neovascular or “wet.” Geographic atrophy (GA) is the most severe manifestation of dry AMD which represents the form of the disease characterized by the highest prevalence. A smaller fraction of AMD patients (10–20%) develop choroidal neovascularization (CNV) which represents the key feature of neovascular AMD. Historically, laser photocoagulation, surgery, and photodynamic therapy were the first treatment options for patients with CNV. In recent years, the emergence of anti-VEGF therapeutics has transformed the treatment of patients with neovascular AMD. Current anti-VEGF biologics that represent a standard of care (ranibizumab, bevacizumab, and aflibercept) are very effective in improving or maintaining visual acuity in CNV patients over long periods of time. The work on the new generation of anti-VEGF agents with higher potency and long-lasting efficacy is ongoing with the goal of reducing the frequency of intravitreal injections required for achieving good visual acuity outcomes. Brolucizumab, abicipar pegol, and faricimab exemplify the efforts toward the development of novel therapeutic agents with lower frequency of intravitreal injections. While neovascular AMD can be effectively managed with current anti-VEGF therapeutics, there are no FDA-approved treatments for the atrophic form of AMD. Similarly, there is no therapy for inherited Stargardt disease, an orphan genetic form of macular dystrophy that shares phenotypic similarities with atrophic AMD. Due to the multigenic and multifactorial nature of AMD, it is believed that a combination of several factors may contribute to pathogenesis of atrophic AMD. This includes a complement system dysregulation in the retina and exposure of retinal cells to toxins produced in the visual retinoid cycle reactions (lipofuscin bisretinoids and retinaldehydes). Several therapeutic agents are currently being evaluated in clinical trials for geographic atrophy related to atrophic AMD or Stargardt disease. This includes pegcetacoplan (C3 inhibitor), avacincaptad pegol (C5 inhibitor), emixustat (RPE65 inhibitor), ALK-001 (deuterated form of vitamin A: C20-D3-retinyl acetate), STG-001 (RBP4 antagonist), and tinlarebant (RBP4 antagonist). These ongoing clinical trials may yield a therapy that will address a significant unmet medical need that exists for the currently untreatable forms of macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velez-Montoya R, Oliver SC, Olson JL, Fine SL, Mandava N, Quiroz-Mercado H (2013) Current knowledge and trends in age-related macular degeneration: today’s and future treatments. Retina 33(8):1487–1502

    CAS  PubMed  Google Scholar 

  2. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    PubMed  Google Scholar 

  3. Zhang K, Zhang L, Weinreb RN (2012) Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nat Rev Drug Discov 11(7):541–559

    CAS  PubMed  Google Scholar 

  4. Cheng KJ, Hsieh CM, Nepali K, Liou JP (2020) Ocular disease therapeutics: design and delivery of drugs for diseases of the eye. J Med Chem [Published online ahead of print, 2020 Jun 2]. https://doi.org/10.1021/acs.jmedchem.9b01033

  5. Bird AC (2010) Therapeutic targets in age-related macular disease. J Clin Invest 120(9):3033–3041

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75(1):26–39

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Senger DR, Davis GE (2011) Angiogenesis. Cold Spring Harb Perspect Biol 3(8):a005090

    PubMed  PubMed Central  Google Scholar 

  8. Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B et al (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785

    CAS  PubMed  Google Scholar 

  9. Macular Photocoagulation Study Group (1994) Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Arch Ophthalmol 112(4):500–509

    Google Scholar 

  10. Moisseiev J, Alhalel A, Masuri R, Treister G (1995) The impact of the macular photocoagulation study results on the treatment of exudative age-related macular degeneration. Arch Ophthalmol 113(2):185–189

    CAS  PubMed  Google Scholar 

  11. Gelfand YA, Linn S, Miller B (1997) The application of the macular photocoagulation study eligibility criteria for laser treatment in age-related macular degeneration. Ophthalmic Surg Lasers 28(10):823–827

    CAS  PubMed  Google Scholar 

  12. Bressler NM, Bressler SB, Congdon NG, Ferris 3rd FL, Friedman DS, Klein R et al (2003) Potential public health impact of age-related eye disease study results: AREDS report no. 11. Arch Ophthalmol 121(11):1621–1624

    PubMed  Google Scholar 

  13. Tezel TH, Del Priore LV, Flowers BE, Grosof DH, Benenson IL, Zamora RL et al (1996) Correlation between scanning laser ophthalmoscope microperimetry and anatomic abnormalities in patients with subfoveal neovascularization. Ophthalmology 103(11):1829–1836

    CAS  PubMed  Google Scholar 

  14. Bressler SB, Hawkins BS, Chair WC, Marsh MJ, Sternberg Jr P, Co-chair WC, Thomas MA, Submacular Surgery Trials Pilot Study Investigators (2000) Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: II. Quality of life outcomes submacular surgery trials pilot study report number 2. Am J Ophthalmol 130(4):408–418

    Google Scholar 

  15. American Academy of Ophthalmology (2000) Macular translocation. Ophthalmology 107(5):1015–1018

    Google Scholar 

  16. McLeod D (2000) Foveal translocation for exudative age related macular degeneration. Br J Ophthalmol 84(4):344–345

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Awan MA, Tarin SA (2006) Review of photodynamic therapy. Surgeon 4(4):231–236

    CAS  PubMed  Google Scholar 

  18. Miller JW, Walsh AW, Kramer M, Hasan T, Michaud N, Flotte TJ et al (1995) Photodynamic therapy of experimental choroidal neovascularization using lipoprotein-delivered benzoporphyrin. Arch Ophthalmol 113(6):810–818

    CAS  PubMed  Google Scholar 

  19. Supuran CT (2019) Agents for the prevention and treatment of age-related macular degeneration and macular edema: a literature and patent review. Expert Opin Ther Pat 29(10):761–767

    CAS  PubMed  Google Scholar 

  20. Schmidt-Erfurth U, Hasan T (2000) Mechanisms of action of photodynamic therapy with verteporfin for the treatment of age-related macular degeneration. Surv Ophthalmol 45(3):195–214

    CAS  PubMed  Google Scholar 

  21. Bressler NM, Bressler SB, Haynes LA, Hao Y, Kaiser PK, Miller JW et al (2005) Verteporfin therapy for subfoveal choroidal neovascularization in age-related macular degeneration: four-year results of an open-label extension of 2 randomized clinical trials: TAP report no. 7. Arch Ophthalmol 123(9):1283–1285

    PubMed  Google Scholar 

  22. Verteporfin In Photodynamic Therapy Study G (2001) Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization--verteporfin in photodynamic therapy report 2. Am J Ophthalmol 131(5):541–560

    Google Scholar 

  23. Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230(4732):1375–1378

    CAS  PubMed  Google Scholar 

  24. Augustin A (2006) Anecortave acetate in the treatment of age-related macular degeneration. Clin Interv Aging 1(3):237–246

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Slakter JS (2006) Anecortave acetate for treating or preventing choroidal neovascularization. Ophthalmol Clin N Am 19(3):373–380

    Google Scholar 

  26. Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D et al (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci 878:236–270

    CAS  PubMed  Google Scholar 

  27. El Bradey M, Cheng L, Bartsch DU, Appelt K, Rodanant N, Bergeron-Lynn G et al (2004) Preventive versus treatment effect of AG3340, a potent matrix metalloproteinase inhibitor in a rat model of choroidal neovascularization. J Ocul Pharmacol Ther 20(3):217–236

    PubMed  PubMed Central  Google Scholar 

  28. Eter N, Krohne TU, Holz FG (2006) New pharmacologic approaches to therapy for age-related macular degeneration. BioDrugs 20(3):167–179

    CAS  PubMed  Google Scholar 

  29. Moore KS, Wehrli S, Roder H, Rogers M, Forrest Jr JN, McCrimmon D et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci U S A 90(4):1354–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brunel JM, Salmi C, Loncle C, Vidal N, Letourneux Y (2005) Squalamine: a polyvalent drug of the future? Curr Cancer Drug Targets 5(4):267–272

    CAS  PubMed  Google Scholar 

  31. Emerson MV, Lauer AK (2008) Current and emerging therapies for the treatment of age-related macular degeneration. Clin Ophthalmol 2(2):377–388

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ciulla TA, Criswell MH, Danis RP, Williams JI, McLane MP, Holroyd KJ (2003) Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina 23(6):808–814

    PubMed  Google Scholar 

  33. Connolly B, Desai A, Garcia CA, Thomas E, Gast MJ (2006) Squalamine lactate for exudative age-related macular degeneration. Ophthalmol Clin N Am 19(3):381–391, vi

    Google Scholar 

  34. Al-Khersan H, Hussain RM, Ciulla TA, Dugel PU (2019) Innovative therapies for neovascular age-related macular degeneration. Expert Opin Pharmacother 20(15):1879–1891

    CAS  PubMed  Google Scholar 

  35. Mabry R, Gilbertson DG, Frank A, Vu T, Ardourel D, Ostrander C et al (2010) A dual-targeting PDGFRbeta/VEGF-A molecule assembled from stable antibody fragments demonstrates anti-angiogenic activity in vitro and in vivo. MAbs 2(1):20–34

    PubMed  PubMed Central  Google Scholar 

  36. Jaffe GJ, Ciulla TA, Ciardella AP, Devin F, Dugel PU, Eandi CM et al (2017) Dual antagonism of PDGF and VEGF in neovascular age-related macular degeneration: a phase IIb, multicenter, randomized controlled trial. Ophthalmology 124(2):224–234

    PubMed  Google Scholar 

  37. Dunn EN, Hariprasad SM, Sheth VS (2017) An overview of the fovista and rinucumab trials and the fate of anti-PDGF medications. Ophthalmic Surg Lasers Imaging Retina 48(2):100–104

    PubMed  Google Scholar 

  38. Campochiaro PA, Aiello LP, Rosenfeld PJ (2016) Anti-vascular endothelial growth factor agents in the treatment of retinal disease: from bench to bedside. Ophthalmology 123(10S):S78–S88

    PubMed  Google Scholar 

  39. Kvanta A, Algvere PV, Berglin L, Seregard S (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37(9):1929–1934

    CAS  PubMed  Google Scholar 

  40. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    CAS  PubMed  Google Scholar 

  41. Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE et al (2018) Molecular pharmacology of VEGF-A isoforms: binding and signalling at VEGFR2. Int J Mol Sci 19(4):1264

    PubMed Central  Google Scholar 

  42. Ng EW, Shima DT, Calias P, Cunningham Jr ET, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    CAS  PubMed  Google Scholar 

  43. Gragoudas ES, Adamis AP, Cunningham Jr ET, Feinsod M, Guyer DR, Group VISiONCT (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816

    CAS  PubMed  Google Scholar 

  44. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431

    CAS  PubMed  Google Scholar 

  45. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY et al (2006) Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 355(14):1432–1444

    CAS  PubMed  Google Scholar 

  46. Ferrara N, Damico L, Shams N, Lowman H, Kim R (2006) Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 26(8):859–870

    PubMed  Google Scholar 

  47. Muhsin M, Graham J, Kirkpatrick P (2004) Bevacizumab. Nat Rev Drug Discov 3(12):995–996

    CAS  PubMed  Google Scholar 

  48. Rosenfeld PJ, Windsor MA, Feuer WJ, Sun SJJ, Frick KD, Swanson EA et al (2018) Estimating Medicare and patient savings from the use of bevacizumab for the treatment of exudative age-related macular degeneration. Am J Ophthalmol 191:135–139

    PubMed  Google Scholar 

  49. Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Culliford LA et al (2013) Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet 382(9900):1258–1267

    CAS  PubMed  Google Scholar 

  50. Investigators IS, Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ et al (2012) Ranibizumab versus bevacizumab to treat neovascular age-related macular degeneration: one-year findings from the IVAN randomized trial. Ophthalmology 119(7):1399–1411

    Google Scholar 

  51. Comparison of Age-related Macular Degeneration Treatments Trials Research G, Martin DF, Maguire MG, Fine SL, Ying GS, Jaffe GJ et al (2012) Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology 119(7):1388–1398

    Google Scholar 

  52. Group CR, Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL et al (2011) Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med 364(20):1897–1908

    Google Scholar 

  53. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M et al (2002) VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 99(17):11393–11398

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stewart MW, Grippon S, Kirkpatrick P (2012) Aflibercept. Nat Rev Drug Discov 11(4):269–270

    CAS  PubMed  Google Scholar 

  55. Yannuzzi NA, Freund KB (2019) Brolucizumab: evidence to date in the treatment of neovascular age-related macular degeneration. Clin Ophthalmol 13:1323–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Holz FG, Dugel PU, Weissgerber G, Hamilton R, Silva R, Bandello F et al (2016) Single-chain antibody fragment VEGF inhibitor RTH258 for neovascular age-related macular degeneration: a randomized controlled study. Ophthalmology 123(5):1080–1089

    PubMed  Google Scholar 

  57. Dugel PU, Koh A, Ogura Y, Jaffe GJ, Schmidt-Erfurth U, Brown DM et al (2020) HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology 127(1):72–84

    PubMed  Google Scholar 

  58. Novartis provides update on use and safety of Beovu® in patients with wet AMD. https://www.novartis.com/news/novartis-provides-update-use-and-safety-beovu-patients-wet-amd

  59. Pluckthun A (2015) Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 55:489–511

    CAS  PubMed  Google Scholar 

  60. Rodrigues GA, Mason M, Christie LA, Hansen C, Hernandez LM, Burke J et al (2018) Functional characterization of abicipar-pegol, an anti-VEGF DARPin therapeutic that potently inhibits angiogenesis and vascular permeability. Invest Ophthalmol Vis Sci 59(15):5836–5846

    CAS  PubMed  Google Scholar 

  61. Krohne TU, Liu Z, Holz FG, Meyer CH (2012) Intraocular pharmacokinetics of ranibizumab following a single intravitreal injection in humans. Am J Ophthalmol 154(4):682–686 e2

    CAS  PubMed  Google Scholar 

  62. Callanan D, Kunimoto D, Maturi RK, Patel SS, Staurenghi G, Wolf S et al (2018) Double-masked, randomized, phase 2 evaluation of abicipar pegol (an anti-VEGF DARPin therapeutic) in neovascular age-related macular degeneration. J Ocul Pharmacol Ther 34(10):700–709

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Khanna S, Komati R, Eichenbaum DA, Hariprasad I, Ciulla TA, Hariprasad SM (2019) Current and upcoming anti-VEGF therapies and dosing strategies for the treatment of neovascular AMD: a comparative review. BMJ Open Ophthalmol 4(1):e000398

    PubMed  PubMed Central  Google Scholar 

  64. Moisseiev E, Loewenstein A (2020) Abicipar pegol-a novel anti-VEGF therapy with a long duration of action. Eye (Lond) 34(4):605–606

    Google Scholar 

  65. Sharma A, Kumar N, Kuppermann BD, Bandello F, Loewenstein A (2020) Faricimab: expanding horizon beyond VEGF. Eye (Lond) 34(5):802–804

    Google Scholar 

  66. Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M (2014) Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology 121(5):1079–1091

    PubMed  Google Scholar 

  67. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I – molecular mechanisms of activation and regulation. Front Immunol 6:262

    PubMed  PubMed Central  Google Scholar 

  68. Boyer DS, Schmidt-Erfurth U, van Lookeren Campagne M, Henry EC, Brittain C (2017) The pathophysiology of geographic atrophy secondary to age-related macular degeneration and the complement pathway as a therapeutic target. Retina 37(5):819–835

    PubMed  PubMed Central  Google Scholar 

  69. Gehrs KM, Jackson JR, Brown EN, Allikmets R, Hageman GS (2010) Complement, age-related macular degeneration and a vision of the future. Arch Ophthalmol 128(3):349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zipfel PF, Lauer N, Skerka C (2010) The role of complement in AMD. Adv Exp Med Biol 703:9–24

    CAS  PubMed  Google Scholar 

  71. Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y (2015) Pharmacogenetics of complement factor H Y402H polymorphism and treatment of neovascular AMD with anti-VEGF agents: a meta-analysis. Sci Rep 5:14517

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ricklin D, Reis ES, Lambris JD (2016) Complement in disease: a defence system turning offensive. Nat Rev Nephrol 12(7):383–401

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kassa E, Ciulla TA, Hussain RM, Dugel PU (2019) Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin Biol Ther 19(4):335–342

    CAS  PubMed  Google Scholar 

  74. Huang Y (2018) Evolution of compstatin family as therapeutic complement inhibitors. Expert Opin Drug Discov 13(5):435–444

    CAS  PubMed  Google Scholar 

  75. Hughes S, Gumas J, Lee R, Romano M, Berger N, Gautam AK et al (2020) Prolonged intraocular residence and retinal tissue distribution of a fourth-generation compstatin-based C3 inhibitor in non-human primates. Clin Immunol 214:108391

    CAS  PubMed  Google Scholar 

  76. Park DH, Connor KM, Lambris JD (2019) The challenges and promise of complement therapeutics for ocular diseases. Front Immunol 10:1007

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, Heier JS et al (2020) Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology 127(2):186–195

    PubMed  Google Scholar 

  78. Wong WT (2020) C3 function and inhibition in geographic atrophy: interesting insights from a phase 2 study. Ophthalmology 127(2):196–197

    PubMed  Google Scholar 

  79. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344(14):1058–1066

    CAS  PubMed  Google Scholar 

  80. Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134(3):411–431

    CAS  PubMed  Google Scholar 

  81. Ricklin D, Barratt-Due A, Mollnes TE (2017) Complement in clinical medicine: clinical trials, case reports and therapy monitoring. Mol Immunol 89:10–21

    CAS  PubMed  Google Scholar 

  82. Yehoshua Z, de Amorim Garcia Filho CA, Nunes RP, Gregori G, Penha FM, Moshfeghi AA et al (2014) Systemic complement inhibition with eculizumab for geographic atrophy in age-related macular degeneration: the COMPLETE study. Ophthalmology 121(3):693–701

    PubMed  Google Scholar 

  83. Volz C, Pauly D (2015) Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur J Pharm Biopharm 95(Pt B):158–172

    CAS  PubMed  Google Scholar 

  84. Ammar MJ, Hsu J, Chiang A, Ho AC, Regillo CD (2020) Age-related macular degeneration therapy: a review. Curr Opin Ophthalmol 31(3):215–221

    PubMed  Google Scholar 

  85. Jendza K, Kato M, Salcius M, Srinivas H, De Erkenez A, Nguyen A et al (2019) A small-molecule inhibitor of C5 complement protein. Nat Chem Biol 15(7):666–668

    CAS  PubMed  Google Scholar 

  86. Loyet KM, Deforge LE, Katschke Jr KJ, Diehl L, Graham RR, Pao L et al (2012) Activation of the alternative complement pathway in vitreous is controlled by genetics in age-related macular degeneration. Invest Ophthalmol Vis Sci 53(10):6628–6637

    CAS  PubMed  Google Scholar 

  87. Fritsche LG, Fariss RN, Stambolian D, Abecasis GR, Curcio CA, Swaroop A (2014) Age-related macular degeneration: genetics and biology coming together. Annu Rev Genomics Hum Genet 15:151–171

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maibaum J, Liao SM, Vulpetti A, Ostermann N, Randl S, Rudisser S et al (2016) Small-molecule factor D inhibitors targeting the alternative complement pathway. Nat Chem Biol 12(12):1105–1110

    CAS  PubMed  Google Scholar 

  89. Volanakis JE, Narayana SV (1996) Complement factor D, a novel serine protease. Protein Sci 5(4):553–564

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stanton CM, Yates JR, den Hollander AI, Seddon JM, Swaroop A, Stambolian D et al (2011) Complement factor D in age-related macular degeneration. Invest Ophthalmol Vis Sci 52(12):8828–8834

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Katschke Jr KJ, Wu P, Ganesan R, Kelley RF, Mathieu MA, Hass PE et al (2012) Inhibiting alternative pathway complement activation by targeting the factor D exosite. J Biol Chem 287(16):12886–12892

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yaspan BL, Williams DF, Holz FG, Regillo CD, Li Z, Dressen A et al (2017) Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci Transl Med 9(395):eaaf1443

    PubMed  Google Scholar 

  93. Holz FG, Sadda SR, Busbee B, Chew EY, Mitchell P, Tufail A et al (2018) Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol 136(6):666–677

    PubMed  PubMed Central  Google Scholar 

  94. Laskowski J, Thurman JM (2018) Chapter 14 – factor B. In: Barnum S, Schein T (eds) The complement facts book, 2nd edn. Academic Press, Oxford, pp 135–146

    Google Scholar 

  95. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yuan X, Gu X, Crabb JS, Yue X, Shadrach K, Hollyfield JG et al (2010) Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics 9(6):1031–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ricklin D, Mastellos DC, Reis ES, Lambris JD (2018) The renaissance of complement therapeutics. Nat Rev Nephrol 14(1):26–47

    CAS  PubMed  Google Scholar 

  98. Kennedy CJ, Rakoczy PE, Constable IJ (1995) Lipofuscin of the retinal pigment epithelium: a review. Eye (Lond) 9(Pt 6):763–771

    Google Scholar 

  99. Sparrow JR, Gregory-Roberts E, Yamamoto K, Blonska A, Ghosh SK, Ueda K et al (2012) The bisretinoids of retinal pigment epithelium. Prog Retin Eye Res 31(2):121–135

    CAS  PubMed  Google Scholar 

  100. Birnbach CD, Jarvelainen M, Possin DE, Milam AH (1994) Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 101(7):1211–1219

    CAS  PubMed  Google Scholar 

  101. De Laey JJ, Verougstraete C (1995) Hyperlipofuscinosis and subretinal fibrosis in Stargardt’s disease. Retina 15(5):399–406

    PubMed  Google Scholar 

  102. Delori FC (1995) RPE lipofuscin in ageing and age-related macular degeneration. In: Coscas FCP G (ed) Retinal pigment epithelium and macular disease (Documenta ophthalmologica), vol 62. Kluwer, Dordrecht, pp 37–45

    Google Scholar 

  103. Eagle Jr RC, Lucier AC, Bernardino Jr VB, Yanoff M (1980) Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study. Ophthalmology 87(12):1189–1200

    PubMed  Google Scholar 

  104. Radu RA, Han Y, Bui TV, Nusinowitz S, Bok D, Lichter J et al (2005) Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 46(12):4393–4401

    PubMed  Google Scholar 

  105. Radu RA, Mata NL, Nusinowitz S, Liu X, Sieving PA, Travis GH (2003) Treatment with isotretinoin inhibits lipofuscin accumulation in a mouse model of recessive Stargardt’s macular degeneration. Proc Natl Acad Sci U S A 100(8):4742–4747

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Maeda A, Maeda T, Golczak M, Imanishi Y, Leahy P, Kubota R et al (2006) Effects of potent inhibitors of the retinoid cycle on visual function and photoreceptor protection from light damage in mice. Mol Pharmacol 70(4):1220–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Palczewski K (2010) Retinoids for treatment of retinal diseases. Trends Pharmacol Sci 31(6):284–295

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Petrukhin K (2013) Pharmacological inhibition of lipofuscin accumulation in the retina as a therapeutic strategy for dry AMD treatment. Drug Discov Today Ther Strateg 10(1):e11–e20

    PubMed  PubMed Central  Google Scholar 

  109. Boyer NP, Higbee D, Currin MB, Blakeley LR, Chen C, Ablonczy Z et al (2012) Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal. J Biol Chem 287(26):22276–22286

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tang PH, Kono M, Koutalos Y, Ablonczy Z, Crouch RK (2012) New insights into retinoid metabolism and cycling within the retina. Prog Retin Eye Res 32:48–63

    PubMed  PubMed Central  Google Scholar 

  111. Sparrow JR, Fishkin N, Zhou J, Cai B, Jang YP, Krane S et al (2003) A2E, a byproduct of the visual cycle. Vis Res 43(28):2983–2990

    CAS  PubMed  Google Scholar 

  112. Chen Y, Okano K, Maeda T, Chauhan V, Golczak M, Maeda A et al (2012) Mechanism of all-trans-retinal toxicity with implications for Stargardt disease and age-related macular degeneration. J Biol Chem 287(7):5059–5069

    CAS  PubMed  Google Scholar 

  113. Maeda A, Golczak M, Chen Y, Okano K, Kohno H, Shiose S et al (2012) Primary amines protect against retinal degeneration in mouse models of retinopathies. Nat Chem Biol 8(2):170–178

    CAS  Google Scholar 

  114. Maiti P, Kong J, Kim SR, Sparrow JR, Allikmets R, Rando RR (2006) Small molecule RPE65 antagonists limit the visual cycle and prevent lipofuscin formation. Biochemistry 45(3):852–860

    CAS  PubMed  Google Scholar 

  115. Maeda A, Maeda T, Golczak M, Palczewski K (2008) Retinopathy in mice induced by disrupted all-trans-retinal clearance. J Biol Chem 283(39):26684–26693

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Deigner PS, Law WC, Canada FJ, Rando RR (1989) Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science 244(4907):968–971

    CAS  PubMed  Google Scholar 

  117. Jin M, Li S, Moghrabi WN, Sun H, Travis GH (2005) Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122(3):449–459

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Moiseyev G, Chen Y, Takahashi Y, Wu BX, Ma J-X (2005) RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc Natl Acad Sci U S A 102(35):12413–12418

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Redmond TM, Poliakov E, Yu S, Tsai J-Y, Lu Z, Gentleman S (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 102(38):13658–13663

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Gollapalli DR, Rando RR (2004) The specific binding of retinoic acid to RPE65 and approaches to the treatment of macular degeneration. Proc Natl Acad Sci U S A 101(27):10030–10035

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Katz ML, Redmond TM (2001) Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 42(12):3023–3030

    CAS  PubMed  Google Scholar 

  122. Wenzel A, Reme CE, Williams TP, Hafezi F, Grimm C (2001) The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J Neurosci Off J Soc Neurosci 21(1):53–58

    CAS  Google Scholar 

  123. Kim SR, Fishkin N, Kong J, Nakanishi K, Allikmets R, Sparrow JR (2004) Rpe65 Leu450Met variant is associated with reduced levels of the retinal pigment epithelium lipofuscin fluorophores A2E and iso-A2E. Proc Natl Acad Sci U S A 101(32):11668–11672

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Lorenz B, Wabbels B, Wegscheider E, Hamel CP, Drexler W, Preising MN (2004) Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65. Ophthalmology 111(8):1585–1594

    PubMed  Google Scholar 

  125. Bavik C, Henry SH, Zhang Y, Mitts K, McGinn T, Budzynski E et al (2015) Visual cycle modulation as an approach toward preservation of retinal integrity. PLoS One 10(5):e0124940

    PubMed  PubMed Central  Google Scholar 

  126. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27(4):391–419

    Google Scholar 

  127. Golczak M, Kuksa V, Maeda T, Moise AR, Palczewski K (2005) Positively charged retinoids are potent and selective inhibitors of the trans-cis isomerization in the retinoid (visual) cycle. Proc Natl Acad Sci U S A 102(23):8162–8167

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Golczak M, Maeda A, Bereta G, Maeda T, Kiser PD, Hunzelmann S et al (2008) Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. J Biol Chem 283(15):9543–9554

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shin Y, Moiseyev G, Petrukhin K, Cioffi CL, Muthuraman P, Takahashi Y et al (2018) A novel RPE65 inhibitor CU239 suppresses visual cycle and prevents retinal degeneration. Biochim Biophys Acta Mol basis Dis 1864(7):2420–2429

    CAS  PubMed  Google Scholar 

  130. Zhang J, Kiser PD, Badiee M, Palczewska G, Dong Z, Golczak M et al (2015) Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J Clin Invest 125(7):2781–2794

    PubMed  PubMed Central  Google Scholar 

  131. Kiser PD, Zhang J, Badiee M, Kinoshita J, Peachey NS, Tochtrop GP et al (2017) Rational tuning of visual cycle modulator pharmacodynamics. J Pharmacol Exp Ther 362(1):131–145

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kiser PD, Zhang J, Badiee M, Li Q, Shi W, Sui X et al (2015) Catalytic mechanism of a retinoid isomerase essential for vertebrate vision. Nat Chem Biol 11(6):409–415

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kubota R, Boman NL, David R, Mallikaarjun S, Patil S, Birch D (2012) Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina 32(1):183–188

    PubMed  Google Scholar 

  134. Kubota R, Al-Fayoumi S, Mallikaarjun S, Patil S, Bavik C, Chandler JW (2014) Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina 34(3):603–609

    CAS  PubMed  Google Scholar 

  135. Reid MJ, Eyre R, Podoll T (2019) Oxidative deamination of emixustat by human vascular adhesion protein-1/semicarbazide-sensitive amine oxidase. Drug Metab Dispos 47(5):504–515

    CAS  PubMed  Google Scholar 

  136. Dugel PU, Novack RL, Csaky KG, Richmond PP, Birch DG, Kubota R (2015) Phase ii, randomized, placebo-controlled, 90-day study of emixustat hydrochloride in geographic atrophy associated with dry age-related macular degeneration. Retina 35(6):1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Rosenfeld PJ, Dugel PU, Holz FG, Heier JS, Pearlman JA, Novack RL et al (2018) Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial. Ophthalmology 125(10):1556–1567

    PubMed  Google Scholar 

  138. Petrukhin K (2007) New therapeutic targets in atrophic age-related macular degeneration. Expert Opin Ther Targets 11(5):625–639

    CAS  PubMed  Google Scholar 

  139. Monaco HL (2002) Three-dimensional structure of the transthyretin-retinol-binding protein complex. Clin Chem Lab Med 40(12):1229–1236

    CAS  PubMed  Google Scholar 

  140. Monaco HL, Rizzi M, Coda A (1995) Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268(5213):1039–1041

    CAS  PubMed  Google Scholar 

  141. Monaco HL (2000) The transthyretin-retinol-binding protein complex. Biochim Biophys Acta 1482(1–2):65–72

    CAS  PubMed  Google Scholar 

  142. Yamamoto Y, Yoshizawa T, Kamio S, Aoki O, Kawamata Y, Masushige S et al (1997) Interactions of transthyretin (TTR) and retinol-binding protein (RBP) in the uptake of retinol by primary rat hepatocytes. Exp Cell Res 234(2):373–378

    CAS  PubMed  Google Scholar 

  143. Goodman DS (1980) Plasma retinol-binding protein. Ann N Y Acad Sci 348:378–390

    CAS  PubMed  Google Scholar 

  144. Christensen EI, Moskaug JO, Vorum H, Jacobsen C, Gundersen TE, Nykjaer A et al (1999) Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol 10(4):685–695

    CAS  PubMed  Google Scholar 

  145. Malone W, Perloff M, Crowell J, Sigman C, Higley H (2003) Fenretinide: a prototype cancer prevention drug. Expert Opin Investig Drugs 12(11):1829–1842

    CAS  PubMed  Google Scholar 

  146. Berni R, Formelli F (1992) In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences. FEBS Lett 308(1):43–45

    CAS  PubMed  Google Scholar 

  147. Schaffer EM, Ritter SJ, Smith JE (1993) N-(4-hydroxyphenyl)retinamide (fenretinide) induces retinol-binding protein secretion from liver and accumulation in the kidneys in rats. J Nutr 123(9):1497–1503

    CAS  PubMed  Google Scholar 

  148. Mata NL, Lichter JB, Vogel R, Han Y, Bui TV, Singerman LJ (2013) Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina 33(3):498–507

    CAS  PubMed  Google Scholar 

  149. Swerdlow RD, Zwiebel JA, Gravell AE, Cheson BD (2001) Clinical trials referral resource. Current clinical trials of fenretinide. Oncology 15(12):1595–1596, 1598, 1600

    CAS  PubMed  Google Scholar 

  150. Samuel W, Kutty RK, Nagineni S, Vijayasarathy C, Chandraratna RAS, Wiggert B (2006) N-(4-hydroxyphenyl)retinamide induces apoptosis in human retinal pigment epithelial cells: retinoic acid receptors regulate apoptosis, reactive oxygen species generation, and the expression of heme oxygenase-1 and Gadd153. J Cell Physiol 209(3):854–865

    CAS  PubMed  Google Scholar 

  151. Cohen SM, Storer RD, Criswell KA, Doerrer NG, Dellarco VL, Pegg DG et al (2009) Hemangiosarcoma in rodents: mode-of-action evaluation and human relevance. Toxicol Sci 111(1):4–18

    CAS  PubMed  Google Scholar 

  152. Kenel MF, Krayer JH, Merz EA, Pritchard JF (1988) Teratogenicity of N-(4-hydroxyphenyl)-all-trans-retinamide in rats and rabbits. Teratog Carcinog Mutagen 8(1):1–11

    CAS  PubMed  Google Scholar 

  153. Motani A, Wang Z, Conn M, Siegler K, Zhang Y, Liu Q et al (2009) Identification and characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo. J Biol Chem 284(12):7673–7680

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Cioffi CL, Dobri N, Freeman EE, Conlon MP, Chen P, Stafford DG et al (2014) Design, synthesis, and evaluation of nonretinoid retinol binding protein 4 antagonists for the potential treatment of atrophic age-related macular degeneration and Stargardt disease. J Med Chem 57(18):7731–7757

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Cioffi CL, Racz B, Freeman EE, Conlon MP, Chen P, Stafford DG et al (2015) Bicyclic [3.3.0]-octahydrocyclopenta[c]pyrrolo antagonists of retinol binding protein 4: potential treatment of atrophic age-related macular degeneration and Stargardt disease. J Med Chem 58(15):5863–5888

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cioffi CL, Racz B, Varadi A, Freeman EE, Conlon MP, Chen P et al (2019) Design, synthesis, and preclinical efficacy of novel nonretinoid antagonists of retinol-binding protein 4 in the mouse model of hepatic steatosis. J Med Chem 62(11):5470–5500

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Dobri N, Qin Q, Kong J, Yamamoto K, Liu Z, Moiseyev G et al (2013) A1120, a nonretinoid RBP4 antagonist, inhibits formation of cytotoxic bisretinoids in the animal model of enhanced retinal lipofuscinogenesis. Invest Ophthalmol Vis Sci 54(1):85–95

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Racz B, Varadi A, Kong J, Allikmets R, Pearson PG, Johnson G et al (2018) A non-retinoid antagonist of retinol-binding protein 4 rescues phenotype in a model of Stargardt disease without inhibiting the visual cycle. J Biol Chem 293(29):11574–11588

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Racz B, Varadi A, Pearson PG, Petrukhin K (2020) Comparative pharmacokinetics and pharmacodynamics of the advanced Retinol-Binding Protein 4 antagonist in dog and cynomolgus monkey. PLoS One 15(1):e0228291

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Radu RA, Hu J, Jiang Z, Bok D (2014) Bisretinoid-mediated complement activation on retinal pigment epithelial cells is dependent on complement factor H haplotype. J Biol Chem 289(13):9113–9120

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Radu RA, Hu J, Yuan Q, Welch DL, Makshanoff J, Lloyd M et al (2011) Complement system dysregulation and inflammation in the retinal pigment epithelium of a mouse model for Stargardt macular degeneration. J Biol Chem 286(21):18593–18601

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci U S A 103(44):16182–16187

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zhou J, Kim SR, Westlund BS, Sparrow JR (2009) Complement activation by bisretinoid constituents of RPE lipofuscin. Invest Ophthalmol Vis Sci 50(3):1392–1399

    PubMed  Google Scholar 

  164. Brandstetter C, Holz FG, Krohne TU (2015) Complement component C5a primes retinal pigment epithelial cells for inflammasome activation by lipofuscin-mediated photooxidative damage. J Biol Chem 290(52):31189–31198

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Nickell S, Park PS, Baumeister W, Palczewski K (2007) Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. J Cell Biol 177(5):917–925

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81(6):1305–1330

    CAS  PubMed  Google Scholar 

  167. Maeda A, Maeda T, Golczak M, Chou S, Desai A, Hoppel CL et al (2009) Involvement of all-trans-retinal in acute light-induced retinopathy of mice. J Biol Chem 284(22):15173–15183

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Krasnovsky Jr AA, Kagan VE (1979) Photosensitization and quenching of singlet oxygen by pigments and lipids of photoreceptor cells of the retina. FEBS Lett 108(1):152–154

    PubMed  Google Scholar 

  169. Rizzo WB (2016) Genetics and prospective therapeutic targets for Sjogren-Larsson Syndrome. Expert Opin Orphan Drugs 4(4):395–406

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Tung R (2010) The development of deuterium-containing drugs. Innov Pharm Technol 32:24–28

    CAS  Google Scholar 

  171. Charbel Issa P, Barnard AR, Herrmann P, Washington I, MacLaren RE (2015) Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A 112(27):8415–8420

    PubMed  PubMed Central  Google Scholar 

  172. Kaufman Y, Ma L, Washington I (2011) Deuterium enrichment of vitamin A at the C20 position slows the formation of detrimental vitamin A dimers in wild-type rodents. J Biol Chem 286(10):7958–7965

    CAS  PubMed  Google Scholar 

  173. Ma L, Kaufman Y, Zhang J, Washington I (2011) C20-D3-vitamin A slows lipofuscin accumulation and electrophysiological retinal degeneration in a mouse model of Stargardt disease. J Biol Chem 286(10):7966–7974

    CAS  PubMed  Google Scholar 

  174. Mihai DM, Jiang H, Blaner WS, Romanov A, Washington I (2013) The retina rapidly incorporates ingested C20-D(3)-vitamin A in a swine model. Mol Vis 19:1677–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Ma W, Coon S, Zhao L, Fariss RN, Wong WT (2013) A2E accumulation influences retinal microglial activation and complement regulation. Neurobiol Aging 34(3):943–960

    CAS  PubMed  Google Scholar 

  176. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41(7):1981–1989

    CAS  PubMed  Google Scholar 

  177. Dontsov AE, Sakina NL, Golubkov AM, Ostrovsky MA (2009) Light-induced release of A2E photooxidation toxic products from lipofuscin granules of human retinal pigment epithelium. Dokl Biochem Biophys 425:98–101

    CAS  PubMed  Google Scholar 

  178. De S, Sakmar TP (2002) Interaction of A2E with model membranes. Implications to the pathogenesis of age-related macular degeneration. J Gen Physiol 120(2):147–157

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40(12):2988–2995

    CAS  PubMed  Google Scholar 

  180. Schutt F, Bergmann M, Holz FG, Kopitz J (2002) Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol 240(12):983–988

    PubMed  Google Scholar 

  181. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22):21061–21066

    CAS  PubMed  Google Scholar 

  182. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE et al (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40(3):737–743

    CAS  PubMed  Google Scholar 

  183. Bakall B, Radu RA, Stanton JB, Burke JM, McKay BS, Wadelius C et al (2007) Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2). Exp Eye Res 85(1):34–43

    CAS  PubMed  Google Scholar 

  184. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Natl Acad Sci U S A 97(13):7154–7159

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Vasireddy V, Jablonski MM, Khan NW, Wang XF, Sahu P, Sparrow JR et al (2009) Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofuscin. Exp Eye Res 89(6):905–912

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Ablonczy Z, Higbee D, Grey AC, Koutalos Y, Schey KL, Crouch RK (2013) Similar molecules spatially correlate with lipofuscin and N-retinylidene-N-retinylethanolamine in the mouse but not in the human retinal pigment epithelium. Arch Biochem Biophys 539(2):196–202

    CAS  PubMed  Google Scholar 

  187. Ablonczy Z, Higbee D, Anderson DM, Dahrouj M, Grey AC, Gutierrez D et al (2013) Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 54(8):5535–5542

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Crouch RK, Koutalos Y, Kono M, Schey K, Ablonczy Z (2015) A2E and Lipofuscin. Prog Mol Biol Transl Sci 134:449–463

    CAS  PubMed  Google Scholar 

  189. Bhosale P, Serban B, Bernstein PS (2009) Retinal carotenoids can attenuate formation of A2E in the retinal pigment epithelium. Arch Biochem Biophys 483(2):175–181

    CAS  PubMed  Google Scholar 

  190. Smith RT, Bernstein PS, Curcio CA (2013) Rethinking A2E. Invest Ophthalmol Vis Sci 54(8):5543

    PubMed  PubMed Central  Google Scholar 

  191. Sparrow JR, Yamamoto K (2012) The bisretinoids of RPE lipofuscin: a complex mixture. Adv Exp Med Biol 723:761–767

    CAS  PubMed  Google Scholar 

  192. Feldman TB, Yakovleva MA, Arbukhanova PM, Borzenok SA, Kononikhin AS, Popov IA et al (2015) Changes in spectral properties and composition of lipofuscin fluorophores from human-retinal-pigment epithelium with age and pathology. Anal Bioanal Chem 407(4):1075–1088

    CAS  PubMed  Google Scholar 

  193. Sparrow JR, Dowling JE, Bok D (2013) Understanding RPE lipofuscin. Invest Ophthalmol Vis Sci 54(13):8325–8326

    PubMed  PubMed Central  Google Scholar 

  194. Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci U S A 107(16):7275–7280

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Gray DA, Woulfe J (2005) Lipofuscin and aging: a matter of toxic waste. Sci Aging Knowl Environ 2005(5):re1

    Google Scholar 

  196. Sparrow JR, Kim SR, Cuervo AM, Bandhyopadhyayand U (2008) A2E, a pigment of RPE lipofuscin, is generated from the precursor, A2PE by a lysosomal enzyme activity. Adv Exp Med Biol 613:393–398

    CAS  PubMed  Google Scholar 

  197. Simon WA, Herrmann M, Klein T, Shin JM, Huber R, Senn-Bilfinger J et al (2007) Soraprazan: setting new standards in inhibition of gastric acid secretion. J Pharmacol Exp Ther 321(3):866–874

    CAS  PubMed  Google Scholar 

  198. Andersson K, Carlsson E (2005) Potassium-competitive acid blockade: a new therapeutic strategy in acid-related diseases. Pharmacol Ther 108(3):294–307

    CAS  PubMed  Google Scholar 

  199. Maradey-Romero C, Fass R (2016) Novel upcoming therapies. In: Vaezi MF (ed) Diagnosis and treatment of gastroesophageal reflux disease. Springer, Cham, pp 93–115

    Google Scholar 

  200. Inatomi N, Matsukawa J, Sakurai Y, Otake K (2016) Potassium-competitive acid blockers: advanced therapeutic option for acid-related diseases. Pharmacol Ther 168:12–22

    CAS  PubMed  Google Scholar 

  201. Julien S, Schraermeyer U (2012) Lipofuscin can be eliminated from the retinal pigment epithelium of monkeys. Neurobiol Aging 33(10):2390–2397

    CAS  PubMed  Google Scholar 

  202. Luo HJ, Deng WQ, Zou K (2014) Protonated form: the potent form of potassium-competitive acid blockers. PLoS One 9(5):e97688

    PubMed  PubMed Central  Google Scholar 

  203. Marceau F, Bawolak MT, Lodge R, Bouthillier J, Gagne-Henley A, Gaudreault RC et al (2012) Cation trapping by cellular acidic compartments: beyond the concept of lysosomotropic drugs. Toxicol Appl Pharmacol 259(1):1–12

    CAS  PubMed  Google Scholar 

  204. Hoyng C, Lotery A, Štingl K, Boon C, Parodi M, Dhooge P et al (2019) Designing a clinical trial to evaluate the safety and efficacy of oral soraprazan in Stargardt disease. Invest Ophthalmol Vis Sci 60:5704

    Google Scholar 

  205. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134

    CAS  PubMed  Google Scholar 

  206. Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C (2015) Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 52(1):12–27

    CAS  PubMed  Google Scholar 

  207. Yildirim Z, Ucgun NI, Yildirim F (2011) The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration. Clinics 66(5):743–746

    PubMed  PubMed Central  Google Scholar 

  208. Age-Related Eye Disease Study Research G (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436

    Google Scholar 

  209. Age-Related Eye Disease Study 2 Research G (2013) Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 309(19):2005–2015

    Google Scholar 

  210. Age-Related Eye Disease Study 2 Research G, Chew EY, Clemons TE, Sangiovanni JP, Danis RP, Ferris 3rd FL et al (2014) Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report no. 3. JAMA Ophthalmol 132(2):142–149

    Google Scholar 

  211. Curcio CA, Johnson M, Huang JD, Rudolf M (2009) Aging, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28(6):393–422

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Curcio CA, Johnson M, Rudolf M, Huang JD (2011) The oil spill in ageing Bruch membrane. Br J Ophthalmol 95(12):1638–1645

    PubMed  PubMed Central  Google Scholar 

  213. Curcio CA (2018) Soft drusen in age-related macular degeneration: biology and targeting via the oil spill strategies. Invest Ophthalmol Vis Sci 59(4):AMD160–AAMD81

    PubMed  PubMed Central  Google Scholar 

  214. Guymer RH, Baird PN, Varsamidis M, Busija L, Dimitrov PN, Aung KZ et al (2013) Proof of concept, randomized, placebo-controlled study of the effect of simvastatin on the course of age-related macular degeneration. PLoS One 8(12):e83759

    PubMed  PubMed Central  Google Scholar 

  215. Gehlbach P, Li T, Hatef E (2016) Statins for age-related macular degeneration. Cochrane Database Syst Rev 8:CD006927

    Google Scholar 

  216. Vavvas DG, Daniels AB, Kapsala ZG, Goldfarb JW, Ganotakis E, Loewenstein JI et al (2016) Regression of some high-risk features of age-related macular degeneration (AMD) in patients receiving intensive statin treatment. EBioMedicine 5:198–203

    PubMed  PubMed Central  Google Scholar 

  217. Gouras GK, Olsson TT, Hansson O (2015) β-Amyloid peptides and amyloid plaques in Alzheimer’s disease. Neurotherapeutics 12(1):3–11

    CAS  PubMed  Google Scholar 

  218. Curcio CA (2018) Antecedents of soft drusen, the specific deposits of age-related macular degeneration, in the biology of human macula. Invest Ophthalmol Vis Sci 59(4):AMD182–AAMD94

    PubMed  PubMed Central  Google Scholar 

  219. Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116(2):378–385

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Dentchev T, Milam AH, Lee VM, Trojanowski JQ, Dunaief JL (2003) Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9:184–190

    CAS  PubMed  Google Scholar 

  221. Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78(2):243–256

    CAS  PubMed  Google Scholar 

  222. Ohno-Matsui K (2011) Parallel findings in age-related macular degeneration and Alzheimer’s disease. Prog Retin Eye Res 30(4):217–238

    PubMed  Google Scholar 

  223. Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A 99(18):11830–11835

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Dong ZZ, Li J, Gan YF, Sun XR, Leng YX, Ge J (2018) Amyloid beta deposition related retinal pigment epithelium cell impairment and subretinal microglia activation in aged APPswePS1 transgenic mice. Int J Ophthalmol 11(5):747–755

    PubMed  PubMed Central  Google Scholar 

  225. Wang J, Ohno-Matsui K, Yoshida T, Shimada N, Ichinose S, Sato T et al (2009) Amyloid-beta up-regulates complement factor B in retinal pigment epithelial cells through cytokines released from recruited macrophages/microglia: another mechanism of complement activation in age-related macular degeneration. J Cell Physiol 220(1):119–128

    CAS  PubMed  Google Scholar 

  226. Catchpole I, Germaschewski V, Hoh Kam J, Lundh von Leithner P, Ford S, Gough G et al (2013) Systemic administration of Abeta mAb reduces retinal deposition of Abeta and activated complement C3 in age-related macular degeneration mouse model. PLoS One 8(6):e65518

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Leyhe T, Andreasen N, Simeoni M, Reich A, von Arnim CA, Tong X et al (2014) Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study. Alzheimers Res Ther 6(2):19

    PubMed  PubMed Central  Google Scholar 

  228. Rosenfeld PJ, Berger B, Reichel E, Danis RP, Gress A, Ye L et al (2018) A randomized phase 2 study of an anti-amyloid beta monoclonal antibody in geographic atrophy secondary to age-related macular degeneration. Ophthalmol Retina 2(10):1028–1040

    PubMed  Google Scholar 

  229. Prenner JL, Halperin LS, Rycroft C, Hogue S, Williams Liu Z, Seibert R (2015) Disease burden in the treatment of age-related macular degeneration: findings from a time-and-motion study. Am J Ophthalmol 160(4):725–731.e1

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank our funding agencies [National Eye Institute grants R01 EY028549 (to KP), P30 EY019007 (to the Department of Ophthalmology, Columbia University), and unrestricted funds from the Research to Prevent Blindness Inc. (to the Department of Ophthalmology, Columbia University)] for their continued support of our ongoing research to understand and treat complex retinal diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Petrukhin .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The author is an inventor on patent applications for RBP4 antagonists discussed in this manuscript. The patent applications are assigned to Columbia University, and the author may benefit from licensing agreements between Columbia University and outside parties in relation to these patent applications.

Ethical Approval

This manuscript is a review of previously published accounts, as such no animal or human studies were performed.

Funding

This study was funded by the NIH grant R01EY028549. This study was supported by NIH Grants P30 EY019007 (Core Support for Vision Research), and unrestricted funds from Research to Prevent Blindness (New York, NY) to the Department of Ophthalmology, Columbia University.

Informed Consent

This article does not contain any studies with human participants performed by the author.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrukhin, K. (2020). Recent Developments in Agents for the Treatment of Age-Related Macular Degeneration and Stargardt Disease. In: Cioffi, C.L. (eds) Drug Delivery Challenges and Novel Therapeutic Approaches for Retinal Diseases. Topics in Medicinal Chemistry, vol 35. Springer, Cham. https://doi.org/10.1007/7355_2020_105

Download citation

Publish with us

Policies and ethics